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Abstract

In this article we introduce the notion of difference bounded, con-
vergent and null sequences in cone metric space. We investigate their
different algebraic and topological properties.
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1. Introduction

The notion of difference sequence spaces (for single sequences) was intro-
duced by Kizmaz [4] as follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z},

for Z = c, c0 and c∞, where ∆xk = xk − xk+1 for all k ∈ N .

The above spaces are Banach spaces normed by

||(xk)|| = |x1|+ sup
k≥1 |∆xk|.

Later on the notion of difference sequences was investigated from dif-
ferent aspects by Tripathy et al [5], Tripathy and Baruah [6], Tripathy and
Borgogain [8], Tripathy and Chandra [9], Tripathy and Debnath [10], Tri-
pathy and Dutta [12], Tripathy and Goswami [12] and many others.

The notion of cone metric space has been applied by various authors in
different fields of research in these days. It has been applied for introducing
and investigating different new classes of sequence spaces and studying
their different algebraic and topological properties by Abdeljawad [1], Beg,
Abbas and Nazir [2], Dhanorkar and Salunke [3] and many others. In this
article we have investigated different properties of the notion of difference
bounded, convergent and null sequences in cone metric spaces.

2. Definitions and Preliminaries

Definition 2.1. A subset P of a real Banach space E is called a cone if
and only if

(i) P is closed, non-empty and P 6= {0}.

(ii) If a, b ∈ R, a ≥ 0, b ≥ 0 and x, y ∈ P , then ax+ by ∈ P .

(iii) If both x ∈ P and −x ∈ P then x = 0.

For a given cone P ⊆ E, we can define a partial ordering ≤ with respect
to P by x ≤ y if and only if y − x ∈ P, x < y will stand for x ≤ y and
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x 6= y, while x << y will stand for y − x ∈ intP , where intP denotes the
interior of P .

Definition 2.2. A cone metric space is an ordered pair (X, d), where X is
any set and d : X ×X → Eis a mapping satisfying:

(i) 0 < d(x, y) for all x, y ∈ X.

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x) for all x, y ∈ X.

(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Example 2.1. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0}, X = R and
d : X ×X → E defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0, is a
constant and x, y ∈ X. Then it is well known that (X,d) is a cone metric
space.

Example 2.2. Let E be a Banach space, P = {(x, y, z) ∈ E : x, y, z ≥ 0}
and (X, η) be a metric space with θ the zero element. Let d : X ×X → E
be defined by d(x, y) = (η(x, y), αη(x, y), βη(x, y)), α, β ≥ 0.

Then it can be easily verified that (X, d) is a cone metric space.

Definition 2.3. A sequence space E is said to be solid or normal if
{αkxk} ∈ E whenever {xk} ∈ E and for all sequences (αk) of scalars with
|αk| ≤ 1 for all k ∈ N .

Let K = {k1 < k2 < k3, ...} ⊆ N and E be a class of sequences. A
K-step set of E is a set of sequences λEK = {(xkn) ∈ w : (xk) ∈ w}.

A canonical pre-image of a sequence (xkn) ∈ λEK is a sequence (yn) ∈
w, defined as follows:

yn =

½
xn if n ∈ K;
0, otherwise,

where 0 is the zero element.
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Definition 2.4. A canonical pre-image of a step set λEK is a set of canon-
ical pre-images of all elements in λEK i.e. Y is in canonical pre-image λEK if
and only if Y is canonical pre-image of some X ∈ λEK .

Definition 2.5. A class of sequences E is said to be monotone if E con-
tains the canonical pre-images of all its step sets.

The following remark is well known.

Remark 2.1. A class of sequences E is solid ⇒ E is monotone.

Definition 2.6. A sequence space E is said to be convergence free if
{xn} ∈ E implies {yn} ∈ E such that yn = 0, whenever xn = 0.

Definition 2.7. A class of sequences E is said to be symmetric if (xπ(n)) ∈
E, whenever (xk) ∈ E, where π is a permutation of N .

Definition 2.8. A sequence space E is said to be a sequence algebra if
(xkyk) ∈ E, whenever (xk), (yk) ∈ E.

In this article we introduced the following definitions.

Definition 2.9. Let (X, d) be a cone metric space. A sequence (xk) in
c(∆) is said to be convergent to x if for every c̄ ∈ E with θ << c̄, there
exists n0 such that for all k ≥ n0, d(∆xk, x) << c̄.

Definition 2.10. Let (X, d) be a cone metric space. A sequence (xk)
in c(∆) is said to be Cauchy sequence if for every c̄ ∈ E with θ << c̄
there exists n0 such that for all k, p ≥ n0, d(∆xk,∆xp) << c̄, where
c̄ = (c, αc, βc), α, β ≥ 0.

We procure the following results those will be used in establishing re-
sults of this article.

Lemma 2.1. Let (X,d) be a cone metric space and (xk), (yk) be in c(∆).
If lim

k→∞∆xk = x and lim
k→∞∆yk = y, then lim

k→∞d(∆xk,∆yk) = d(x, y).

Lemma 2.2. Let (X, d) be a cone metric space and (xk) ∈ c(∆). If
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lim
k→∞∆xk = x and lim

k→∞∆xk = y, then x = y.

Lemma 2.3. Let (X, d) be a cone metric space and (xk) ∈ c(∆). If
lim

k→∞∆xk = x, then d(∆xk, x) = 0.

