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Abstract

Suppose that [n] = {0,1,2,...,n} is a set of non-negative integers
and h,k € [n]. The L(h,k)-labeling of graph G is the function I :
V(GQ) — [n] such that |I(u) — 1(v)| > h if the distance d(u,v) between
w and v is 1 and |l(u) —1(v)| > k if d(u,v) = 2. Let L(V(Q)) =
{l(v) : v € V(G)} and let p be the mazimum value of L(V(G)). Then
p is called \f —number of G if p is the least possible member of [n] such
that G maintains an L(h, k)—labeling. In this paper, we establish \}—
numbers of Py, x P, and P, X C,, graphs for all m,n > 2.
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1. Introduction

Let I : V(G) — [n] = {0,1,2,---,n} be a non negative function on the
vertex set V(G) of G. Given any two fixed non-negative integers h, k,
the L(h,k)-labeling of G is defined such that for any edge wv € E(G),
[{(u) = l(v)] > h and if d(u,v) = 2,u,v € V(G), then |[(u) —I(v)| > k. The
aim of L(h, k)—labeling is to obtain the smallest non negative integer A (G),
such that there exists an L(h, k)-labeling of G with no I(v) € L(V(G))
greater than Af(G), where L(V(G)) is the set of all labels on V(G).

In [13], Griggs and Yeh introduced the I(h, k)—labelling and particularly
showed that any graph G with maximum degree A > 1 has A} (G) < A% +
2A and went further to put forward a conjecture that A\3(G) < A2. Chang
and Kuo, in [5] improved on Griggs and Yeh’s bound by showing that
A(G) < A(A + 1), Kral’ and Skrekovski [16] went another step showing
that AJ(G) < A(A + 1) — 1 while Goncalves in [11] proved that A}(G) <
A(A+1)—2. The interest in the Griggs-Yeh conjecture and in improving on
the existing bounds have inspired a lot of work in the direction of L(h,k)-
labeling, mostly on h = 2, k = 1. (See [5][6][10][12][18].) (An extensive
review of all known results on L(h, k)—labeling can be seen in [3].) It is
obvious that L(2,1)—labeling is an L(1,1)—labeling, therefore results on
L(2,1)-labeling provide upper bound for L(1,1)-labeling of graphs and

MG +1>M(G)+1=\G?

where A\(G?) is the chromatic number of the square of G.

Finally, Georges and Mauro [8] obtained various results for the
L(h,k)—number for path P, and cycles C),. Particularly among other re-
sults, they showed that \¥(P,) is either 0, h, h + k, h + 2k, or 2h.

Suppose that G and H are graphs. The Cartesian product and the
direct product of G and H, GOH and G x H respectively, have vertex set
V(G) x V(H), while the edge sets are
E(GOH)= {((z1,2), (y1,y2)) : (z1,91) € E(G) and x2 = ya or
(z2,y2) € E(H) and x1 = y1} and
B(G x H) = {((z1,22), (y1,%2)) : (z1,51) € E(G) and(x2,y2) € E(H)}
respectively.

The L(h, k)—labeling of the Cartesian product GOH has been exten-
sively investigated with /\ﬁ(GDH ) obtained for various types of graphs G
and H, while numerous upper and lower bounds have been suggested (see
[8][7][16][18][20][22]). Most of the work on L(h, k) labeling consider h = 2
and k = 1; although Chiang and Yan in [7] and Georges and Mauro in [10]
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worked on the L(1,1)labeling of Cartesian products of paths and cycles
and Sopena and Wu in [20] worked on Cartesian products of cycles. In case
of direct product graphs, Jha et al [15], established A\ (Cy, x Cp,) for some
values of m and n.

In this paper, we determine A (P, x P,) and A (P,, x C,) where P,
and P, are paths of length m — 1 and n — 1 respectively and C,, is a cycle of
length n for all m,n > 2. We also deduce A (Cy,, x Cy,) for m,n = 0 mod 5.
Thus, we extend the results in [10] and [7] to direct product graphs among
other results.

2. Preliminaries

The following results and definitions are necessary.

Let m be a non-negative integer. P,, = wuguius...u;,—1 is a path of
length m — 1, where u; € V(P,,), for all i € [m —1]; Cy, = wouiua...tum—1uo
is a cycle of length m, where u; € V(Cp,), for all i € [m—1]. Let v € V(G),
we denote by I(v) the label on v and let U C V(G). Then L(U) is a set of
labels on U.

