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1. Introduction

Let f a complex-valued measurable function defined on a σ-finite measure
space (X,A, µ). For λ ≥ 0, define Df (λ) the distribution function of f as

Df (λ) = µ ({x ∈ X : |f(x)| > λ}) .(1.1)

Observe that Df depends only on the absolute value |f | of the function f
and Df may assume the value +∞.

The distribution function Df provides information about the size of f
but not about the behavior of f itself near any given point. For instance,
a function on Rn and each of its translates have the same distribution
function. It follows from (1.1) that Df is a decreasing function of λ (not
necessarily strictly) and continuous from the right.

Let (X,µ) be a measurable space and f and g be a measurable functions
on (X,µ) then Df enjoy the following properties for all λ1, λ2 ≥ 0:

1. |g| ≤ |f | µ-a.e. implies that Dg ≤ Df ;

2. Dcf (λ) = Df

³
λ
|c|

´
for all c ∈ C{0};

3. Df+g(λ1 + λ2) ≤ Df (λ1) +Dg(λ2);

4. Dfg(λ1λ2) ≤ Df (λ1) +Dg(λ2).

For more details on distribution function see [5].

By f∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf{λ > 0 : Df (λ) ≤ t}, t ≥ 0

where we use the convention that inf ∅ = ∞. f∗ is decreasing and right-
continuous. Notice

f∗(0) = inf{λ > 0 : Df (λ) ≤ 0} = kfk∞,

since

kfk∞ = inf{α ≥ 0 : µ({x ∈ X : |f(x)| > α}) = 0}.

Also observe that if Df is strictly decreasing, then

f∗(Df (t)) = inf{λ > 0 : Df (λ) ≤ D(f)t} = t.
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This fact demonstrates that f∗ is the inverse function of the distribution
function Df . Let F(X,A) denote the set of all A-measurable functions on
X. Let (X,A0, µ) and (Y,A1, ν) be two measure spaces.

Two functions f ∈ F (X,A0) and g ∈ F (X,A1) are said to be equimea-
surable if they have the same distribution function, that is, if

µ ({x ∈ X : |f(x)| > λ}) = ν ({y ∈ Y : |g(y)| > λ}) , for all λ ≥ 0.

(1.2)

So then there exists only one right-continuous decreasing function f∗ equimea-
surable with f . Hence the decreasing rearrangement is unique.

In what follows, we gather some useful properties of the decreasing
rearrangement function:

a) f∗ is decreasing.

b) f∗(t) > λ if and only if Df (λ) > t.

c) f and f∗ are equimeasurables, that is Df (λ) = Df∗(λ) for all λ ≥ 0.

d) If |f | ≤ lim infn→∞ |fn| then f∗ ≤ lim infn→∞ f∗n.

e) If E ∈ A, then (χE)∗ (t) = χ[0,µ(E))(t).

f) If E ∈ A, then (fχE)∗ (t) ≤ f∗(t)χ[0,µ(E))(t).

A weight is a nonnegative locally integrable function on Rn that takes
values in (0,∞) almost everywhere. Therefore, weights are allowed to be
zero or infinite only on a set of Lebesgue measure zero.

Let ϕ : [0,∞)→ [0,∞) be a convex function such that

1. ϕ(x) = 0 if and only if x = 0;

2. limx→∞ ϕ(x) =∞.
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Such as function is known as a Young function. A Young function is strictly
increasing, in fact, let 0 < x < y then 0 < x

y < 1 and hence, we might write

x =

µ
1− x

y

¶
0 +

x

y
y.

Since ϕ is convex, we have

ϕ(x) = ϕ

µµ
1− x

y

¶
0 +

x

y
y

¶

≤
µ
1− x

y

¶
ϕ(0) +

x

y
ϕ(y)

< ϕ(y).

A Young function is said to satisfy the ∆2-condition if there exists a
nonnegative constant x0 and k such that

ϕ(2x) ≤ kϕ(x) for x ≥ x0.(1.3)

If x0 = 0, we say that ϕ satisfy globally the ∆2-condition. The smaller
constant k which satisfy (1.3) is denoted by k∆.

