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Abstract

For a connected graph G of order n, a subset S of vertices of G is
a monophonic set of G if each vertex v in G lies on a x-y monophonic
path for some elements x and y in S. The minimum cardinality of
a monophonic set of G is defined as the monophonic number of G,
denoted by m(G). A monophonic set of cardinality m(G) is called a
m-set of G. A set S of vertices of a connected graph G is an open
monophonic set of G if for each vertex v in G, either v is an extreme
vertex of G and v ∈ S, or v is an internal vertex of a x-y mono-
phonic path for some x, y ∈ S. An open monophonic set of minimum
cardinality is a minimum open monophonic set and this cardinality is
the open monophonic number, om(G). An open monophonic set S of
vertices in a connected graph G is a minimal open monophonic set
if no proper subset of S is an open monophonic set of G. The upper
open monophonic number om+(G) is the maximum cardinality of a
minimal open monophonic set of G. The upper open monophonic
numbers of certain standard graphs are determined. It is proved that
for a graph G of order n, om(G) = n if and only if om+(G) = n.
Graphs G with om(G) = 2 are characterized. If a graph G has a
minimal open monophonic set S of cardinality 3, then S is also a
minimum open monophonic set of G and om(G) = 3. For any two
positive integers a and b with 4 ≤ a ≤ b, there exists a connected graph
G with om(G) = a and om+(G) = b.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected connected graph
without loops or multiple edges. The order and size of G are denoted by
n and m, respectively. For basic graph theoretic terminology we refer to
Harary [4]. The distance d(u, v) between two vertices u and v in a connected
graph G is the length of a shortest u-v path in G. An u-v path of length
d(u, v) is called an u-v geodesic. It is known that this distance is a metric
on the vertex set V (G). For any vertex v of G, the eccentricity e(v) of
v is the distance between v and a vertex farthest from v. The minimum
eccentricity among the vertices of G is the radius, rad G and the maximum
eccentricity is its diameter, diam G of G. The neighborhood of a vertex
v is the set N(v) consisting of all vertices which are adjacent with v. The
vertex v is an extreme vertex of G if the subgraph induced by its neighbors
is complete. For a cut-vertex v in a connected graph G and a component H
of G− v, the subgraph H and the vertex v together with all edges joining
v and V (H) is called a branch of G at v. A geodetic set of G is a set
S ⊆ V (G) such that every vertex of G is contained in a geodesic joining
some pair of vertices in S. The geodetic number g(G) of G is the cardinality
of a minimum geodetic set. A vertex x is said to lie on a u-v geodesic P
if x is a vertex of P and x is called an internal vertex of P if x 6= u, v.
A set S of vertices of a connected graph G is an open geodetic set of G
if for each vertex v in G, either v is an extreme vertex of G and v ∈ S,
or v is an internal vertex of a x-y geodesic for some x, y ∈ S. An open
geodetic set of minimum cardinality is a minimum open geodetic set and
this cardinality is the open geodetic number og(G). It is clear that every
open geodetic set is a geodetic set so that g(G) ≤ og(G). The geodetic
number of a graph was introduced and studied in [1, 2]. The open geodetic
number of a graph was introduced and studied in [3, 5, 6] in the name open
geodomination in graphs. A chord of a path u1, u2, . . . , un in G is an edge
uiuj with j ≥ i+2. For two vertices u and v in a connected graph G, a u-v
path is called a monophonic path if it contains no chords. A monophonic
set of G is a set S ⊆ V (G) such that every vertex of G is contained in
a monophonic path joining some pair of vertices in S. The monophonic
number m(G) of G is the cardinality of a minimum monophonic set. A
set S of vertices in a connected graph G is an open monophonic set if for
each vertex v in G, either v is an extreme vertex of G and v ∈ S, v is
an internal vertex of a x-y monophonic path for some x, y ∈ S. An open
monophonic set of minimum cardinality is a minimum open monophonic
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set and this cardinality is the open monophonic number om(G) of G. An
open monophonic set of cardinality om(G) is called om − set of G. The
open monophonic number of a graph was introduced and studied in [8].
The connected open monophonic number of a graph was introduced and
studied in [7].

The following theorems are used in the sequal.

Theorem 1.1. [8] Every extreme vertex of a connected graph G belongs
to each open monophonic set of G. In particular, if the set S of all extreme
vertices of G is an open monophonic set of G, then S is the unique minimum
open monophonic set of G.