Suppose P, x P, is a direct product paths and G’ is a component of
P,, x P,. Then
U; = {usv;} C V(G'), for some j € [n— 1], and for all ¢ € [(m — 1)(€)] or
for all i € [(m — 1)(0)].

Vi = {uiv;} C V(G'), for some i € [m — 1], and for all j € [(n — 1)(€)] or
for all j € [(n —1)(0)].

Theorem 2.1. [22] Graph G x H is connected if and only if G and H are
connected and at least one of G and H is non-bipartite.

Remark 2.2.

(i) Since P, is bipartite for all m > 2, then for P,, x P,, there exist
G1 C P, x P, and Gy C P, x P, such that G; and G4 are components
of P, x P,.

(ii) From Theorem 2.1 and the Remark above, it is clear that P, x P,
is not a connected graph. Suppose P, = uguius...um—1 and P, =
VU1V2...Vp—1, then
V(G1) =A{ui v ri € [(m—1)(e)],j € [(n = 1)(e)]
or i € [(m—1)(0)];j € (n—1)[o]

V(G2) = {uivj :i € [(m—1)(e)],j € [(n = 1)(0)]
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or i€ [(m—=1)()];j € (n—-1)[.

Suppose G is a graph such that G = G'UG”, where G', G” are components
of G, then, M} (G) = maz {\}(G"),\H(G")} .

For a direct product graph, P, x P>, m > 2, its components G1 and Ga
are paths P/ and P/ respectively such that

P/, = upvou1v1u20g... U —101 (Um—1v9) (if m is even) and

qull = uovlulvgu2v1...um_lvo(um_lvl) (lf m is Odd).

The following are known results for L(1,1)-labeling of paths, cycles and
L(h, k)-labeling of stars, k < h.

Lemma 2.3. [1] Let P, be a path of length m —1. A}(P,,) = 1, for m = 2
and M\ (P,,) = 2 for all m > 3.

Lemma 2.4. [1] Let C,, be cycle of length m. Then A\ (C,,) = 2 for
m =0 mod 3 and \}(C,,) = 3 for m # 0 mod 3.

The following result presents a general )\’,i—value for stars for £ < h.
Lemma 2.5. [4] Let K1 a be a star of order A + 1. Then, A} (Kja) =

(A—Dk+hifh>k.
Henceforth we refer to direct product graph as product graph.

3. L(1,1)-Labeling of P, x P,

Proposition 3.1. M} (P, x P) = 1.

Proof. Clearly, G consists of connected components Py and Py. By
Lemma 2.3, A (P5) = M(P))=1. O
We extend the graph in Theorem 3.1 to m > 3.

Proposition 3.2. For m > 3, \}(P,,, x P,) = 2.
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Proof. P, X P consists of two connected components P/, and P/. By
Lemma 2.3, A}(P/,) = M(P”) = 2 and the result follows from Remark 2.2
(iii). O

The next results establish A} (P, x P,), m,n > 3.
Lemma 3.3. Let uv; € Py, x P, n,m > 3, Suppose dy; = d,; = 2 then
duv; = 4.

Proof. Let wj—1ujuit1 = P3, Py C Pp, m > 3 and let vj_qvjvj41 =
Py, Py} C P,, n> 3. By the definition of direct product of graphs,

V(P! % PI=

{Ui- 101, U1V, Ui 1V 41, WiV 1, UiV, UiV 1, Uip 1V —1, U141V, Uik 1V 41 }
C V(Pn x P,). Since dy;, = dy; = 2, then by the definition of direct
product of graphs, u;v; € V(P3 x Py§) is adjacent to all the members of
{ui—1vj -1, U101, Ui 105401, U1V 41} - Thus, dy, =4. O

Proposition 3.4. Suppose m,n > 3. Then A (P, x P,) = 4 for all
m,n > 3.