Claim 1.1. If ϕ is a Young function such that satisfy the ∆2-condition,
then for each r ≥ 0 there exists a constant k∆(r) such that

ϕ(rx) ≤ k∆(r)ϕ(x)(1.4)

for x > 0 large enough.

Proof. [Proof of the claim.] If r > 0, we can choose n ∈ N such that
r ≤ 2n. Then we can applied (1.3) n-times and use the fact that ϕ is
increasing to obtain

ϕ(rx) ≤ ϕ(2nx) ≤ knϕ(x),

and hence we have (1.4). 2

Example 1.2. The function ϕ1(x) =
xp

p with p > 1 is a Young function

which satisfy globally the ∆2-condition with k∆ =
2p

p .
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Example 1.3. The function ϕ2(t) = tp log(1 + t) with p ≥ 1 and t ≥ 0 is
a Young function which satisfy the ∆2-condition, indeed, since

lim
t→∞

ϕ2(2t)

ϕ2(t)
= lim

t→∞
2ptp log(1 + 2t)

tp log(1 + t)
= 2p−1.

Also, ϕ2 satisfy globally the ∆2-condition.
In fact, since for each t ≥ 0 we have (1 + t)2 ≥ 1 + 2t, then

ϕ2(2t) = 2
ptp log(1 + 2t)

≤ 2p+1tp log(1 + 2t)
≤ 2p+1ϕ2(2t).

Lemma 1.4. A Young function ϕ satisfy the ∆2-condition if and only if
there exist constants λ > 1 and t0 > 0 such that

tp(t)

ϕ(t)
< λ

for all t ≥ t0, where p is the right derivate of ϕ.

Proof. Suppose that ϕ satisfy the ∆2-condition, then there exists a
constant k > 0 such that

kϕ(t) ≥ ϕ(2t) =

Z 2t

0
p(s) ds >

Z 2t

t
p(s) ds

for t large enough, since p is increasing, then we haveZ 2t

t
p(s) ds > tp(t);

hence, for t large enough, we obtain

tp(t)

ϕ(t)
≤ k.

Conversely, if
tp(t)

ϕ(t)
< λ

for all t ≥ t0, then Z 2t

t

p(s)

ϕ(s)
ds < λ

Z 2t

t

ds

s
= λ log 2.
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Since p(s) = ϕ0(s), we have

log

µ
ϕ(2t)

ϕ(t)

¶
< λ log 2,

which implies that
ϕ(2t) < 2λϕ(t).

2 The following result show us that the Young functions which satisfy the
∆2-condition have a cross rate less than the function tp for some p > 1.

Theorem 1.5. If ϕ is a Young function which satisfy the ∆2-condition,
then there exists constants λ > 1 and C > 0 such that

ϕ(t) ≤ Ctλ

for t large enough.

Proof. By (1.4) we can writeZ t

t0

p(s)

ϕ(s)
ds < λ

Z t

t0

ds

s

where t ≥ t0. Then

log

µ
ϕ(t)

ϕ(t0)

¶
< λ log

µ
t

t0

¶
,

therefore

ϕ(t) <
ϕ(t0)

tλ0
tλ.

And the proof is complete. 2

Example 1.6. The following are Young functions:

1. ϕ(x) = |x|p
p with p > 1.

2. ϕ(x) = e|x| − |x|− 1.

3. ϕ(x) = e|x|
δ − 1 with δ > 1.

Related with the Young function ϕ, we define, for t ≥ 0 the comple-
mentary function of Young function as

ψ(t) = sup{ts− ϕ(s) : s ≥ 0}.
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Example 1.7. If ϕ(t) = 1
pt

p with p > 1 and t ≥ 0, then its complementary
function is ψ(t) = 1

q t
q where 1

p +
1
q = 1.

