Proyecciones Journal of Mathematics Vol. 33, N^o 4, pp. 369-388, December 2014. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172014000400002

L(1,1)-Labeling of Direct Product of any Path and Cycle

Deborah Olayide Ajayi University of Ibadan, Nigeria and Charles Adefokun Crawford University, Nigeria Received : November 2013. Accepted : September 2014

Abstract

Suppose that $[n] = \{0, 1, 2, ..., n\}$ is a set of non-negative integers and $h, k \in [n]$. The L(h, k)-labeling of graph G is the function l : $V(G) \rightarrow [n]$ such that $|l(u) - l(v)| \ge h$ if the distance d(u, v) between u and v is 1 and $|l(u) - l(v)| \ge k$ if d(u, v) = 2. Let L(V(G)) = $\{l(v) : v \in V(G)\}$ and let p be the maximum value of L(V(G)). Then p is called λ_h^k -number of G if p is the least possible member of [n] such that G maintains an L(h, k)-labeling. In this paper, we establish λ_1^1 numbers of $P_m \times P_n$ and $P_m \times C_n$ graphs for all $m, n \ge 2$.

Keywords : L(1,1)-labeling, D-2 Coloring, Direct Product of Graphs, Cross Product of Graphs, Path and Cycle.

Mathematics Subject Classification : Primary: 05C78.

1. Introduction

Let $l: V(G) \to [n] = \{0, 1, 2, \dots, n\}$ be a non negative function on the vertex set V(G) of G. Given any two fixed non-negative integers h, k, the L(h, k)-labeling of G is defined such that for any edge $uv \in E(G)$, $|l(u) - l(v)| \ge h$ and if $d(u, v) = 2, u, v \in V(G)$, then $|l(u) - l(v)| \ge k$. The aim of L(h, k)-labeling is to obtain the smallest non negative integer $\lambda_h^k(G)$, such that there exists an L(h, k)-labeling of G with no $l(v) \in L(V(G))$ greater than $\lambda_h^k(G)$, where L(V(G)) is the set of all labels on V(G).

In [13], Griggs and Yeh introduced the l(h, k)-labelling and particularly showed that any graph G with maximum degree $\Delta > 1$ has $\lambda_2^1(G) \leq \Delta^2 + 2\Delta$ and went further to put forward a conjecture that $\lambda_2^1(G) \leq \Delta^2$. Chang and Kuo, in [5] improved on Griggs and Yeh's bound by showing that $\lambda_2^1(G) \leq \Delta(\Delta + 1)$, Kral' and Skrekovski [16] went another step showing that $\lambda_2^1(G) \leq \Delta(\Delta + 1) - 1$ while Goncalves in [11] proved that $\lambda_2^1(G) \leq \Delta(\Delta + 1) - 1$ while Goncalves in [11] proved that $\lambda_2^1(G) \leq \Delta(\Delta + 1) - 2$. The interest in the Griggs-Yeh conjecture and in improving on the existing bounds have inspired a lot of work in the direction of L(h, k)labeling, mostly on h = 2, k = 1. (See [5][6][10][12][18].) (An extensive review of all known results on L(h, k)-labeling can be seen in [3].) It is obvious that L(2, 1)-labeling is an L(1, 1)-labeling, therefore results on L(2, 1)-labeling provide upper bound for L(1, 1)-labeling of graphs and

$$\lambda_{2}^{1}(G) + 1 \ge \lambda_{1}^{1}(G) + 1 = \lambda(G^{2})$$

where $\lambda(G^2)$ is the chromatic number of the square of G.

Finally, Georges and Mauro [8] obtained various results for the L(h,k)-number for path P_n and cycles C_n . Particularly among other results, they showed that $\lambda_h^k(P_n)$ is either 0, h, h+k, h+2k, or 2h.

Suppose that G and H are graphs. The Cartesian product and the direct product of G and H, $G\Box H$ and $G \times H$ respectively, have vertex set $V(G) \times V(H)$, while the edge sets are $E(G\Box H) = \{((x_1, x_2), (y_1, y_2)) : (x_1, y_1) \in E(G) \text{ and } x_2 = y_2 \text{ or } (x_2, y_2) \in E(H) \text{ and } x_1 = y_1\}$ and $E(G \times H) = \{((x_1, x_2), (y_1, y_2)) : (x_1, y_1) \in E(G) \text{ and } (x_2, y_2) \in E(H)\}$

respectively.

The L(h, k)-labeling of the Cartesian product $G \Box H$ has been extensively investigated with $\lambda_h^k(G \Box H)$ obtained for various types of graphs G and H, while numerous upper and lower bounds have been suggested (see [8][7][16][18][20][22]). Most of the work on L(h, k) labeling consider h = 2 and k = 1; although Chiang and Yan in [7] and Georges and Mauro in [10]

worked on the L(1, 1) labeling of Cartesian products of paths and cycles and Sopena and Wu in [20] worked on Cartesian products of cycles. In case of direct product graphs, Jha et al [15], established $\lambda_2^1(C_m \times C_n)$ for some values of m and n.

In this paper, we determine $\lambda_1^1(P_m \times P_n)$ and $\lambda_1^1(P_m \times C_n)$ where P_m and P_n are paths of length m-1 and n-1 respectively and C_n is a cycle of length n for all $m, n \geq 2$. We also deduce $\lambda_1^1(C_m \times C_n)$ for $m, n \equiv 0 \mod 5$. Thus, we extend the results in [10] and [7] to direct product graphs among other results.

2. Preliminaries

The following results and definitions are necessary.

Let *m* be a non-negative integer. $P_m = u_0 u_1 u_2 ... u_{m-1}$ is a path of length m-1, where $u_i \in V(P_m)$, for all $i \in [m-1]$; $C_m = u_0 u_1 u_2 ... u_{m-1} u_0$ is a cycle of length *m*, where $u_i \in V(C_m)$, for all $i \in [m-1]$. Let $v \in V(G)$, we denote by l(v) the label on *v* and let $U \subseteq V(G)$. Then L(U) is a set of labels on *U*.