Proof. Let G; be a connected component of P, x P,. By Lemma 3.3,
there exists a star K14 C G;. By Lemma 2.5, )\%(KM) = 4 and thus,
M(Py, x Py) > 4. Let ujv; € V(Py, x P,). For all wjv; € V(P x P,),
l(usvy) = {%J mod 5. Thus M (P, x P,) < 4 and then the equality
follows. O

Remark 3.5. By using I(u;v;) = {#J mod 5 as in the proof of Proposi-
tion 3.4, given both connected components of P,,, x P,, for all i € [m(e)], then
1(wv10) = l(u;vp). Furthermore, for all

uvy € Up, i € {3,5,7} l(ujv1) ¢ L(ui—2v9, u;vg, Uit2v9),

{ui—2v9, uivg, uirov9} C Ug. We also notice that l(ujv1) ¢ L(uivg, ugvg, ugvg),
while [(ugv1) ¢ L(ujvg, uzvg, ugvg). Also, for all

UV € Vi,5 € {3, o, 7}, l(ulvj) §é L(UQ?}j_Q,’LLgvj, U9’Uj_|_2),

{ugvj_2,ugvj, ugvjta} C Vo and l(u1v1) ¢ L(ugvr, ugus, ugvg), while I(ujvg) ¢
L(ugvy, ugvy, ugvg).

The implication of Remark 3.5 is expressed in the following results.
Corollary 3.6. Let C,, be a cycle of length m, then, M\ (Cyg x C1o) = 4.
Corollary 3.7. For all m,n = 0 mod 5, \{(C, x Cy,) = 4.
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4. L(1,1)-Labeling of P,, x C,,

Lemma 4.1. Let G = P,, x P,, where n > 4. Suppose that oy € [4], such
that for some v; € V(G), I(v;) = ag, v; € V(G) is the closest vertex in
V(G) to v;, i # j such that [(v;) = ag. Then 3 < d(v;,vj) < 4.

Proof. That 3 < d(v;,v;) follows directly from the definition of L(1,1)-
labeling. Next, we show that d(v;,v;) < 4. Let S, be a star of order
n + 1. Clearly, diam(S,) = 2. Now, suppose that for two stars S} C G
and S} C G, there exits some vertex u; such that u; € V(S}) and also
u; € V(SY), making S/, and S/ to be neighbors. Then, diam(H) = 4,
where S} U S/ = H C G. Now, suppose d(v;,vj) > 4. Let v; € V(S)) such
that I(v;) = ag. Also, let L(S}y) = [4]. Then, ay # l(vg) for all v € V(SY)
since d(u;,vj) > 4. Thus, there exits some «; ¢ [4] such that a; € L(SY).
Then, A\ (H) > 5, and consequently, A1(G) > 5. This is a contradiction.
O

Lemma 4.2. Let v;,v; € V(G) be two center vertices of stars Sy, Sy C G
respectively, and that d(v;,v;) = 4 if oy = I(v;) and o = 1(v5), o, o € [4],
then o; # .

Proof. Suppose on the contrary that v;,v; are respective centers of
Sy, S4 such that d(v;,vj) = 4 and a; = . There exists a star S}’ C G
with V(S)) = uqvy, ugt2vr, Ug410Vr41, UqUri2, Ug2Ury2, Where 0 < ¢, ¢ +
2 <mandr < 2,7+2 < n—3, such that v; = ugy1v,—1 and v; =
Ug+1Vr4+3. Therefore v; is adjacent to u,v, and ugi2v, and d(v;, ug1vr+1) =
2. Likewise, v; is adjacent to both ugv,42, Ug+2vr42 and d(vj, ug41Vr41) =
2. Thus there exists no vertex v; € V(S"”) such that I(v;) = a; € [4]. This
contradicts the fact that Al (G) < 4, for all m,n > 2. O

Lemma 4.3. Let G’ C G with

V(G/) = {Uqu Ug+2Vr, Ug+1Vr41, UqUr+2, Ug+2VUr4-2, Ug+1Vr+3, UqUr44, uq+2vr+4}7
g, > 0. Suppose that [(uqv,),l(ug+2v,) are g, respectively, then
l(uqvrya), l(ug42v0r4+4) are both neither ag nor a;.

Proof.  The vertex set {uqvr, Ugt20Ur, Ugt1Vr+1, UgUr42, Ugt2Ur2} C V' (G')
induces a star Sy C G. Since A1 (Sy) = 4, we have
Hugr1vr41) = a2, l(ugvri2) = as, l(ug20r42) = 4. Set



L(1,1)-Labeling of Direct Product of any Path and Cycle 375

{uquri2, Ugr2Ur42, Ugt1Ur43, UqUria, Ugr2Vryat C V(G') induces another
star S) C G'. Clearly, Sy and S} are adjacent and Sy U S); = G’ Now,
suppose [(ugUr+4) = o, l(Ug2vVr+4) = a1, or vice versa without the loss
of generality. Since [(ugv,42) = a3, and [(ug4+20r42) = a3 from the label-
ing on Sy, the only label left in [4] for ug41v,43 is ap. This however is a
contradiction since d(ug41vr41, Ug+1Vr43) = 2. O

Remark 4.4.