Indeed, by definition we have

ψ(t) = sup

½
ts− 1

p
sp : s ≥ 0

¾
,

next, for t > 0 fixed, we can consider the function

g(s) = ts− 1
p
sp, with s ≥ 0.

It is not hard to check that g achieves its maximum at s = t
1

p−1 which is
given by

g
³
t

1
p−1
´
=
1

q
tq.

Hence

ψ(t) = sup

½
ts− 1

p
sp : s ≥ 0

¾
=
1

q
tq.

Proposition 1.8. If ϕ is a Young function, then its complementary func-
tion ψ is also a Young function.

Proof. It is clear that ψ(0) = 0 if and only if x = 0. Now, we just need to
show that ψ is a convex function. To this end, let us choose t1, t2 ∈ [0,+∞)
and λ ∈ [0, 1]. Then, by definition of ψ we have

ψ(λt1 + (1− λ)t2) = sup{s(λt1 + (1− λ)t2)− ϕ(s) : s ≥ 0}.

On the other hand

λψ(t1) = λ sup{st1 − ϕ(s) : s ≥ 0} ≥ λ(st1 − ϕ(s)) ∀ s ≥ 0

and

(1−λ)ψ(t2) = (1−λ) sup{st2−ϕ(s) : s ≥ 0} ≥ (1−λ)(st2−ϕ(s)) ∀ s ≥ 0.

From the last two inequalities, we have

s(λt1 + (1− λ)t2)− ϕ(s) = λ(st1 − ϕ(s)) + (1− λ)(st2 − ϕ(s))

≤ λψ(t1) + (1− λ)ψ(t2)
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for all s ≥ 0. Which means that λψ(t1) + (1− λ)ψ(t2) is an upper bound
of the set

{s(λt1 + (1− λ)t2)− ϕ(s) : s ≥ 0},
then

ψ(λt1 + (1− λ)t2)) ≤ ψ(t1) + (1− λ)ψ(t2),

and so ψ is convex. 2

Theorem 1.9 (Young’s Inequality). Let ψ be the complementary func-
tion of ϕ. Then

ts ≤ ϕ(s) + ψ(t)

where t, s ∈ [0,+∞).

Proof. Let t, s ∈ [0,+∞). Then ψ(t) = sup{st− ϕ(s) : s ≥ 0}
≥ st− ϕ(s) ∀ s ≥ 0, then

ψ(t) + ϕ(s) ≥ st,

and the proof is complete. 2 For more details on Young functions see [13].

2. Weighted Lorentz-Orlicz Spaces

The aim of this section is to present basic results about Lorentz-Orlicz
spaces. We have tried to make the proofs as self-contained and synthetic
as possible.

Definition 2.1 (Luxemburg norm). Let ϕ be a Young function. For
any measurable function f on X,

kfkϕ,w = inf
½
ε > 0 :

Z ∞
0

ϕ

µ
f∗(t)

ε

¶
w(t) dt ≤ 1

¾
∈ [0,∞),

where it is understood that inf(∅) = +∞.

Remark 2.2. In this article, we will not always require that the Luxem-
burg norm actually be a norm. k·kϕ,w is indeed a quasinorm. A quasinorm
is a functional that is like a norm except that it does only satisfy the tri-
angle inequality with a constant C ≥ 1, that is, kf + gk ≤ C(kfk + kgk)
where C ≥ 1.

Lemma 2.3. For any measurable function f on X, kfkϕ,w = 0 if and only
if f = 0 µ-almost everywhere.
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Proof. Clearly kfkϕ,w = 0 if and only if
R∞
0 ϕ

³
f∗(t)
ε

´
w(t) dt ≤ 1 ∀ ε > 0.

It follows that

kfkϕ,w = 0 if and only if
Z ∞
0

ϕ (αf∗(t))w(t) dt = 0 ∀ α > 0

if and only if ϕ (αf∗(t))w(t) = 0 µ− a.e. ∀ α > 0

if and only if f∗(t) = 0 µ− a.e.

if and only if Df (λ) = 0 µ− a.e.

if and only if f = 0 µ− a.e.