Theorem 1.2. [8] If G is a non-trivial connected graph with no extreme
vertices, then om(G) ≥ 3.

Theorem 1.3. [8] If G is a connected graph with a cut-vertex v, then
every open monophonic set of G contains at least one vertex from each
component of G− v.

Theorem 1.4. [8] For any cycle G = Cn(n ≥ 4), om(G) = { 3 if n ≥ 6
4if n = 4, 5.

2. The upper open monophonic number of a graph

Definition 2.1. An open monophonic set S of vertices in a connected graph
G is a minimal open monophonic set if no proper subset of S is an open
monophonic set of G. The upper open monophonic number om+(G) is the
maximum cardinality of a minimal open monophonic set of G.

We illustrate this definition by an example.

Example 2.2. For the graph G given in Figure 2.1, it is easy to see that
no 2-element subset of vertices is an open monophonic set of G. It is
easily verified that S1 = {v1, v5, v8}, S2 = {v1, v2, v5}, S3 = {v2, v5, v7}
and S3 = {v2, v5, v8} are the only four minimum open monophonic sets of
G so that om(G) = 3. It is also easily verified that T1 = {v1, v3, v5, v6},
T2 = {v2, v3, v5, v6}, T3 = {v3, v5, v6, v7}and T4 = {v3, v5, v6, v8} are the
only four minimal open monophonic sets of order 4. It is also verified that
there is no minimal open monophonic sets of order greater than 4. Hence
om+(G) = 4.
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Figure2.1

It is clear that every minimum open monophonic set is a minimal open
monophonic set of G, and the converse need not be true. For the graph G
given in Figure 2.1, T1 = {v1, v3, v5, v6} is a minimal open monophonic set
of G, and not a minimum open monophonic set of G.

Any open monophonic set contains at least two vertices and so om(G) ≥
2. The inequality om(G) ≤ om+(G) follows from the fact that every min-
imum open monophonic set is a minimal open monophonic set. Also, the
set of all vertices of G is an open monophonic set of G so om+(G) ≤ n.
Thus we have the following theorem.

Theorem 2.3. Let G be a connected graph of order n. Then 2 ≤ om(G) ≤
om+(G) ≤ n.

We observe that the bounds in Theorem 2.3 are sharp. For any path
Pn(n ≥ 2), om(Pn) = 2. For any tree T of order at least 2, it is clear that
the set of all endvertices is the unique minimum open monophonic set so
that om(T ) = om+(T ). Also, it is easily seen that for the complete graph
Kn(n ≥ 2), om+(Kn) = n. Now, all the inequalities in Theorem 2.3 can be
strict. For the graph G given in Figure 2.1, om(G) = 3, om+(G) = 4 and
n = 8.

Theorem 2.4. For a connected graph G of order at least 2, om(G) = 2 if
only if there exist two extreme vertices u and v such that every vertex lies
on a monophonic path joining u and v.

Marisol
2.1
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Proof. If om(G) = 2, then let S = {u, v} be an open monophonic set
of G. Suppose that u or v is not extreme vertex. Assume that u is not
extreme. Then u cannot lie as an internal vertex of a monophonic path
joining two vertices of S. Hence both u and v are extreme. The converse
is clear. 2

The following are some examples of graphs illustrating the above theo-
rem.

1. Any Path Pn(n ≥ 2)

2. Let Pk : u1, u2, . . . , uk(k ≥ 1) be a path of order k. Let Cr :
v1, v2, . . . , vr, v1(r ≥ 4) be a cycle of order r. Let H be the graph
obtained by identifying the vertex uk of Pk and the vertex v1 of the
Cr. Let vi, vi+1, vi+2(i ≥ 2) be three vertices on Cr and let G be
the graph obtained from H by joining the vertices vi and vi+2. The
graph is shown in Figure 2.2. Then u1 and vi+1 are the only extreme
vertices of G and S = {u1, vi+1} is an open monophonic set of G so
that om(G) = 2.

Figure2.2

3. Let Pk : u1, u2, . . . , uk(k ≥ 1) and Pl : w1, w2, . . . , wl(l ≥ 1) be two
paths of order k and l, respectively. Let Cr : v1, v2, . . . , vr, v1(r ≥ 4)
be a cycle of order r. Let H be the graph obtained by identifying the
vertex uk of Pk and the vertex v1 of the Cr. Now, let G be the graph
obtained from H by identifying the vertex w1 of Pl and any vertex
vi(i 6= 2, r) of Cr. The graph G is shown in Figure 2.3. Then u1 and
wl are the only extreme vertices of G and S = {u1, wl} is an open
monophonic set of G so that om(G) = 2.