Suppose $P_m \times P_n$ is a direct product paths and G' is a component of $P_m \times P_n$. Then

 $U_j = \{u_i v_j\} \subset V(G')$, for some $j \in [n-1]$, and for all $i \in [(m-1)(\epsilon)]$ or for all $i \in [(m-1)(o)]$.

 $V_i = \{u_i v_j\} \subset V(G')$, for some $i \in [m-1]$, and for all $j \in [(n-1)(\epsilon)]$ or for all $j \in [(n-1)(o)]$.

Theorem 2.1. [22] Graph $G \times H$ is connected if and only if G and H are connected and at least one of G and H is non-bipartite.

Remark 2.2.

- (i) Since P_m is bipartite for all $m \ge 2$, then for $P_m \times P_n$, there exist $G_1 \subset P_m \times P_n$ and $G_2 \subset P_m \times P_n$ such that G_1 and G_2 are components of $P_m \times P_n$.
- (ii) From Theorem 2.1 and the Remark above, it is clear that $P_m \times P_n$ is not a connected graph. Suppose $P_m = u_0 u_1 u_2 \dots u_{m-1}$ and $P_n = v_0 v_1 v_2 \dots v_{n-1}$, then $V(G_1) = \{u_i, v_j : i \in [(m-1)(\epsilon)], j \in [(n-1)(\epsilon)]$ or $i \in [(m-1)(o)]; j \in (n-1)[o]$ $V(G_2) = \{u_i, v_j : i \in [(m-1)(\epsilon)], j \in [(n-1)(o)]$

or $i \in [(m-1)(o)]; j \in (n-1)[\epsilon].$

- (iii) Suppose G is a graph such that $G = G' \cup G''$, where G', G'' are components of G, then, $\lambda_1^1(G) = \max \{\lambda_1^1(G'), \lambda_1^1(G'')\}$.
- (iv) For a direct product graph, $P_m \times P_2$, $m \ge 2$, its components G_1 and G_2 are paths P'_m and P''_m respectively such that $P'_m = u_0 v_0 u_1 v_1 u_2 v_0 \dots u_{m-1} v_1 (u_{m-1} v_0)$ (if m is even) and $P''_m = u_0 v_1 u_1 v_0 u_2 v_1 \dots u_{m-1} v_0 (u_{m-1} v_1)$ (if m is odd).

The following are known results for L(1, 1)-labeling of paths, cycles and L(h, k)-labeling of stars, $k \leq h$.

Lemma 2.3. [1] Let P_m be a path of length m-1. $\lambda_1^1(P_m) = 1$, for m = 2 and $\lambda_1^1(P_m) = 2$ for all $m \ge 3$.

Lemma 2.4. [1] Let C_m be cycle of length m. Then $\lambda_1^1(C_m) = 2$ for $m \equiv 0 \mod 3$ and $\lambda_1^1(C_m) = 3$ for $m \not\equiv 0 \mod 3$.

The following result presents a general λ_h^k -value for stars for $k \leq h$.

Lemma 2.5. [4] Let $K_{1,\Delta}$ be a star of order $\Delta + 1$. Then, $\lambda_h^k(K_{1,\Delta}) = (\Delta - 1)k + h$ if $h \ge k$.

Henceforth we refer to direct product graph as product graph.

3. L(1,1)-Labeling of $P_m \times P_n$

Proposition 3.1. $\lambda_1^1(P_2 \times P_2) = 1.$

Proof. Clearly, G consists of connected components P'_2 and P''_2 . By Lemma 2.3, $\lambda_1^1(P'_2) = \lambda_1^1(P''_2) = 1$. \Box

We extend the graph in Theorem 3.1 to $m \ge 3$.

Proposition 3.2. For $m \ge 3$, $\lambda_1^1(P_m \times P_2) = 2$.

Proof. $P_m \times P_2$ consists of two connected components P'_m and P''_m . By Lemma 2.3, $\lambda_1^1(P'_m) = \lambda_1^1(P''_m) = 2$ and the result follows from Remark 2.2 (iii). \Box

The next results establish $\lambda_1^1(P_m \times P_n), m, n \ge 3$.

Lemma 3.3. Let $u_i v_j \in P_m \times P_n$, $n, m \ge 3$, Suppose $d_{u_i} = d_{v_j} = 2$ then $d_{u_i v_j} = 4$.

Proof. Let $u_{i-1}u_iu_{i+1} = P'_3$, $P'_3 \subseteq P_m$, $m \ge 3$ and let $v_{j-1}v_jv_{j+1} = P''_3$, $P''_3 \subseteq P_n$, $n \ge 3$. By the definition of direct product of graphs, $V(P'_m \times P''_n) =$

 $\{ u_{i-1}v_{j-1}, u_{i-1}v_{j}, u_{i-1}v_{j+1}, u_{i}v_{j-1}, u_{i}v_{j}, u_{i}v_{j+1}, u_{i+1}v_{j-1}, u_{1+1}v_{j}, u_{i+1}v_{j+1} \}$ $\subseteq V(P_m \times P_n).$ Since $d_{u_i} = d_{v_j} = 2$, then by the definition of direct product of graphs, $u_iv_j \in V(P'_3 \times P''_3)$ is adjacent to all the members of $\{u_{i-1}v_{j-1}, u_{i+1}v_{j-1}, u_{i+1}v_{j+1}, u_{i-1}v_{j+1}\}$. Thus, $d_{u_iv_j} = 4$. \Box

Proposition 3.4. Suppose $m, n \geq 3$. Then $\lambda_1^1(P_m \times P_n) = 4$ for all $m, n \geq 3$.