2

Identification of almost everywhere equal functions. As with Lp spaces,
one identifies the function which are µ-almost everywhere equal. This
means that one works with the equivalence classes of the equivalence rela-
tion defined by the µ-almost everywhere equality. From now on, this will
be done without further mention. Consequently, one write:

kfkϕ,w = 0 if and only if f = 0.(2.1)

Lemma 2.4. If 0 < kfkϕ,w < ∞ then
R∞
0 ϕ

³
f∗(t)
kfkϕ,w

´
w(t) dt ≤ 1. In

particular, kfkϕ,w ≤ 1 is equivalent to
R∞
0 ϕ (f∗(t))w(t) dt ≤ 1.

Proof. For all b > kfkϕ,w, we haveZ ∞
0

ϕ

µ
f∗(t)

b

¶
w(t) dt ≤ 1.

Letting b decrease to kfkϕ,w, one obtains the first result by monotone con-
vergence. The second statement follows from this and lemma 2.8. 2

Proposition 2.5. The gauge k · kϕ,w is a quasinorm on the vector space
of all the measurable functions f such that kfkϕ,w <∞.
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Proof. It is already seen that (2.1) holds under identification of a.e.
equal functions.

It is clear that for all real λ, kλfkϕ,w = |λ|kfkϕ,w.
It remains to prove the triangle inequality. Let f and g be two measur-

able functions such that 0 < kfkϕ,w + kgkϕ,w <∞. Then

Z ∞
0

ϕ

Ã
(f + g)∗(t)

2(kfkϕ,w + kgkϕ,w)

!
w(t) dt

≤
Z ∞
0

ϕ

Ã
f∗(t/2) + g∗(t/2)

2(kfkϕ,w + kgkϕ,w)

!
w(t) dt

=

Z ∞
0

ϕ

Ã
kfkϕ,w

2(kfkϕ,w + kgkϕ,w)
f∗(t/2)

kfkϕ,w
+

kgkϕ,w
2(kfkϕ,w + kgkϕ,w)

g∗(t/2)

kgkϕ,w

!
w(t) dt

≤ kfkϕ,w
2(kfkϕ,w + kgkϕ,w)

Z ∞
0

ϕ

Ã
f∗(t/2)

kfkϕ,w

!
w(t) dt

+
kgkϕ,w

2(kfkϕ,w + kgkϕ,w)

Z ∞
0

ϕ

Ã
g∗(t/2)

kfkϕ,w

!
w(t) dt

=
kfkϕ,w

2(kfkϕ,w + kgkϕ,w)
2

Z ∞
0

ϕ

Ã
f∗(t)

kfkϕ,w

!
w(2t) dt

+
kgkϕ,w

2(kfkϕ,w + kgkϕ,w)
2

Z ∞
0

ϕ

Ã
g∗(t)

kfkϕ,w

!
w(2t) dt

≤ kfkϕ,w
kfkϕ,w + kgkϕ,w

Z ∞
0

ϕ

Ã
f∗(t)

kfkϕ,w

!
w(t) dt

+
kgkϕ,w

kfkϕ,w + kgkϕ,w

Z ∞
0

ϕ

Ã
g∗(t)

kfkϕ,w

!
w(t) dt

≤ 1,

where the last but one inequality follows from the convexity of ϕ and the
fact that w is nonincreasing and the last inequality from lemma 2.4. There-
fore

kf + gkϕ,w ≤ 2 (kfkϕ,w + kgkϕ,w) .

As a consequence, the set of all measurable functions f such that kfkϕ,w <
∞ is a vector space. 2
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Definition 2.6. Let ϕ be a Young function. We define the weighted
Lorenz-Orlicz spaces

Lϕ,w =

½
f : X → C measurable :

Z ∞
0
ϕ(αf∗(t))w(t) dt <∞, for some α > 0

¾
.

It follows from proposition 1.8 that if Lϕ,w is a weighted Lorentz-Orlicz
space, then Lψ,w is also a weighted Lorenz-Orlicz space.