(i)

(i)

(iii)

(iv)

By theorem 2.1, P, x C}, is connected if n is odd and not connected if

n is even. This is because when n is odd, cycle C,, is non bipartite and

when n is even, C}, is bipartite. Now, Let P, x C,, = G = G1 U Go,
where n is even. Then

V(fl) = {(ui,vj) i € [(m—=1)(e)],j € [n(e)] or i € [(m —1)(0)],j € [n(o)]}
an

V(Ga) = {(us, v5) s 1 € [(m —1)(€)],j € [n(0)]or i € [(m —1)(0)],j € [n(e)]}-

GG and G2 above are isomorphic since C), is a cycle and they are both
components of G.

Suppose G = P,,, x Cy, n odd. Then G is equivalent to G’, where G’
is one of the two components of P, x Co,.

G’ above is equivalent to the connected component of P, X Po,i1
such that u;vg coincides with u;vay,, for all i € [(m — 1)(¢€)] or for all

i€ [(m—1)(o)].

2 ifm=0mod3

Lemma 4.5. 2] AI(C,,) ={¢ 3 m#ZO0mod 3;m #5

Theorem 4.6. M (P x Cy,) = {

4 m=23>.

2 ifm=0 mod 3
3 otherwise.

Proof. By Remark 4.4 (iii), if m is odd, then P, x Cp, = Cop,. If m
is even, then P, x C,, is a union of m-cycles, C/ and C)/, are m — cycles
which are its components. By Lemma 4.5, for m odd, M (P x Cy,) =
M(Com) = q, where ¢ = 2 for 2m = 0 mod 3 and ¢ = 3 if otherwise.
Also MH(Py x C3) = M(C,,) = p, where p = 2 if n = 0 mod 3 and p = 3
otherwise. O
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Theorem 4.7. For any m € N, m > 3, A (P, x C3) = 5.

Proof. By Remarks 4.4 (iii) and (iv), and P,, x C3 is congruent to a
connected component G’ of P, x Pr with uvg = u;ve, u;vg, ujve € V(G').
Thus, L(u;vg) = L(u;ve) for all i € [(m —1i)(e)]. Now, let G” be a subgraph
of G’ induced by the vertex subset

{uivo, witov0, Uit1V1, UiV2, Uit 2V2, Uit 1V3, UiV4, Uit 2V4, Uit 1U5, UiV, Ui41V6} C
V(G"), for any i € [(m —1)(¢)]. Suppose M\ (G’) = 4 and ap, a1, az, a3, a4 €
[4]. Let l(u;v0) = ap and I(u;12v9) = 1. Then, [(u;v) = ap and I(ui42v6) =
a1. Now, suppose [(u;11v1) = ag. Since d(uij+1v1,ui+1v5) = 2, then for
some o € [4], arp = Huit1v5) # ag. In fact, ap ¢ {ao, 1,2}, Set
ap = ag. The vertex subset {u;vg, u;+2v0, Ui 1101, UV2, Uir2v2} C V(G") in-
duces a star Sq C G’ with center u;1v1. Since A\ (Sy) = 4, if [(u;v9) = as,
then I(u;42v2) = as. Let A and B be vertex subsets of V(G'), such that
A = {ujvg, uirovs} and B = {u;v2, uip2v2, Ui1105, u1V6, Uitove}. Clearly,
d(u,v) < 2forallu € Aand v € B. Then, l(u;vs), [(uir2v4) & {0, a1, a2, a3, }.
Therefore, since A (Sy) = 4, [(uv4) = a3 = l(u;12v4). But d(usvg, uir2vs) =
2. This a contradiction and hence, A} (P, x C3) > 5.

Claim: Let oy L(V;), then ay € Viia, for V;,Viie € V(G).

Reason: For all v € V;, u € Vo, d(u,v) < 2.