Proof. Let G_1 be a connected component of $P_m \times P_n$. By Lemma 3.3, there exists a star $K_{1,4} \subseteq G_1$. By Lemma 2.5, $\lambda_1^1(K_{1,4}) = 4$ and thus, $\lambda_1^1(P_m \times P_n) \ge 4$. Let $u_i v_j \in V(P_m \times P_n)$. For all $u_i v_j \in V(P_m \times P_n)$, $l(u_i v_j) = \lfloor \frac{i+3j}{2} \rfloor \mod 5$. Thus $\lambda_1^1(P_m \times P_n) \le 4$ and then the equality follows. \Box

Remark 3.5. By using $l(u_iv_j) = \left\lfloor \frac{i+3j}{2} \right\rfloor$ mod 5 as in the proof of Proposition 3.4, given both connected components of $P_m \times P_n$, for all $i \in [m(\epsilon)]$, then $l(u_iv_{10}) = l(u_iv_0)$. Furthermore, for all $u_iv_1 \in U_1, i \in \{3, 5, 7\}$ $l(u_iv_1) \notin L(u_{i-2}v_9, u_iv_9, u_{i+2}v_9)$, $\{u_{i-2}v_9, u_iv_9, u_{i+2}v_9\} \subset U_9$. We also notice that $l(u_1v_1) \notin L(u_1v_9, u_3v_9, u_9v_9)$, while $l(u_9v_1) \notin L(u_1v_9, u_7v_9, u_9v_9)$. Also, for all $u_1v_j \in V_1, j \in \{3, 5, 7\}, l(u_1v_j) \notin L(u_9v_{j-2}, u_9v_j, u_9v_{j+2})$, $\{u_9v_{j-2}, u_9v_j, u_9v_{j+2}\} \subset V_9$ and $l(u_1v_1) \notin L(u_9v_1, u_9v_3, u_9v_9)$, while $l(u_1v_9) \notin L(u_9v_1, u_9v_7, u_9v_9)$.

The implication of Remark 3.5 is expressed in the following results.

Corollary 3.6. Let C_m be a cycle of length m, then, $\lambda_1^1(C_{10} \times C_{10}) = 4$.

Corollary 3.7. For all $m, n \equiv 0 \mod 5$, $\lambda_1^1(C_m \times C_n) = 4$.

4. L(1,1)-Labeling of $P_m \times C_m$

Lemma 4.1. Let $G = P_m \times P_n$, where $n \ge 4$. Suppose that $\alpha_k \in [4]$, such that for some $v_i \in V(G)$, $l(v_i) = \alpha_k$, $v_j \in V(G)$ is the closest vertex in V(G) to v_i , $i \ne j$ such that $l(v_j) = \alpha_k$. Then $3 \le d(v_i, v_j) \le 4$.

Proof. That $3 \leq d(v_i, v_j)$ follows directly from the definition of L(1, 1)labeling. Next, we show that $d(v_i, v_j) \leq 4$. Let S_n be a star of order n + 1. Clearly, $diam(S_n) = 2$. Now, suppose that for two stars $S'_4 \subset G$ and $S''_4 \subset G$, there exits some vertex u_i such that $u_i \in V(S'_n)$ and also $u_i \in V(S''_n)$, making S'_n and S''_n to be neighbors. Then, diam(H) = 4, where $S'_4 \cup S''_4 = H \subset G$. Now, suppose $d(v_i, v_j) > 4$. Let $v_i \in V(S'_4)$ such that $l(v_i) = \alpha_k$. Also, let $L(S'_4) = [4]$. Then, $\alpha_k \neq l(v_k)$ for all $v \in V(S''_4)$. Then, $\lambda_1^1(H) \geq 5$, and consequently, $\lambda_1^1(G) \geq 5$. This is a contradiction. \Box

Lemma 4.2. Let $v_i, v_j \in V(G)$ be two center vertices of stars $S'_4, S''_4 \subset G$ respectively, and that $d(v_i, v_j) = 4$ if $\alpha_i = l(v_i)$ and $\alpha_j = l(v_j), \alpha_i, \alpha_j \in [4]$, then $\alpha_i \neq \alpha_j$.

Proof. Suppose on the contrary that v_i, v_j are respective centers of S'_4, S''_4 such that $d(v_i, v_j) = 4$ and $\alpha_i = \alpha_j$. There exists a star $S''_4 \subset G$ with $V(S''_4) = u_q v_r, u_{q+2} v_r, u_{q+1} v_{r+1}, u_q v_{r+2}, u_{q+2} v_{r+2}$, where $0 \leq q, q + 2 \leq m$ and $r \leq 2, r+2 \leq n-3$, such that $v_i = u_{q+1} v_{r-1}$ and $v_j = u_{q+1} v_{r+3}$. Therefore v_i is adjacent to $u_q v_r$ and $u_{q+2} v_r$ and $d(v_i, u_{q+1} v_{r+1}) = 2$. Likewise, v_j is adjacent to both $u_q v_{r+2}, u_{q+2} v_{r+2}$ and $d(v_j, u_{q+1} v_{r+1}) = 2$. Thus there exists no vertex $v_l \in V(S''')$ such that $l(v_l) = \alpha_i \in [4]$. This contradicts the fact that $\lambda_1^1(G) \leq 4$, for all $m, n \geq 2$. \Box

Lemma 4.3. Let $G' \subset G$ with

 $V(G') = \{u_q v_r, u_{q+2} v_r, u_{q+1} v_{r+1}, u_q v_{r+2}, u_{q+2} v_{r+2}, u_{q+1} v_{r+3}, u_q v_{r+4}, u_{q+2} v_{r+4}\}, q, r \geq 0.$ Suppose that $l(u_q v_r), l(u_{q+2} v_r)$ are α_0, α_1 respectively, then $l(u_q v_{r+4}), l(u_{q+2} v_{r+4})$ are both neither α_0 nor α_1 .