Proposition 2.7 (Hölder’s type inequality). For f ∈ Lϕ,1 and g ∈
Lψ,1 Z

X
|fg| dµ ≤ 2kfkϕ,1kgkψ,1.

In particular, fg ∈ L1.

Proof. If kfkϕ,1 = 0 or kgkψ,1 = 0, one concludes with lemma 2.3.
Assume now that 0 < kfkϕ,1, kgkψ,1. Because of Young’s inequality:

st ≤ ϕ(s) + ϕ(t) we haveZ
X

|fg|
kfkϕ,1kgkψ,1

dµ ≤
Z ∞
0

f∗(t)g∗(t)

kfkϕ,1kgkψ,1
dt

≤
Z ∞
0

ϕ

Ã
f∗(t)

kfkϕ,1

!
dt+

Z ∞
0

ψ

Ã
g∗(t)

kgkψ,1

!
dt

≤ 2.

Therefore Z
X
|fg| dµ ≤ 2kfkϕ,1kgkψ,1.

2

Lemma 2.8. Let {fn}n∈N be a sequence in Lϕ,w. Then, the following
assertions are equivalent:

a) limn→∞ kfnkϕ,w = 0;

b) For all α > 0, lim supn→∞
R∞
0 ϕ(αf∗n(t))w(t) dt ≤ 1;

c) For all α > 0, limn→∞
R∞
0 ϕ(αf∗n(t))w(t) dt = 0.
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Proof. The equivalence (a)⇔ (b) is a direct consequence of the defini-
tion of k·kϕ,w. Off course (c)⇒ (b) is obvious. As ϕ is convex and ϕ(0) = 0
for all t ≥ 0 and 0 < ε ≤ 1, we have

ϕ(t) = ϕ

µ
(1− ε)0 + ε

t

ε

¶
≤ (1− ε)ϕ(0) + εϕ

µ
t

ε

¶
,

that is

ϕ(t) ≤ εϕ

µ
t

ε

¶
t ≥ 0, 0 < ε ≤ 1.

From which (b)⇒ (c) follows easily. 2

Theorem 2.9. The space Lϕ,w is a quasi-Banach space.

Proof. Let {fn}n∈N be a Cauchy sequence in Lϕ,w. Let us choose ε̃ > 0

such that ε̃ϕ−1
³

ε
k0

´
< 1

n+m for n,m ∈ N and ε > 0, k0 > 0. For such ε̃

there exists n0 ∈N such that

kfn − fmkϕ,w < ε̃.

If n,m ≥ n0. By the definition of the Luxemburg quasi-norm we can use
k0 > 0 in such a way that k0 < ε̃ andZ ∞

0
ϕ

µ
(fn − fm)

∗(t)

k0

¶
w(t) dt ≤ 1.

Let E = {x ∈ X : |fn(x)− fm(x)| > ε}, then

εχE(x) ≤ |fn(x)− fm(x)|.

Hence
εχ∗E(t) ≤ (fn − fm)

∗(t),

εχ(0,µ(E))(t) ≤ (fn − fm)
∗(t).

ThereforeZ ∞
0

ϕ

µ
ε

k0
χ(0,µ(E))(t)

¶
w(t) dt ≤

Z ∞
0

ϕ

µ
(fn − fm)

∗(t)

k0

¶
w(t) dt.

Then Z µ(E)

0
ϕ

µ
ε

k0

¶
w(t) dt ≤

Z ∞
0

ϕ

µ
(fn − fm)

∗(t)

k0

¶
w(t) dt
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⇒ ε̃

Z Dfn−fm(ε)

0
w(t) dt ≤ ε̃ϕ−1

µ
ε

k0

¶Z ∞
0

ϕ

µ
(fn − fm)

∗(t)

k0

¶
w(t) dt

⇒ ε̃

Z Dfn−fm(ε)

0
w(t) dt ≤ 1

n+m

⇒ ε̃ lim
n,m→∞

Z Dfn−fm(ε)

0
w(t) = 0.