Now, let U; = {u;vo, ujve, urvs}, Uip1 = {uip101, 4it103, wir10s }t, Ui, Uipr C
V(G"). l(u;v;) labels w11 for all vj, uy, in U;U;41 respectively where |k — j| =
3 since d(u;vj,ujvy) = 3. Therefore without loss of generality, we say
L(U;) = L(Uj+1) = {ao, a1, a2} C [5]. Likewise, let

Uira = {uit200, Ui42v2, uip2v4} and

Uits = {uit301, Uit303, uit3vs }, Uiro, Uirs C V(G"). l(uit2v;) labels uitzvp
for all vy, vp in Ujta, Ujts respectively, where |l — p| = 3. Thus L(Ujy2) =
L(Uits) = {as, a4, a5} C [5]. Based on the last scheme, we have L(U,) =
L(Ug44) for any a € [i,i + 3|, where i € [(m — 1)(¢)]. Thus there exists a
5 — L(1,1)—labeling of P, x C3 and thus M (P,, x C3) < 5 and then the
equality holds. O

Corollary 4.8. If m > 3, then, \(P,, x Cg) = 5.

Proof. Follows from Remark 4.4 (iii) and Theorem 4.7. O

Theorem 4.9. If m > 3, then \}(P,, x C4) = 5.
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Proof. From Remarks 4.4 (ii) and (iii), Py, x Cy = G1UG2, where G1, G
are isomorphic connected components of P, x Cy. Let u;vg, ujvg € V(G1),
say, for all i € [(m — 1)(e€)], such that u;v9 = u;vs then by Remark 4.4 (iv) ,
G1 is equivalent to a connected component of P, x Ps. Now, let G} C G
be a subgraph of G with

V(G))={urvo, Ur4200, Up4101, UpU2, Up4 202, Up 4103, UpV4, Up4204 b, Where 7 <
m—4. Obviously, u,v9 = uyvs and u,42vg = vg. Thus, [(u—rv)=Il(uvs) =
a; and [(ur42v0) = l(ur42v4) = @j, 04, ; € [4]. By Lemma 4.3, there exists
a vertex v € V(G}) such that I(v) ¢ [4]. Thus M (G}) > 5 and therefore,
M (G1) > 5 and finally, A\}(P,,, x C4) > 5. Now, for any pair vs, v, € V(G,1 ),
d(vg,vp) < 2. Thus L(V;) N L(Vi41) = 0 and L(V;) N L(Vi42) = 0. However,
L(V;) labels L(Vi + 3) since d(v,,v.) = 3 for all v, € V; and v. € Viys.
Thus, L(Vi) = L(Viyae), L(Vis1) = L(Viyar) and L(Viga) = L(Viysp) for
all k € N. since |V(G))| = 6, then M (P,, x C4) < 5 and therefore, the
equality follows. O

Theorem 4.10. If m > 3, then \{ (P, x C5) = 4.

Proof. Clearly, P, x C5 = (G1, where (G1 is a connected component of
Pm X 010.

Therefore, M (P, x Cs5) < M(Pn x C19) < M(Crom x Cron) = 4,
for all m’,n’ € N. Now, since there exists a star Sy C P, x C5, then
M(Py, xCs)>5. O

The last theorem clearly yields the next corrolary.

Corollary 4.11. For all m > 3,n' € N, M (P, x Cs,) = 4.
Lemma 4.12. Suppose G’ is a connected component of Ps X P,, n > 9,

such that wv;, uivy € V(G'). If d(wv;, wivg) = 8, then l(uv;) # L(uivg).

Proof. Suppose o, € [4] and o = l(u1v5), o = l(ugvy), while
d(u1vj, u1vg) = 8. The next vertex, according to Lemmas 4.1 and 4.2, that
a; labels is either ugv;y3 and ugvji3. Now, since d(ugvjt3, u1vx) = 5, then
by Lemma 4.1, oj # l(uivg). Thus, oy # . O