Proof. The vertex set $\{u_q v_r, u_{q+2} v_r, u_{q+1} v_{r+1}, u_q v_{r+2}, u_{q+2} v_{r+2}\} \subset V'(G')$ induces a star $S_4 \subset G$. Since $\lambda_1^1(S_4) = 4$, we have $l(u_{q+1} v_{r+1}) = \alpha_2, l(u_q v_{r+2}) = \alpha_3, l(u_{q+2} v_{r+2}) = \alpha_4$. Set $\{u_q v_{r+2}, u_{q+2} v_{r+2}, u_{q+1} v_{r+3}, u_q v_{r+4}, u_{q+2} v_{r+4}\} \subset V(G')$ induces another star $S'_4 \subset G'$. Clearly, S_4 and S'_4 are adjacent and $S_4 \cup S'_4 = G'$ Now, suppose $l(u_q v_{r+4}) = \alpha_0, l(u_{q+2} v_{r+4}) = \alpha_1$, or vice versa without the loss of generality. Since $l(u_q v_{r+2}) = \alpha_3$, and $l(u_{q+2} v_{r+2}) = \alpha_3$ from the labeling on S_4 , the only label left in [4] for $u_{q+1} v_{r+3}$ is α_2 . This however is a contradiction since $d(u_{q+1} v_{r+1}, u_{q+1} v_{r+3}) = 2$. \Box

Remark 4.4.

- (i) By theorem 2.1, $P_m \times C_n$ is connected if n is odd and not connected if n is even. This is because when n is odd, cycle C_n is non bipartite and when n is even, C_n is bipartite. Now, Let $P_m \times C_n = G = G_1 \cup G_2$, where n is even. Then $V(G_1) = \{(u_i, v_j) : i \in [(m-1)(\epsilon)], j \in [n(\epsilon)] \text{ or } i \in [(m-1)(o)], j \in [n(o)]\}$ and $V(G_2) = \{(u_i, v_j) : i \in [(m-1)(\epsilon)], j \in [n(o)] \text{ or } i \in [(m-1)(o)], j \in [n(\epsilon)]\}$.
- (ii) G_1 and G_2 above are isomorphic since C_n is a cycle and they are both components of G.
- (iii) Suppose $G = P_m \times C_n$, *n* odd. Then *G* is equivalent to *G'*, where *G'* is one of the two components of $P_m \times C_{2n}$.
- (iv) G' above is equivalent to the connected component of $P_m \times P_{2n+1}$ such that $u_i v_0$ coincides with $u_i v_{2n}$, for all $i \in [(m-1)(\epsilon)]$ or for all $i \in [(m-1)(o)]$.

Lemma 4.5. [2]
$$\lambda_1^1(C_m) = \begin{cases} 2 & \text{if } m \equiv 0 \mod 3 \\ 3 & m \not\equiv 0 \mod 3; m \neq 5 \\ 4 & m = 5. \end{cases}$$

Theorem 4.6. $\lambda_1^1(P_2 \times C_m) = \begin{cases} 2 & \text{if } m \equiv 0 \mod 3\\ 3 & \text{otherwise.} \end{cases}$

Proof. By Remark 4.4 (iii), if m is odd, then $P_2 \times C_m \equiv C_{2m}$. If m is even, then $P_2 \times C_m$ is a union of m-cycles, C'_m and C''_m are m – cycles which are its components. By Lemma 4.5, for m odd, $\lambda_1^1(P_2 \times C_m) = \lambda_1^1(C_{2m}) = q$, where q = 2 for $2m \equiv 0 \mod 3$ and q = 3 if otherwise. Also $\lambda_1^1(P_2 \times C_2) = \lambda_1^1(C_n) = p$, where p = 2 if $n \equiv 0 \mod 3$ and p = 3 otherwise. \Box

Theorem 4.7. For any $m \in \mathbb{N}$, $m \ge 3$, $\lambda_1^1(P_m \times C_3) = 5$.

Proof. By Remarks 4.4 (iii) and (iv), and $P_m \times C_3$ is congruent to a connected component G' of $P_m \times P_7$ with $u_i v_0 \equiv u_i v_6$, $u_i v_0, u_i v_6 \in V(G')$. Thus, $L(u_i v_0) = L(u_i v_6)$ for all $i \in [(m-i)(\epsilon)]$. Now, let G'' be a subgraph of G' induced by the vertex subset

 $\{u_iv_0, u_{i+2}v_0, u_{i+1}v_1, u_iv_2, u_{i+2}v_2, u_{i+1}v_3, u_iv_4, u_{i+2}v_4, u_{i+1}v_5, u_iv_6, u_{i+1}v_6\} \subseteq$ V(G'), for any $i \in [(m-1)(\epsilon)]$. Suppose $\lambda_1^1(G') = 4$ and $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathcal{N}$ [4]. Let $l(u_i v_0) = \alpha_0$ and $l(u_{i+2} v_0) = \alpha_1$. Then, $l(u_i v_0) = \alpha_0$ and $l(u_{i+2} v_0) = \alpha_0$ α_1 . Now, suppose $l(u_{i+1}v_1) = \alpha_2$. Since $d(u_{i+1}v_1, u_{i+1}v_5) = 2$, then for some $\alpha_k \in [4], \ \alpha_k = l(u_{i+1}v_5) \neq \alpha_2$. In fact, $\alpha_k \notin \{\alpha_0, \alpha_1, \alpha_2\}$. Set $\alpha_k = \alpha_3$. The vertex subset $\{u_i v_0, u_{i+2} v_0, u_{i+1} v_1, u_i v_2, u_{i+2} v_2\} \subset V(G'')$ induces a star $S_4 \subset G'$ with center $u_{i+1}v_1$. Since $\lambda_1^1(S_4) = 4$, if $l(u_iv_2) = \alpha_3$, then $l(u_{i+2}v_2) = \alpha_4$. Let A and B be vertex subsets of V(G'), such that $A = \{u_i v_4, u_{i+2} v_4\}$ and $B = \{u_i v_2, u_{i+2} v_2, u_{i+1} v_5, u_1 v_6, u_{i+2} v_6\}$. Clearly, $d(u,v) \leq 2$ for all $u \in A$ and $v \in B$. Then, $l(u_iv_4), l(u_{i+2}v_4) \notin \{\alpha_0, \alpha_1, \alpha_2, \alpha_3, \}$. Therefore, since $\lambda_1^1(S_4) = 4$, $l(u_i v_4) = \alpha_3 = l(u_{i+2} v_4)$. But $d(u_i v_4, u_{i+2} v_4) = 0$ 2. This a contradiction and hence, $\lambda_1^1(P_m \times C_3) \geq 5$. Claim: Let $\alpha_k L(V_i)$, then $\alpha_k \notin V_{i+2}$, for $V_i, V_{i+2} \in V(G')$. Reason: For all $v \in V_i$, $u \in V_{i+2}$, $d(u, v) \leq 2$. V(G''). $l(u_iv_j)$ labels u_{i+1} for all v_j, u_k in U_iU_{i+1} respectively where |k-j| =3 since $d(u_i v_i, u_i v_k) = 3$. Therefore without loss of generality, we say $L(U_i) = L(U_{i+1}) = \{\alpha_0, \alpha_1, \alpha_2\} \subset [5]$. Likewise, let $U_{i+2} = \{u_{i+2}v_0, u_{i+2}v_2, u_{i+2}v_4\}$ and $U_{i+3} = \{u_{i+3}v_1, u_{i+3}v_3, u_{i+3}v_5\}, U_{i+2}, U_{i+3} \subset V(G''). \ l(u_{i+2}v_l) \ \text{labels} \ u_{i+3}v_p$ for all v_l, v_p in U_{i+2}, U_{i+3} respectively, where |l-p| = 3. Thus $L(U_{i+2}) =$ $L(U_{i+3}) = \{\alpha_3, \alpha_4, \alpha_5\} \subset [5]$. Based on the last scheme, we have $L(U_a) =$ $L(U_{a+4})$ for any $a \in [i, i+3]$, where $i \in [(m-1)(\epsilon)]$. Thus there exists a 5 - L(1,1)-labeling of $P_m \times C_3$ and thus $\lambda_1^1(P_m \times C_3) \leq 5$ and then the equality holds. \Box