Marisol
2.2
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Figure2.3

4. One may attach a path of any length at the vertex vi+1 of the graph
G given in Figure 2.2 in Example 2 and get om(G) = 2. Many more
classes of graphs can be obtained in this manner.

Theorem 2.5. If G is a connected graph with extreme vertices, and if
the set S of all extreme vertices is an open monophonic set of G, then
om(G) = om+(G).

Proof. Suppose that G is a graph with extreme vertices and the set all
extreme vertices forms an open monophonic set. Since any minimal open
monophonic set contains all the extreme vertices, it follows that the minimal
open monophonic sets are nothing but the minimum open monophonic sets.
Hence om(G) = om+(G). 2

Corollary 2.6. For any Tree T with k endvertices, om(T ) = om+(T ) = k.

Proof. The set of all endvertices is the unique minimum open mono-
phonic set of G. Hence the result follows. 2

Remark 2.7. It follows from Theorem 2.5 that om(G) = om+(G) for all the
graphs in Figure 2.2 and 2.3 of the above examples.

Theorem 2.8. Let G be a connected graph of order n. Then om(G) = n
if and only if om+(G) = n.

Marisol
2.3
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Proof. If om(G) = n, then om+(G) = n follows from Theorem 2.3. Let
om+(G) = n. Then the set of all vertices of G is the unique minimal open
monophonic set of G. Hence it follows that G contains no proper open
monophonic sets so that the set of all vertices is also the minimum open
monophonic set so that om(G) = n. 2

Theorem 2.9. For the complete graphG = Kn(n ≥ 2), om(G) = om+(G) =
n.

Proof. This follows from Theore 1.1 and 2.5. 2

The converse of Theorem 2.9 need not be true. For the graph G = C4,
om(G) = 4 (Theorem 1.4). Hence by Theorem 2.3, om+(G) = 4. We
give yet another example. For the graph G given in Figure 2.4, the set
S = {v1, v2, v3, v4, v5, v6} is the unique minimum open monophonic set of
G and so om(G) = 6. Hence by Theorem 2.3, om+(G) = 6.

Figure2.4

Marisol
2.4
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These examples show that there are non-complete graphs G of order n
with om(G) = om+(G) = n.

Theorem 2.10. If G is a connected graph of order n with om(G) = n−1,
then om+(G) = n− 1.

Proof. Let om(G) = n − 1. Then it follows from Theorem 2.3 that
om+(G) = n or n− 1. If om+(G) = n, then by Theorem 2.8, om(G) = n,
which contradicts the data. Hence om+(G) = n− 1. 2

Remark 2.11. The converse of Theorem 2.10 need not be true. For the
graph G given in Figure 2.5, the set S = {v1, v2, v3, v5} is a minimum open
monophonic set so that om(G) = 4. Also it is easily seen that the set
S0 = {v1, v2, v4, v5, v6, v7, v8} is a minimal open monophonic set so that
om+(G) = 7.

Figure2.5

Marisol
2.5
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Example 2.12. For the graph G = C5 : v1, v2, v3, v4, v5, v1, it is easily ver-
ified that S = {v1, v2, v3, v4} is a minimum open monophonic set and so
om(G) = 4. Hence by Theorem 2.10, om+(G) = 4.

3. More results on minimal open monophonic sets

Theorem 3.1. No cut-vertex of a connected graph G belongs to any min-
imal open monophonic set of G.