Theorem 4.13. For m > 3, \(P,, x C7) = 5.
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Proof. Suppose M (P, x C7) = 4. Clearly from an earlier remark,
P,,xC7 = G' where G'is a connected component of P, x C14 Also, G' = G”,
where G” is the connected component of P, x Pi5, with u;vg = u;v14 for all
i € [(m —1)(¢)]. Suppose G is a subgraph of G” induced by the vertex set
UZ', Uz'_|_1 and UZ'+2 such that U;Vg € UZ‘, and U;4+-2V0 € Ui_;,_g. Let {Ozi}?zo =
[4] and suppose «p, &1, 2, 3, 04, labels UV Ui4+20V0 Ui41V1, Ui4+20V0 Ui4-2V2.
Then I(ugvi4) = oo and l(ugvi4) = a1. Since d(uit+1v1, uirov13) = 2, then
l(ujy1v13) € {as3, a4} . Without loss of generality, let [(u;v13) = a3. Then
L(ugviz, ugvia) = {ao, as}. Now, d(uit vk, uir1v7) = 5 for all j € {0,2},
k € {2,12} Thus, by Lemma 4.1, l(uj+1v7) € A = {ag,a3,04}. Also,
by the reason of distance, [(u;1ijv3) € A. thus, [(u;+1v3) is either ag or
a1. Again without loss of generality, suppose [(u;+1v3) = ap. By Lemma
4.2, l(uj41v7) # ag. Thus, l(ujr1v7) = aq. Since l(u;y1v7) = aq, then
l(ujy1v11) # . therefore, I(uj11v11) ¢ {1 U A} and hence, I(uj+1v11) =
ap. But this is a contradiction of Lemma 4.12 since d(u;4+1v3, uj+1v+11) =8
and it is assumed that A} (P, x C7) = 4. Thus, M(P,, x C7) > 5. Con-
versely, for each i € [m—1], |V;| = 7, where V; C V(G’). Therefore, suppose
|L(V;)| = 6, then there exists a pair vy, va € V; such that [(v;) = I(v2) = ay
for some oy € [5]. Now, set u; = u;v; and ug = u;vj44 such that
d(uivj,vjta) d(ur,uz2) = 4. Let Vi = Vi\{uv;}. Set o = l(upvy) =
l(ug+1vi43) for all u uzv; € Vi. Now, there exists us = up+3vj43 € Vig1
such that uz is not yet labeled. Let w4 = ug41vj—1 and set [(up41vj-1) =
l(ug+1vj43). Obviously, d(us,us) = 4 and us,us € Vip1. Repeat the
above scheme between V1 and Vi o, Viyo and Vi3, ..., Vin—2, Vin—1. Thus
M (P, x C7) <5 and then the equality follows. O

The proof of the next results follow the last theorem and some remarks
made earlier.

Corollary 4.14. For m > 3, \}(P,, x C14) = 5.

Theorem 4.15. Let m > 3. Then M\ (P, x Cg) = 5.

Proof. That A\ (P,, x Cg) > 5 follows from Lemma 4.12 and A\ (P, x
Cg) < 5 follows from repeating the L(1, 1)—labeling of P,, x C4. O
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Fig. 1 4 —Lil,1}—Labeling of Fy = Oy, n= 10,12, 16, 18

Theorem 4.16. Given that n > 9, n # 14, then M\ (P; x C,,) = 4.

Proof. From (b),(c),(d) of Fig. 1, we notice that A\}(Py x Cp/) = 4, for
all m/ € {12, 16, 18}.

Now, by combining each of (b),(c),(d) with (a), we see that A\l (P, x
Cyi10) = 4, for each n/ € {12,16,18}. Therefore, A (Ps X Crpysp) = 4
Vk >0 and p € {0,10} . Thus by an earlier remark, A\ (P; x C,,) = 4 for all
n>9 n#14. O
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Corollary 4.17. Given that n > 9, n # 14, and that m € {3,4} then
M(Pn x Cp) = 4.

Theorem 4.18. For m > 3, M (P, x C14) = 4.

Proof. It follows directly from Remark 4.4 (iii) and Theorem 4.13. O

Next, we derive the general lower bound for the L(1,1)— labelling of
Py, x Cy, where m > 5, n # 0 mod 5. That M\ (P, x C,,) = 4, where m,n
are both multiples of 5, has already been established. We need the next
lemma to prove the theorem that follows.

Lemma 4.19. If \}(P,, x C,,) = 4 for n # 0 mod 5, n > 9. Then, for
all V; C V(P x Cy), 0 < j < n— 2, there exist vg, vy € Vj}, such that
l(vg) = l(vp) and d(vg,vp) = 6.