Corollary 4.8. If $m \geq 3$, then, $\lambda_1^1(P_m \times C_6) = 5$.

Proof. Follows from Remark 4.4 (iii) and Theorem 4.7. \Box

Theorem 4.9. If $m \geq 3$, then $\lambda_1^1(P_m \times C_4) = 5$.

Proof. From Remarks 4.4 (ii) and (iii), $P_m \times C_4 = G_1 \cup G_2$, where G_1, G_2 are isomorphic connected components of $P_m \times C_4$. Let $u_i v_0, u_i v_4 \in V(G_1)$, say, for all $i \in [(m-1)(\epsilon)]$, such that $u_i v_0 \equiv u_i v_4$ then by Remark 4.4 (iv), G_1 is equivalent to a connected component of $P_m \times P_5$. Now, let $G'_1 \subseteq G_1$ be a subgraph of G_1 with

$$\begin{split} V(G_1') = &\{u_r v_0, u_{r+2} v_0, u_{r+1} v_1, u_r v_2, u_{r+2} v_2, u_{r+1} v_3, u_r v_4, u_{r+2} v_4\}, \text{ where } r \leq \\ m-4. \text{ Obviously, } u_r v_0 \equiv u_r v_4 \text{ and } u_{r+2} v_0 \equiv v_4. \text{ Thus, } l(u-rv_0) = l(u_r v_4) = \\ \alpha_i \text{ and } l(u_{r+2} v_0) = l(u_{r+2} v_4) = \alpha_j, \alpha_i, \alpha_j \in [4]. \text{ By Lemma 4.3, there exists} \\ a \text{ vertex } v \in V(G_1') \text{ such that } l(v) \notin [4]. \text{ Thus } \lambda_1^1(G_1') \geq 5 \text{ and therefore,} \\ \lambda_1^1(G_1) \geq 5 \text{ and finally, } \lambda_1^1(P_m \times C_4) \geq 5. \text{ Now, for any pair } v_a, v_b \in V(G_1), \\ d(v_a, v_b) \leq 2. \text{ Thus } L(V_i) \cap L(V_{i+1}) = \emptyset \text{ and } L(V_i) \cap L(V_{i+2}) = \emptyset. \text{ However,} \\ L(V_i) \text{ labels } L(V_i + 3) \text{ since } d(v_a, v_c) = 3 \text{ for all } v_a \in V_i \text{ and } v_c \in V_{i+3}. \\ \text{Thus, } L(V_i) = L(V_{i+3k}), L(V_{i+1}) = L(V_{i+4k}) \text{ and } L(V_{i+2}) = L(V_{i+5k}) \text{ for} \\ \text{ all } k \in \mathbf{N}. \text{ since } |V(G_1')| = 6, \text{ then } \lambda_1^1(P_m \times C_4) \leq 5 \text{ and therefore, the equality follows. } \Box \end{split}$$

Theorem 4.10. If $m \geq 3$, then $\lambda_1^1(P_m \times C_5) = 4$.

Proof. Clearly, $P_m \times C_5 \equiv G_1$, where G_1 is a connected component of $P_m \times C_{10}$.

Therefore, $\lambda_1^1(P_m \times C_5) \leq \lambda_1^1(P_m \times C_{10}) \leq \lambda_1^1(C_{10m'} \times C_{10n'}) = 4$, for all $m', n' \in \mathbf{N}$. Now, since there exists a star $S_4 \subset P_m \times C_5$, then $\lambda_1^1(P_m \times C_5) \geq 5$. \Box

The last theorem clearly yields the next corrolary.

Corollary 4.11. For all $m \ge 3, n' \in \mathbb{N}, \lambda_1^1(P_m \times C_{5n'}) = 4$.

Lemma 4.12. Suppose G' is a connected component of $P_3 \times P_n$, $n \ge 9$, such that $u_i v_j, u_i v_k \in V(G')$. If $d(u_i v_j, u_i v_k) = 8$, then $l(u_i v_j) \neq l(u_i v_k)$.

Proof. Suppose $\alpha_j, \alpha_k \in [4]$ and $\alpha_j = l(u_1v_j), \alpha_k = l(u_1v_k)$, while $d(u_1v_j, u_1v_k) = 8$. The next vertex, according to Lemmas 4.1 and 4.2, that α_j labels is either u_0v_{j+3} and u_2v_{j+3} . Now, since $d(u_0v_{j+3}, u_1v_k) = 5$, then by Lemma 4.1, $\alpha_i \neq l(u_1v_k)$. Thus, $\alpha_k \neq \alpha_j$. \Box

Theorem 4.13. For $m \ge 3$, $\lambda_1^1(P_m \times C_7) = 5$.