3. Main results

We state the following result without proof.

Theorem 3.1.(Z(∆), d), for Z = c, c0, c∞ are cone metric spaces.

Theorem 3.2. Let x be a complete cone metric space. Then the classes of
sequences c(∆), c0(∆), c∞(∆) are complete cone metric spaces w.r.t. the
cone metric ρ(x, y) = d(x1, y1) +

sup
k∈N d(∆xk,∆yk).

Proof. Let (x(i)) be a Cauchy sequence in c∞(∆).

Then for a given c̄ ∈ E with c̄ = (c, αc, βc) there exists n0 such that

ρ(xi, xj) << c̄ for all i, j ≥ n0.

⇒ d(xi1, x
j
1)+ Sup

k∈N
d(∆xik,∆x

j
k) << c̄.

⇒ d(xi1, x
j
1) << c̄ and d(∆xik,∆x

j
k) << c̄, for all k ∈ N .

⇒ (η(xik, x
j
k), αη(x

i
k, x

j
k), βη(x

i
k, x

j
k)) << (c, αc, βc).

and (η(∆xik,∆x
j
k), αη(∆x

i
k,∆x

j
k), βη(∆x

i
k,∆x

j
k)) << (c, αc, βc).

⇒ η(xik, x
j
k) << c and η(∆xik,∆x

j
k) << c.

Now, η(xik, x
j
k) << c.

⇒ (xi1) is a Cauchy sequence in X.

Since X is a complete cone metric space, so (xi1) converges to L in X.
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(3.1) ⇒ d(xi1, L1) <<
c̄

2

and η(∆xik,∆x
j
k) << c.

⇒ η(xik − xik+1, x
j
k − xjk+1) << c.

⇒ η(xit, x
j
t ) << c, where xit = xik − xik+1 and xjt = xjk − xjk+1.

⇒ (xit) is a Cauchy sequence in X.

Since X is complete, so (xik) converges to Lk, for each k ∈ N .

Therefore d(xik, Lk) << c, for all k ∈ N .

⇒ d(∆xik, Lk) << c̄, for all k ∈ N .

(3.2) ⇒ sup

k ∈ N
d(∆xik, Lk) <<

c̄

2
.

Adding (3.1) and (3.2) we get,

d(xi1, L1) +
sup
k∈N d(∆xik, Lk) << c̄.

⇒ d(xi, L) << c̄.

⇒ (xi) converges to L.

Hence c∞(∆) is a complete metric space.

Theorem 3.3. The class of all sequences c(∆), c0(∆), c∞(∆) are neither
solid nor normal.

Proof. The result can be verified by the following example.

Example 3.1. Let us consider the cases c(∆) and c0(∆), similar example
can be constructed for the case c∞(∆). LetE = R3, P = (x, y, z) ∈ E : x, y, z ≥ 0,X =
R, d : X ×X → E be defined by
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d(x, y) = (|x− y|, α|x− y|, β|x− y|),
where α, β ≥ 0 are constants. Consider the sequence (xk) defined by xk = 1,
for all k ∈ N .

Then ∆xk = 0, for all k ∈ N .

Then clearly (xk) ∈ c(∆) is convergent to 0 with respect to the cone
metric space considered.

We have (∆xk) = (0) is convergent.

Consider the canonical pre-image of (xk) defined by

(yk) = (x1, 0, x3, 0, x5, 0, ...) = (1, 0, 1, 0, 1, 0, ...).

Now consider the sequence of scalars (αk) defined by αk = (−1)k, for
all k ∈ N .

Then it can be easily verified that the sequence ∆(αkxk) = ∆((−1)kxk)
is not convergent with respect to the cone metric consider above.

Then (∆xk) = (1,−1, 1,−1, 1,−1, ...) /∈ c(∆).

Hence the class of all convergent sequences is not normal and hence is
not solid.

Theorem 3.4. The class of all sequences c(∆), c0(∆), c∞(∆) are not
symmetric.

Proof. The result can be verified by the following example.

Example 3.2. Consider the cone metric space considered in Example 3.1.
Consider the sequence (xk) defined by

(xk) = (1, 2, 3, 4, ..., k, ...).

Then (∆xk) = (−1,−1,−1, ...).
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Hence (∆xk) converges with respect to the cone metric space considered.

Considering the rearrangement (yk) of (xk) defined by (yk) = (1, 2, 4, 3, 9, 5, 16, 6, 25, 7, ...).

(∆yk) = (−1,−2, 1,−6, 4,−11, 10, ...).

Then it can be easily examined that the sequence (∆yk) is not conver-
gent with respect to the cone metric consider above.

Hence the class of all sequences c(∆), c0(∆), c∞(∆) are not symmetric.

Theorem 3.5. The class of all sequences c(∆), c0(∆), c∞(∆) are not
sequence algebra.

Proof. The result can be verified by the following example.

Example 3.3. Consider the cone metric space considered in Example 3.1.
Consider the sequence (xk) and (yk) defined by

xk = yk = k, for all k ∈ N .

Then ∆xk = ∆yk = −1, for all k ∈ N .

Therefore (xk), (yk) ∈ c(∆).

Next we have ∆(xkyk) = k2 − (k + 1)2 = −2k − 1, for all k ∈ N .

Hence d(∆(xkyk), 0̄)→ (∞,∞,∞).

So the class of all sequences c(∆), c0(∆), c∞(∆) are not sequence al-
gebra.
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