Proof. Let S be any minimal open monophonic set of G. Let v ∈ S.
We prove that v is not a cut-vertex of G. Suppose that v is a cut-vertex
of G. Let G1, G2, . . . , Gk(k ≥ 2) be the components of G − v. Then v is
adjacent to at least one vertex of each Gi for 1 ≤ i ≤ k. Let S0 = S − {v}.
We show that S0 is an open monophonic set of G. Let x be a vertex of G.
If x is an extreme vertex of G, then x 6= v and so x ∈ S0. Suppose that x
is not an extreme vertex of G. Since S is an open monophonic set of G, x
lies as an internal vertex of a u - w monophonic path for some u,w ∈ S.
If v 6= u,w, then obviously u,w ∈ S0 and S0 is an open monophonic set of
G. If v = u, then v 6= w. Assume without loss of generality that w ∈ G1.
By Theorem 1.3, S0 contains a vertex w0 from Gi(2 ≤ i ≤ k). Consider
w - v monophonic path P (such a path exists since there is at least one
w - u geodesic). Let P 0 be a w - w0 monophonic path. Then, since v is a
cut-vertex of G, it follows that P ∪ P 0 is a w - w0 monophonic path of G.
Hence x is an internal vertex of the w - w0 monophonic path P ∪ P 0 with
w,w0 ∈ S0. Thus S0 is an open monophonic set of G with |S0| < |S|. This is
a contradiction to S a minimal open monophonic set. Thus no cut-vertex
of G belongs to S. 2

Remark 3.2. Theorem 3.1 can be used to prove that for any tree with k
endvertices om(G) = om+(G) = k.

The next theorem gives an interesting result regarding minimal open
geodetic set of cardinality 3.

Theorem 3.3. Let G be a connected graph. If G has a minimal open
geodetic set S of cardinality 3, then all the vertices in S are extreme.

We first prove the following lemma and proceed.
Lemma A. If a non-trivial connected graph G contains no extreme

vertices, then og(G) ≥ 4.
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Proof. First, we observe that if G is a non-trivial connected graph
having no extreme vertices, then the order of G is at least 4. Let S be
an open geodetic set of G. If u ∈ S, then there exists vertices v and w
such that u lies on a v − w geodesic. Without loss of generality, assume
that d(v, u) ≤ d(u,w). Then w does not lie on any u − v geodesic. Since,
for some x, y ∈ S, w lies in an x − y geodesic, it follows that at least one
of x and y is distinct from all of u, v and w. Hence |S| ≥ 4. Therefore,
og(G) ≥ 4 and the lemma is proved. Now, we prove the theorem.

Let S = {u, v, w} be a minimal open geodetic set of G. Then by Lemma
A, og(G) ≤ 3. Suppose that the vertex w is not extreme. We consider three
cases.

Case 1. u and v are non-extreme. Then u, v, w are all non-extreme
and G has no extreme vertices. Hence by above Lemma A, we see that
og(G) ≥ 4, which is a contradiction.

Case 2. u is extreme and v is not extreme. Since S is an open geodetic
set of G, we have v lies as an internal vertex of u−w geodesic and w lies as
an internal vertex of u− v geodesic. These in turn, give d(u,w) > d(u, v)
and d(u, v) > d(u,w). Hence d(u,w) > d(u,w), which is a contradiction.

Case 3. u and v are extreme. Since S is an open goedetic set of G,
we have w lies as an internal vertex of u− v geodesic. Let d(u, v) = k and
let P be a u− v geodesic of length k, d(u,w) = l1 and d(w, v) = l2. Then
l1 + l2 = k. Let P 0 be the u − w subpath P and P 00 the w − v subpath
of P . We prove that S0 = {u, v} is an open geodetic set of G. Let x be
any vertex of G such that x /∈ S0. Since S = {u, v, w} is a minimal open
geodetic set of G with w non-extreme, u and v extreme, it follows that u
and v are the only two extreme vertices of G. Hence x is not extreme.
Since S is an open geodetic set of G, we have x lies as an internal vertex of
u− v geodesic or x lies as an internal vertex of u−w geodesic or x lies as
an internal vertex of v−w geodesic. If x lies as an internal vertex of u− v
geodesic, there is nothing to prove. If x lies as an internal vertex of u− w
geodesic, let Q be a u−w geodesic in which x lies internally. Let R be the
u− v walk obtained from Q followed by P 00. Then the length of R is k and
so R is a u− v geodesic containing x. Thus x lies as an internal vertex of
u− v geodesic. Similarly, if x lies as an internal vertex of v − w geodesic,
we can prove that x lies as an internal vertex of u− v geodesic. Hence S0

is an open geodetic set of G, which contradicts that S is a minimal open
geodetic set of G. This completes the proof. 2

Remark 3.4. Theorem 3.3 need not be true in the case of minimal open
monophonic sets with cardinality 3. For the cycle Cn(n ≥ 6), by Theorem
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1.4, om(G) = 3. Note that no vertex of the cycle Cn(n ≥ 6) is extreme. Also
for the graph G given in Figure 3.1, the vertices v2, v4 and v5 are extreme
and the set S = {v2, v4, v5} is the unique minimum open monophonic set
of G so that om(G) = 3 and by Theorem 2.5, om+(G) = 3.