Proof. Suppose $\lambda_1^1(P_m \times C_7) = 4$. Clearly from an earlier remark, $P_m \times C_7 \equiv G'$ where G' is a connected component of $P_m \times C_{14}$ Also, $G' \equiv G''$, where G'' is the connected component of $P_m \times P_{15}$, with $u_i v_0 \equiv u_i v_{14}$ for all $i \in [(m-1)(\epsilon)]$. Suppose \overline{G} is a subgraph of G'' induced by the vertex set U_i, U_{i+1} and U_{i+2} such that $u_i v_0 \in U_i$, and $u_{i+2} v_0 \in U_{i+2}$. Let $\{\alpha_i\}_{i=0}^4 = 0$ [4] and suppose $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$, labels $u_i v_0, u_{i+2} v_0, u_{i+1} v_1, u_{i+2} v_0, u_{i+2} v_2$. Then $l(u_0v_{14}) = \alpha_0$ and $l(u_2v_{14}) = \alpha_1$. Since $d(u_{i+1}v_1, u_{i+2}v_{13}) = 2$, then $l(u_{i+1}v_{13}) \in \{\alpha_3, \alpha_4\}$. Without loss of generality, let $l(u_iv_{13}) = \alpha_3$. Then $L(u_0v_{12}, u_2v_{12}) = \{\alpha_2, \alpha_4\}.$ Now, $d(u_{i+j}v_k, u_{i+1}v_7) = 5$ for all $j \in \{0, 2\},$ $k \in \{2, 12\}$ Thus, by Lemma 4.1, $l(u_{i+1}v_7) \in A = \{\alpha_2, \alpha_3, \alpha_4\}$. Also, by the reason of distance, $l(u_{i+1}v_3) \in A$. thus, $l(u_{i+1}v_3)$ is either α_0 or α_1 . Again without loss of generality, suppose $l(u_{i+1}v_3) = \alpha_0$. By Lemma 4.2, $l(u_{i+1}v_7) \neq \alpha_0$. Thus, $l(u_{i+1}v_7) = \alpha_1$. Since $l(u_{i+1}v_7) = \alpha_1$, then $l(u_{i+1}v_{11}) \neq \alpha_1$. therefore, $l(u_{i+1}v_{11}) \notin \{\alpha_1 \cup A\}$ and hence, $l(u_{i+1}v_{11}) =$ α_0 . But this is a contradiction of Lemma 4.12 since $d(u_{i+1}v_3, u_{i+1}v+11) = 8$ and it is assumed that $\lambda_1^1(P_m \times C_7) = 4$. Thus, $\lambda_1^1(P_m \times C_7) \geq 5$. Conversely, for each $i \in [m-1]$, $|V_i| = 7$, where $V_i \subset V(G')$. Therefore, suppose $|L(V_i)| = 6$, then there exists a pair $v_1, v_2 \in V_i$ such that $l(v_i) = l(v_2) = \alpha_k$ for some $\alpha_k \in [5]$. Now, set $u_1 = u_i v_j$ and $u_2 = u_i v_{j+4}$ such that $d(u_i v_j, v_{j+4}) \ d(u_1, u_2) = 4.$ Let $V_1 = V_i \setminus \{u_i v_j\}$. Set $\alpha_j = l(u_k v_l) =$ $l(u_{k+1}v_{l+3})$ for all $u_kv_j \in \overline{V_1}$. Now, there exists $u_3 = u_{k+3}v_{j+3} \in V_{i+1}$ such that u_3 is not yet labeled. Let $u_4 = u_{k+1}v_{j-1}$ and set $l(u_{k+1}v_{j-1}) = u_{k+1}v_{j-1}$ $l(u_{k+1}v_{j+3})$. Obviously, $d(u_3, u_4) = 4$ and $u_3, u_4 \in V_{i+1}$. Repeat the above scheme between V_{i+1} and V_{i+2} , V_{i+2} and V_{i+3} , ..., V_{m-2} , V_{m-1} . Thus $\lambda_1^1(P_m \times C_7) \leq 5$ and then the equality follows. \Box

The proof of the next results follow the last theorem and some remarks made earlier.

Corollary 4.14. For $m \ge 3$, $\lambda_1^1(P_m \times C_{14}) = 5$.

Theorem 4.15. Let $m \geq 3$. Then $\lambda_1^1(P_m \times C_8) = 5$.

Proof. That $\lambda_1^1(P_m \times C_8) \ge 5$ follows from Lemma 4.12 and $\lambda_1^1(P_m \times C_8) \le 5$ follows from repeating the L(1,1)-labeling of $P_m \times C_4$. \Box

Fig. 1 4 – L(1,1)–Labeling of $P_4 \times C_n$, n = 10, 12, 16, 18

Theorem 4.16. Given that $n \ge 9$, $n \ne 14$, then $\lambda_1^1(P_4 \times C_n) = 4$.

Proof. From (b),(c),(d) of Fig. 1, we notice that $\lambda_1^1(P_4 \times C_{n'}) = 4$, for all $m' \in \{12, 16, 18\}$.

Now, by combining each of (b),(c),(d) with (a), we see that $\lambda_1^1(P_m \times C_{n'+10}) = 4$, for each $n' \in \{12, 16, 18\}$. Therefore, $\lambda_1^1(P_4 \times C_{km'+p}) = 4 \quad \forall k \ge 0 \text{ and } p \in \{0, 10\}$. Thus by an earlier remark, $\lambda_1^1(P_4 \times C_n) = 4$ for all $n \ge 9, n \ne 14$. \Box

Corollary 4.17. Given that $n \ge 9$, $n \ne 14$, and that $m \in \{3, 4\}$ then $\lambda_1^1(P_m \times C_n) = 4$.