Proof. Let G = P, x C,. Suppose, without loss of generality, that n is
even since by Remark 4.4 (iii), if n is odd then G is equivalent to one of the
two components of P, X Ca,. Let G’ be the connected component of G. Let
V] C V(G") such that V] C V;. Let v, € V such that I(v,) = ay € [4]. Since
n is not a multiple of 5, and n > 9, then ’V]” = 4 > 5. Since M(G) = 4,
then there exists at least some vertex vy, € Vj’ such that {(vp) = . By the

definition of L(1,1)— labeling, d(v,,vs) # 2. Likewise by Lemmas 4.2 and
4.12, d(ve, vp) ¢ {4,8} thus, d(vg,vp) =6. O

Theorem 4.20. Let m > 5, n % 0 mod 5 and n > 9. Then, A} (P, x C;,) >
5.

Proof. Letm >5, n# 0 mod 5 and n > 9. Suppose A\ (P, x Cy,) = 4.
Let G = P,, x Cy,. Suppose n is even. Then there exists G’, a connected
component of P, x C,. (If n is odd, we know from an earlier result that G

is a connected component of P, x Ca,.) We defined an arbitrary vertex set
V(G") = {uivj, uivj12, Uit1Vj41, Uit2Vj, Uit2Vj42, Uit3Vj41, Ui44Vj, UitaVj42 ),
with V(G") c V(G’). Clearly, V(G") induces a subgraph G” of G’ such
that G” = S} U Sy where S}, Sy are stars with

V(S}) = {uivj, uivjta, Uit10j41, Uit2Vj, Uit2Vj+2, } and

Sy = Ui 42V, Ui 2V 42, Uit3Vj4i, Uit 4Vj, U4V 42 Tespectively. Now, by 4.19
above, for all V; € V(G’),0 < i < m — 2 there exist at least a vertex pair
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va,vp € Vj such that for some o; € L(V;) C [4], l(vg) = l(vp) = o; and
d(vg,vp) = 6.

Suppose wi12vj—2, Ui+2Vj4+4 € Viyo such that [(u;12vj-2) = l(uij12vj44) =
;.

There exist vertices u;11vj41 € Vip1 and u;413vj41 € Vigs.

By Lemma 4.1, [(uj+1v41) = oy or [(uj+3vj41) = . Suppose
Hwi1vj41) = i, then d(ugq, up) < 2 for any u, € V(SY) and
Uy € {Ui410j41, Ui2Vj-2, Uit2Vj44} -

Thus there is no such vertex as u, € Sj such that l(u,) = «; € V(S)).
Likewise, d(u},,up) < 2 for any u,, € V(S5) and
up € {Ui13V) 41, Uit2Vj 2, Ui12Vjia}-

Thus, there exists no vertex u;, € V(S§), such that I(u},) = «; € [4] and
therefore, a contradiction. O

By the result obtained in Theorem 4.20, we see that the A} (P, xCy,) > 5
for all m > 5 and n > 9, where n is not a multiple of 5. In the subsequent
results, we obtain the A] —number for the remaining P, x C,, graphs.
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Theorem 4.21. Let k € A. For all k,m/,n', M(Ciom X Cryion) =
5, where m/ is any positive integer, n’ a non-negative integer and A =
{12,14, 16, 18}.

Proof. The result follows by combining the 5—labeling of C'yg X Cigyw
which is obtainable from n/—times repeat of Fig.5 a, with the 5—labeling
of 010 X 012, 010 X 014, 010 X 016 and 010 X 018 in Fig.5 b and of Fig.3 a,
b and c¢ respectively along with C;, and then m/-copy the resultant graph
along with C,,. O

Corollary 4.22. For all P,, x Cy,, where m > 5 and n > 6, n Z 0 mod 5
then A} (Py, x Cp,) = 5.

Proof. Let h be a positive even integer with h > 12. Let k € A =
{12,14,16,18}. Then, for all h, h = 0 mod k + 10n’ for some k € A.
The result thus follows from Remarks 4.4 (iii) and (iv) and the fact that
P, xC, C Pigm xCp. O

5. Conclusion

The following summarizes the results obtained in this work:
For G = P, X Py:

m | n [ M(P,xP)
2 2 1
>3 2 2
>3|>3 4
For G = P, x Cy:
m n M (P, x Cy)
2 =0 mod 3 2
2 # 0 mod 3 3
>3|€{3,4,6,7,8,14} 5
>3 =0 mod 5 4
3,4 >9,#£14 4
>5| >9,Z20mod 5 5
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