Figure3.1

Theorem 3.5. Let G be a connected graph. If G has a minimal open
monophonic set S of cardinality 3, then S is also a minimum open mono-
phonic set and so om(G) = 3.

Proof. Let S = {u, v, w} be a minimal open monophonic set of G. Then
om(G) ≤ 3. First, suppose that G is a graph with no extreme vertices.
Hence by Theorem 1.2, om(G) ≥ 3. Thus om(G) = 3. Next, let G be a
graph with extreme vertices.

Case 1. u, v,w are extreme vertices. Then S is clearly a minimum
open monophonic set so that om(G) = 3.

Marisol
3.1
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Case 2. u and v are extreme vertices and w is not an extreme ver-
tex. Then it is clear that no 2-element subset of vertices of G is an open
monophonic set. Hence S is a minimum open monophonic set of G and so
om(G) = 3.

Case 3. u is an extreme vertex and v, w are non extreme vertices. We
show that no 2-element subset of vertices of G is an open monophonic set
of G. Suppose that there exists an open monophonic set T of cardinality
2. Then by Theorem 1.1, u ∈ T . If T = {u, v} or T = {u,w}, then it
contradicts that S is a minimal open monophonic set of G. Hence T =
{u, x}, where x 6= v, w. Then it is clear that x cannot lie as an internal
vertex of a monophonic path joining a pair of vertices of T so that T is not
an open monophonic set of G. Hence, it follows that S is a minimum open
monophonic set of G and so om(G) = 3. 2

Corollary 3.6. Let S be an open monophonic set with |S| = 3. Then S
is minimum if and only if S is minimal.

Proof. If S is a minimum open monophonic set with |S| = 3, then it
is clear S is a minimal open monophonic set. The converse follows from
Theorem 3.5. 2

Theorem 3.7. For any two positive integers a and b with 4 ≤ a ≤ b, there
exists a connected graph G with om(G) = a and om+(G) = b.

Proof. Case 1. If a = b, let G = K1,a. Then for any tree T with a end
vertices, om(G) = om+(G) = a.
Case 2. Let 4 ≤ a < b. Let H = K2+Cb−a+3 with V (K2) = {x, y} in Fig-
ure 3.2 obtained fromH by adding a−3 new vertices u1, u2, u3, . . . , ua−3 and
joining each ui(1 ≤ i ≤ a−3) with y. It is clear that S = {u1, u2, u3, . . . , ua−3}
is not an open monophonic set of G. Also S ∪ {w, z}, where w, z /∈ S is not
an open monophonic set of G. Let S0 = S ∪ {x, vi, vj}, where vi and vj are
non adjacent. Then it is clear that S0 is an open monophonic set of G and
so om(G) = a.
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Figure3.2

We now prove that om+(G) = b. It is clear that T = S∪{v1, v2, . . . , vb−a+3}
is an open monophonic set of G. We show that T is a minimal open mono-
phonic set of G. On the contrary, assume that W is a proper subset of T
such that W is an open monophonic set of G. Then there exists a vertex
v ∈ T such that v /∈W . SinceW is an open monophonic set, it contains all
its extreme vertices. It is clear that v = vj for some j(1 ≤ j ≤ b− a+ 3).
Then vj+1 does not lie on a monophonic path joining any pair of vertices of
W and so W is not an open monophonic set of G, which is a contradiction.
Hence T is a minimal open monophonic set of G so that om+(G) ≥ b.
Now, since y is a cut-vertex of G, y does not belong to any minimal open
monophonic set of G. Suppose that om+(G) = b+ 1. Let X be a minimal
open monophonic set of cardinality b+1. Then X = V (G)− {y} and S0 is
a proper subset of X so that X is not a minimal open monophonic set of
G, which is a contradiction. Hence om+(G) = b 2

Marisol
3.2
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Conclusion
In view of the results discussed in this paper we leave the following

problems as open.

Problem 1 Characterize graphs G of order at least 2 for which om(G) =
om+(G) = 2.

Problem 2 Characterize graphsG of order n for which om(G) = om+(G) =
n.

Problem 3 Characterize graphsG of order n for which om(G) = om+(G) =
n− 1.
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