Theorem 4.18. For $m \ge 3$, $\lambda_1^1(P_m \times C_{14}) = 4$.

Proof. It follows directly from Remark 4.4 (iii) and Theorem 4.13. \Box

Next, we derive the general lower bound for the L(1,1)- labelling of $P_m \times C_n$, where $m \ge 5$, $n \not\equiv 0 \mod 5$. That $\lambda_1^1(P_m \times C_n) = 4$, where m, n are both multiples of 5, has already been established. We need the next lemma to prove the theorem that follows.

Lemma 4.19. If $\lambda_1^1(P_m \times C_n) = 4$ for $n \not\equiv 0 \mod 5$, $n \geq 9$. Then, for all $V_j \subset V(P_m \times C_n)$, $0 \leq j \leq n-2$, there exist $v_a, v_b \in V_j$, such that $l(v_a) = l(v_b)$ and $d(v_a, v_b) = 6$.

Proof. Let $G = P_m \times C_n$. Suppose, without loss of generality, that n is even since by Remark 4.4 (iii), if n is odd then G is equivalent to one of the two components of $P_m \times C_{2n}$. Let G' be the connected component of G. Let $V'_j \subset V(G')$ such that $V'_j \subset V_j$. Let $v_a \in V'_j$ such that $l(v_a) = \alpha_k \in [4]$. Since n is not a multiple of 5, and $n \ge 9$, then $|V'_j| = \frac{n}{2} > 5$. Since $\lambda_1^1(G) = 4$, then there exists at least some vertex $v_b \in V'_j$ such that $l(v_b) = \alpha_k$. By the definition of L(1,1)- labeling, $d(v_a, v_b) \neq 2$. Likewise by Lemmas 4.2 and $4.12, d(v_a, v_b) \notin \{4, 8\}$ thus, $d(v_a, v_b) = 6$. \Box

Theorem 4.20. Let $m \ge 5$, $n \ne 0 \mod 5$ and $n \ge 9$. Then, $\lambda_1^1(P_m \times C_n) \ge 5$.

Proof. Let $m \geq 5$, $n \not\equiv 0 \mod 5$ and $n \geq 9$. Suppose $\lambda_1^1(P_m \times C_n) = 4$. Let $G = P_m \times C_n$. Suppose n is even. Then there exists G', a connected component of $P_m \times C_n$. (If n is odd, we know from an earlier result that G is a connected component of $P_m \times C_{2n}$.) We defined an arbitrary vertex set $V(G'') = \{u_i v_j, u_i v_{j+2}, u_{i+1} v_{j+1}, u_{i+2} v_j, u_{i+2} v_{j+2}, u_{i+3} v_{j+1}, u_{i+4} v_j, u_{i+4} v_{j+2}\},$ with $V(G'') \subset V(G')$. Clearly, V(G'') induces a subgraph G'' of G' such that $G'' = S'_4 \cup S''_4$ where S'_4, S''_4 are stars with $V(S'_4) = \{u_i v_j, u_i v_{j+2}, u_{i+1} v_{j+1}, u_{i+2} v_j, u_{i+2} v_{j+2}, \}$ and $S''_4 = u_{i+2} v_j, u_{i+2} v_{j+2}, u_{i+3} v_{j+i}, u_{i+4} v_j, u_{i+4} v_{j+2}$ respectively. Now, by 4.19 above, for all $V_i \subset V(G'), 0 \leq i \leq m-2$ there exist at least a vertex pair $v_a, v_b \in V_i$ such that for some $\alpha_i \in L(V_i) \subseteq [4], \ l(v_a) = l(v_b) = \alpha_i$ and $d(v_a, v_b) = 6.$

Suppose $u_{i+2}v_{j-2}, u_{i+2}v_{j+4} \in V_{i+2}$ such that $l(u_{i+2}v_{j-2}) = l(u_{i+2}v_{j+4}) = \alpha_i$.

There exist vertices $u_{i+1}v_{j+1} \in V_{i+1}$ and $u_{i+3}v_{j+1} \in V_{i+3}$.

By Lemma 4.1, $l(u_{i+1}v_{j+1}) = \alpha_i$ or $l(u_{i+3}v_{j+1}) = \alpha_i$. Suppose $l(u_{i+1}v_{j+1}) = \alpha_i$, then $d(u_a, u_b) \le 2$ for any $u_a \in V(S''_4)$ and $u_b \in \{u_{i+1}v_{j+1}, u_{i+2}v_{j-2}, u_{i+2}v_{j+4}\}$.

Thus there is no such vertex as $u_a \in S'_4$ such that $l(u_a) = \alpha_i \in V(S'_4)$. Likewise, $d(u'_a, u_b) \leq 2$ for any $u'_a \in V(S'_5)$ and $u_b \in \{u_{i+3}v_{j+1}, u_{i+2}v_{j-2}, u_{i+2}v_{j+4}\}.$

Thus, there exists no vertex $u'_a \in V(S'_5)$, such that $l(u'_a) = \alpha_j \in [4]$ and therefore, a contradiction. \Box

By the result obtained in Theorem 4.20, we see that the $\lambda_1^1(P_m \times C_n) \ge 5$ for all $m \ge 5$ and $n \ge 9$, where n is not a multiple of 5. In the subsequent results, we obtain the λ_1^1 -number for the remaining $P_m \times C_n$ graphs.

Fig.2 5 – L(1, 1) – Labeling of $C_{10} \times C_n, m = 10, 12$

Fig.3 5 – (L(1,1)) Labeling of $C_{10}\times C_{n,n}=14,16,18$

Theorem 4.21. Let $k \in A$. For all $k, m', n', \lambda_1^1(C_{10m'} \times C_{k+10n'}) = 5$, where m' is any positive integer, n' a non-negative integer and $A = \{12, 14, 16, 18\}$.