Since w > 0, we must have limn,m→∞Dfn−fm(ε) = 0 which means
that {fn}n∈N is a Cauchy sequence in measure. Then some subsequence
{fnk}k∈N converges almost everywhere to a measurable function f , that is,
fnk → f µ-a.e.

Let α > 0. By lemma 2.8 there exists a large enough integer n(α) such
that Z ∞

0
ϕ (α(fn − fm)

∗(t))w(t) dt ≤ 1, ∀ m,n ≥ n(α).

With Fatou’s lemma this givesZ ∞
0

ϕ (α(fn − f)∗(t))w(t) dt ≤ lim inf
Z ∞
0

ϕ (α(fn − fm)
∗(t))w(t) dt ≤ 1

∀ m ≥ n(α). Therefore fn − f belongs to Lϕ,w, but fn ∈ Lϕ,w, so that
f ∈ Lϕ,w.

Moreover, as lim supm→∞
R∞
0 ϕ (α(fm − f)∗(t))w(t) dt ≤ 1 for all α >

0, we have limm→∞ kfm − fkϕ,w = 0. This proves that Lϕ,w is complete.
2

Theorem 2.10. Simple functions are dense in Lϕ,w.

Proof. Suppose f ∈ Lϕ,w. We may assume that f ≥ 0. Note that if
Df (λ) =∞, then limt→∞ f∗(t) = 0. It follows that Df (λ) <∞.

Hence, given ε, δ > 0, we can find a simple function sn ≥ 0 such that
sn(x) = 0 when f(x) ≤ ε and f(x) − ε ≤ sn(x) ≤ f(x) when f(x) > ε
except on a set of measure less than δ. It follows that

µ ({x ∈ X : |f(x)− sn(x)| > ε}) < δ.

Next, choose n ∈N such that n ≥ 1
ε , then

(f − sn)
∗(t) = inf{ε > 0 : Df−sn(ε) < δ ≤ t}.

Thus

(f − sn)
∗(t) ≤ 1

n
for t ≥ δ,
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since sn ≤ f , then s∗n(t) ≤ f∗(t), for each t > 0. Since n > 1
ε , we have

(f − sn)
∗(t) ≤ 1

n
< ε,

next, Z ∞
0

ϕ

µ
(f − sn)

∗(t)

k

¶
w(t) dt ≤

Z ∞
0

ϕ

µ
1

nk

¶
w(t) dt.

Let a =
R∞
0 w(t) dt, then

kf − snkϕ,w = inf
½
k > 0 :

Z ∞
0

ϕ

µ
(f − sn)

∗(t)

k

¶
w(t) dt ≤ 1

¾

=
1

nϕ−1
³
1
a

´ → 0 as n→∞.

2

3. Composition Operator

Let (X,A, µ) be a σ-finite complete measure space and let T : X → X be
a measurable transformation, that is, T−1(A) ∈ A for any A ∈ A.

If µ
¡
T−1(A)

¢
= 0 for all A ∈ A with µ(A) = 0, then T is said to be

nonsingular. This condition means that the measure µ ◦ T−1, defined by
µ◦T−1(A) = µ

¡
T−1(A)

¢
for A ∈ A is absolutely continuous with respect to

µ (it is usually denoted µ ◦ T−1 ¿ µ). Then the Radon-Nikodym theorem
ensure the existence of a non-negative locally integrable function fT on X
such that

µ ◦ T−1(A) =
Z
A
fT dµ for A ∈ A.

Any measurable nonsingular transformation T induces a linear operator
(composition operator) CT from F (X,A, µ) into itself defined by

CT (f)(x) = f (T (x)) , x ∈ X, f ∈ F (X,A, µ),

where F (X,A, µ) denotes the linear space of all equivalence classes of A-
measurable functions on X, where we identify any two functions that are
equal µ-almost everywhere on X.

Here the nonsingularty of T guarantees that the operator CT is well
defined as a mapping of equivalence classes of functions into itself since
f = g µ-a.e. implies CT (f) = CT (g) µ-a.e.
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Example 3.1. Let ([0, 1],B,m) be a Lebesgue measure space, B stand for
the Borel’s σ-algebra and T : [0, 1]→ [0, 1] a transformation defined by

T (x) =

(
2x, if 0 ≤ x ≤ 1

2
1, if 12 < x ≤ 1.

It is not hard to see that T is B-measurable, also, observe that T is not
nonsigular, indeed

T−1({1}) =
µ
1

2
, 1

¸
,

hence m(T−1({1})) = 1
2 but m({1}) = 0.

Now, let us consider f = χ[0,1) and g = χ[0,1] note f = g µ-a.e., but

CT (f) = CT

³
χ[0,1)

´
= χ[0,1) ◦ T

= χ[0, 12)

and

CT (g) = CT

³
χ[0,1]

´
= χ[0,1] ◦ T

= χ[0,1].

Then CT (f) 6= CT (g), which means that CT is not well defined.
In other words, the nonsingularity of T is a necessary condition in order

to T induces a composition operator on F (X,A, µ).

Composition operators are relatively simple operators with a wide range
of applications in areas such a partial differential equations, group repre-
sentation theory, ergodic theory or dynamical systems, etc. For details on
composition operator see [7, 10, 11, 12, 14, 15] and the references given
therein.

In what follows, we will consider the transformation CT from Lϕ,w into
the space of all complex-valued measurable functions on X as

(CT f) (x) ==

(
f (T (x)) , if x ∈ Y
0, otherwise
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where Y is a measurable subset of X.
Next, a necessary and sufficient condition for the boundedness of com-

position mapping CT is given.
If (X,A, µ) is a σ-finite measure space and T : X → X is a non-singular

measurable transformation and w is a weight function, define a measure ν
on the σ-algebra A as

ν(A) =

Z µ(A)

0
w(t) dt.

Next, for A ∈ A,
kχAkϕ,w = inf

n
k > 0 :

R∞
0 ϕ

³
χ∗A(t)
k

´
w(t) dt ≤ 1

o

= inf

(
k > 0 :

Z ∞
0

ϕ

Ã
χ(0,µ(A))(t)

k

!
w(t) dt ≤ 1

)

= inf

(
k > 0 :

Z µ(A)

0
ϕ

µ
1

k

¶
w(t) dt ≤ 1

)
.

Now, observe that if k = 1

ϕ−1
¡

1
ν(A)

¢ , then
ϕ

⎛⎝ 1
1

ϕ−1(ν(A))

⎞⎠ = ϕ

µ
ϕ−1

µ
1

ν(A)

¶¶
=

1

ν(A)
,

thus

R µ(A)
0 ϕ

Ã
1
1

ϕ−1(ν(A))

!
w(t) dt =

R µ(A)
0 ϕ

³
ϕ−1

³
1

ν(A)

´´
w(t) dt

=

Z µ(A)

0

w(t)

ν(A)
dt

=
1

ν(A)

Z µ(A)

0
w(t) dt

=
1

ν(A)
· ν(A)

= 1.

Therefore
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kχAkϕ,w =
1

ϕ−1
³

1
ν(A)

´ .
Theorem 3.2. Let T : X → X be a non-singular measurable transforma-
tion. Then CT induced by T is bounded on Lϕ,w if and only if there exists
M ≥ 1 such that

ν
³
T−1(A)

´
≤Mν(A) ∀ A ∈ A.(3.1)

Moreover

kCT (f)k = sup
0<ν(A)<∞

Ã
ν(T−1 (A))

ν(A)

!
.(3.2)

Proof. Let CT be a bounded transformation on Lϕ,w, then we can find
M ≥ 1 such that

kCT fkϕ,w ≤Mkfkϕ,w ∀ f ∈ Lϕ,w.