Proof. The result follows by combining the 5-labeling of $C_{10} \times C_{10n'}$ which is obtainable from n'-times repeat of Fig.5 a, with the 5-labeling of $C_{10} \times C_{12}$, $C_{10} \times C_{14}$, $C_{10} \times C_{16}$ and $C_{10} \times C_{18}$ in Fig.5 b and of Fig.3 a, b and c respectively along with C_n and then m'-copy the resultant graph along with C_m . \Box

Corollary 4.22. For all $P_m \times C_n$, where $m \ge 5$ and $n \ge 6$, $n \ne 0 \mod 5$ then $\lambda_1^1(P_m \times C_m) = 5$.

Proof. Let *h* be a positive even integer with $h \ge 12$. Let $k \in A = \{12, 14, 16, 18\}$. Then, for all *h*, $h \equiv 0 \mod k + 10n'$ for some $k \in A$. The result thus follows from Remarks 4.4 (iii) and (iv) and the fact that $P_m \times C_n \subset P_{10m} \times C_n$. \Box

5. Conclusion

The following summarizes the results obtained in this work: For $G = P_m \times P_n$:

m	n	$\lambda_1^1(P_m \times P_n)$
2	2	1
≥ 3	2	2
≥ 3	≥ 3	4

For $G = P_m \times C_n$:

m	n	$\lambda_1^1(P_m \times C_n)$
2	$\equiv 0 \mod 3$	2
2	$\not\equiv 0 \mod 3$	3
≥ 3	$\in \{3, 4, 6, 7, 8, 14\}$	5
≥ 3	$\equiv 0 \mod 5$	4
3, 4	$\geq 9, \neq 14$	4
≥ 5	$\geq 9, \not\equiv 0 \mod 5$	5

References

- Bertossi, A. A. and Bonuccelli, M. A. Code Assignment for Hidden Terminal Interference Avoidance in multiloop Pocket Radio Networks. IEEE/ACM Trans. on Networking 3,(4), pp. 441-449, (1995).
- [2] Berttiti, R., Bertossi, A. A. and Bonuccelli, M. A. Assigning Codes in Wireless networks: Bounds and Scaling Properties. Wirel. Netw., 5, pp. 441-449, (1999).
- [3] Calamonerri, T. The L(h, k)-Labeling Problem: A Updated Survey and Annoted Bibliography. The Computer Journal 54(8), pp.1344 - 1371, (2011).
- [4] Calamonerri, T., Pelc, A., and Petreschi, R. Labeling Trees with a Condition at Distance Two. Discrete Math. 306, pp. 1534-1539, (2006).
- [5] Chang, G. J. and Kuo, D. The L(2,1)-Labeling of Graphs SIAM J. Discrete math. 9, pp. 309-316, (1996).
- [6] Chang, G. J., Ke, W.-T, Kuo, D. A., Liu, D. D.-F and Yeh, R. K. (d,1)- Labeling of Graphs. Discrete Math. 220, pp. 57-66, (2000).
- [7] Chiang, S.-H and Yan, J.-H. On L(d, 1)-labeling of Cartesian product of a cycle and a path. Discrete App. Math 156, pp. 2867-2881, (2008).
- [8] Georges, J. P, and Mauro, D.W. Generalized Vertex Labeling with a Condition at Distance Two. Congr. Numer., 109, pp. 141-159, (1995).
- [9] Georges, J. P, Mauro, D. W. and Stein, M. I. Labeling Products of Complete Graphs with a Condition at Distance Two. SIAM J. Discrete Math. 14, pp. 28-35, (2000).
- [10] Georges, J. P. Mauro, D. W. On Regular Graphs Optimally labeled with a Condition at Distance Two. SIAM J. Discrete Math. 17 (2), pp. 320-331, (2003).
- [11] Goncalves, D. L(p-1)-Labellings of Graphs. Discrete Math. 308, pp. 1405-1414, (2008).
- [12] Gravier, S., Klavzer, S. and Mollard M., Codes and L(2, 1)-Labeling in Sierpinski Graphs. Taiwan. J. math. 4, pp. 671-681, (2004).

- [13] Griggs, J. R., Yeh, R. K. Labeling Graph with a condition at Distance Two. SIAM J. Discrete Math. 5, pp. 586-595, (1992).
- [14] Hale, W. K. Frequency Assignment: Theory and Application. Proc. IEEE 68, pp. 1497-1514, (1980).
- [15] Jha, P. K, Klavzer, S. and Vessel, A. L(2,1)-Labeling of Direct Product of Paths and Cycles. Discrete Applied Math. 145 (2), pp. 141-159, (2005).
- [16] Kral', D. and Skrekovski, R. A. Theorem About the Channel Assignment J. Discrete Math. 16 (3), pp. 426-437, (2003).
- [17] Kuo, D. and Yan, J.-H. On L(2,1)-Labeling of Cartesian Product of Two Cycles. Discrete Math. 283, pp. 137-144, (2004).
- [18] Sakai, T. D. Chordal Graphs with a Condition at Distance Two. SIAM J. Discrete Math. 7, pp. 133-140, (1994).
- [19] Schwartz, C. and Sakai, T. D. L(2,1) Labeling of Product of Two Cycles. Discrete Applied Math. 154, pp. 1522-1540, (2006).
- [20] Sopena, E., Wu, J. Coloring the square of the Cartesian product of two Cycles Graphs with a Condition at Distance Two. Discrete Math. 310, pp. 2327-2333, (2010).
- [21] Wensong, D. and Peter C.,L. Distance Two Labeling and Direct Product of Graphs. Discrete Math. 308, pp. 3805-3815, (2008).
- [22] Weichsel, P. M. The Kronecker Product of Graphs. Proc. Amer. Math. Soc. 13 1962; 47 – 62
- [23] Whittlessey, M. A, Georges, J. P. and Mauro, D. W. On the λ -number of Q_n and Related Graphs. SIAM J. Discrete Math. 8, pp. 499-506, (1995).

Deborah Olayide Ajayi

Department of Mathematics University of Ibadan, Ibadan, Nigeria e-mail : olayide.ajayi@mail.ui.edu.ng and

Tayo Charles Adefokun

Department of Computer and Mathematical Sciences, Crawford University, Nigeria e-mail : tayoadefokun@crawforduniversity.edu.ng