If A ∈ A is such that ν(A) = ∞, then (3.1) holds. Suppose A ∈ A is
such that ν(A) <∞, thusR∞

0 ϕ (αχ∗A(t))w(t) dt =
R∞
0 ϕ

³
αχ0,µ(A)(t)

´
w(t) dt

=

Z µ(A)

0
ϕ(α)w(t) dt

= ϕ(α)ν(A) <∞.

Hence

kCTχAkϕ,w ≤MkχAkϕ,w.(3.3)

Note

(χA ◦ T ) (x) = χA (T (x)) =

(
1, if T(x)∈ A
0, if T(x)/∈ A

=

(
1, if x∈ T−1(A)
0, if x/∈ T−1(A)

= χT−1(A)(x).

Then
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kCTχAkϕ,w = kχT−1(A)kϕ,w

=
1

ϕ−1
³

1
ν(T−1(A))

´ ,
and

kχAkϕ,w =
1

ϕ−1
³

1
ν(A)

´ .
Hence, we can write (3.3) as follows

1

ϕ−1
³

1
ν(T−1(A))

´ ≤ M

ϕ−1
³

1
ν(A)

´
and so

ϕ−1
µ

1

ν(A)

¶
≤ ϕ−1

µ
1

ν(T−1(A))

¶
.

Since ϕ−1 is concave and 0 = ϕ−1 (ϕ(0)) = ϕ−1(0) thus ϕ−1 is increasing,
then

1

ν(A)
≤M

1

ν (T−1(A))

ν(T−1(A)) ≤Mν(A).

Conversely, if inequality (3.1) holds for all A ∈ A, then
Therefore

(f ◦ T )∗(t) ≤Mf∗(t) a.e.

Since ϕ(αt) ≤ αϕ(t) for α < 1, then

Z ∞
0

ϕ

Ã
(f ◦ T )∗(t)
Mkfkϕ,w

!
w(t) dt ≤ 1

M

Z ∞
0

ϕ

Ã
f∗(t)

kfkϕ,w

!
w(t) dt

≤
Z ∞
0

ϕ

Ã
f∗(t)

kfkϕ,w

!
w(t) dt ≤ 1.

Finally

kf ◦ Tkϕ,w ≤Mkfkϕ,w,
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that is
kCT fkϕ,w ≤Mkfkϕ,w.

On the one hand, let us prove (3.2). Indeed, let

N = sup
0<ν(A)<∞

Ã
ν
¡
T−1(A)

¢
ν(A)

!
,

then
ν
³
T−1(A)

´
≤ Nν(A)

and thus
kCT fkϕ,w ≤ Nkfkϕ,w, ∀ f ∈ Lϕ,w

hence
kCT fkϕ,w
kfkϕ,w

≤ N, for all 0 6= f ∈ Lϕ,w.

Therefore

kCT k = sup
f 6=0

kCT (f)kϕ,w
kfkϕ,w

< N = sup
0<ν(A)<∞

Ã
ν
¡
T−1(A)

¢
ν(A)

!
.

That is

kCTk ≤ sup
0<ν(A)<∞

Ã
ν
¡
T−1(A)

¢
ν(A)

!
.(3.4)

On the other hand, let us consider

M = kCTk = sup
f 6=0

kCT (f)kϕ,w
kfkϕ,w

,

then
kCT (f)kϕ,w
kfkϕ,w

≤M ∀ 0 6= f ∈ Lϕ,w.

In particular, if f = χA such that 0 < µ(A) <∞, A ∈ A, then

kCT (χA)kϕ,w
kχAkϕ,w

=

Ã
ν
¡
T−1(A)

¢
ν(A)

!
≤M,

therefore

sup
0<ν(A)<∞

Ã
ν
¡
T−1(A)

¢
ν(A)

!
≤M = kCTk.(3.5)
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Combining 3.4 and 3.5 we have

kCTk = sup
0<ν(A)<∞

Ã
ν
¡
T−1(A)

¢
ν(A)

!
.

2
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René Erlin Castillo
Departamento de Matemáticas,
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