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Abstract

In this work, the multi-step homotopy analysis method (MHAM)
is applied to obtain the explicit analytical solutions for system of the
Jaulent Miodek equations. The proposed scheme is only a simple
modification of the homotopy analysis method (HAM), in which it
is treated as an algorithm in a sequence of small intervals (i.e. time
step) for finding accurate approximate solutions to the corresponding
problems. Thus, it is valid for both weakly and strongly nonlinear prob-
lems. this work verifies the validity and the potential of the MHAM for
the study of nonlinear systems. A comparative study between the new
algorithm and the exact solution is presented graphically. convenient.
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1. Introduction

Recently, a lot of attention has been focused on the studies of linear and
nonlinear systems of partial differential equations (PDEs). Systems of non-
linear partial differential equations arise in many scientific models such
as the propagation of shallow water waves and the Brusselator model of
the chemical reaction-diffusion model. In this work we study the Jaulent-
Miodek equations [1, 12, 16] which associate with energy-dependent Schrödinger
potential [2, 13, 15]. There are many methods to solve this system, such
as F-function method [3], Adomian method [4], homotopy analysis [12, 16],
tanh method [5], and the variational iteration method [6]. In this paper,
we propose the multi-step homotopy analysis method to solve the Jaulent-
Miodek equations. We investigate the applicability and effectiveness of the
homotopy analysis method when treated as an algorithm in a sequence of
intervals (i.e. time step) for finding accurate approximate solutions to the
Jaulent-Miodek equations. It can be found that the corresponding numeri-
cal solutions obtained by using HAM are valid only for a short time, while
the ones obtained by using MHAM are more valid and accurate during a
long time [10]. The structure of this paper is as follows. In section 2, we
describe the MHAM of the system of nonlinear Jaulent-Miodek equations.
Numerical simulations are presented graphically in Section 3. Finally, the
conclusions are given in Section 4.

2. Multi-step homotopy analysis method

The principles of the homotopy analysis method are given in [7, 8, 9, 10, 11].
The nonlinear Jaulent-Miodek equations which will be considered in this
paper has the following form:

ut + uxxx +
3
2vvxxx +

9
2vxvxx − 6uux − 6uvvx −

3
2v
2ux = 0,

vt + vxxx − 6vux − 6uvx −
15

2
v2vx = 0,(2.1)

with initial conditions

u(x, 0) =
1

8
λ2(1 + 4sech2[

1

2
λx]), v(x, 0) = λsech[

1

2
λx],(2.2)

which associate with energy-dependent Schrödinger potential [13, 14, 15].
The HAM is used to provide approximate solutions for a wide class of
nonlinear problems in terms of convergent series with easily computable
components, but the motivation of this article is to extend the HAM to
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solve system of the Jaulent-Miodek (JM) equations. this modification is
called the multi-step homotopy analysis method (MHAM). It is only a
simple modification of the standard HAM and can ensure the validity of
the approximate solutions for large time. Although the MHAM is used to
provide approximate solutions for nonlinear problem in terms of convergent
series with easily computable components. To extend this solution over the
interval [0, t], we divide the interval [0, t] into n-subintervals of equal length
∆t, [t0, t1), [t1, t2), [t2, t3), ..., [tn−1, tn] with t0 = 0, tn = t. Let t∗ be
the initial value for each subintervals and let uj and vj be approximate
solutions in each subinterval [tj−1, tj ], j = 1, 2, ..., n, with initial guesses

u1(x, t
∗) = 1

8λ
2(1+4sech2[12λx]), uj(x, t

∗) = Uj(x, tj−1) = Uj−1(x, tj−1),

v1(x, t
∗) = λsech[

1

2
λx], vj(x, t

∗) = Vj(x, tj−1) = Vj−1(x, tj−1), j = 2, 3, ..., n.

(2.3)

Now, we can construct the so-called zeroth-order deformation equations
of the system (2.1) by

(1− q)L[φ1,j(x, t, q)− uj(x, t
∗)] = qh[ ∂∂tφ1,j(x, t, q) +

∂3

∂x3φ1,j(x, t, q)

+3
2φ2,j(x, t, q)

∂3

∂x3φ2,j(x, t, q) +
9
2
∂
∂xφ2,j(x, t, q)

∂2

∂x2φ2,j(x, t, q)

−6φ1,j(x, t, q) ∂
∂xφ1,j(x, t, q)− 6φ1,j(x, t, q)φ2,j(x, t, q)

∂
∂xφ2,j(x, t, q)

−32(φ2,j(x, t, q))2
∂
∂xφ1,j(x, t, q),

(1− q)L[φ2,j(x, t, q)− vj(x, t
∗)] = qh[

∂

∂t
φ2,j(x, t, q) +

∂3

∂x3
φ2,j(x, t, q)

(2.4)

−6φ2,j(x, t, q) ∂
∂xφ1,j(x, t, q)− 6φ1,j(x, t, q)

∂
∂xφ2,j(x, t, q)

−152 (φ2,j(x, t, q))2
∂
∂xφ2,j(x, t, q),

where q ∈ [0, 1] is an embedding parameter, L is an auxiliary linear oper-
ator, h 6= 0 is an auxiliary parameter and φ1,j(x, t, q) and φ2,j(x, t, q) are
unknown functions. Obviously, when q = 0
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φ1,1(x, t, 0) =
1
8λ
2(1 + 4sech2[12λx]), φ1,j(x, t, 0) = Uj−1(x, tj−1),

φ2,1(x, t, 0) = λsech[
1

2
λx], φ2,j(x, t, 0) = Vj−1(x, tj−1), j = 2, 3, ..., n,

(2.5)
and when q = 1, we have

φ1,j(x, t, 1) = uj(x, t),

φ2,j(x, t, 1) = vj(x, t), j = 1, 2, ..., n.(2.6)

Expanding φ1,j(x, t, q) and φ2,j(x, t, q), j = 1, 2, ..., n, in Taylor series
with respect to q, we get

φ1,j(x, t, q) = uj(x, t
∗) +

∞X
m=1

uj,m(x, t)q
m,

φ2,j(x, t, q) = vj(x, t
∗) +

∞X
m=1

vj,m(x, t)q
m, j = 1, 2, ..., n,(2.7)

where

uj,m(x, t) =
1

m!

∂mφ1,j(x, t, q)

∂qm
|q=0,

vj,m(x, t) =
1

m!

∂mφ2,j(x, t, q)

∂qm
|q=0.(2.8)

If the initial guesses uj(x, t
∗), vj(x, t

∗), the auxiliary linear operator
L and the nonzero auxiliary parameter h are properly chosen so that the
power series (2.7) converges at q = 1, one has

uj(x, t) = φ1,j(x, t, 1) = uj(x, t
∗) +

∞X
m=1

uj,m(x, t),

vj(x, t) = φ2,j(x, t, 1) = vj(x, t
∗) +

∞X
m=1

vj,m(x, t).

Define the vectors
−→u j,m(x, t) = {uj,0(x, t), uj,1(x, t), . . . , uj,m(x, t)},

−→v j,m(x, t) = {vj,0(x, t), vj,1(x, t), . . . , vj,m(x, t)}.
Differentiating the zero-order deformation equation (2.4) m times with

respective to q, then setting q = 0 and dividing them by m!, finally using
(2.8), we have the so-called high-order deformation equations
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L[uj,m(x, t)− χm uj,m−1(x, t)] = h <1,j,m(−→u j,m−1(x, t)),

L[vj,m(x, t)− χm vj,m−1(x, t)] = h <2,j,m(−→v j,m−1(x, t)),(2.9)

subject to the initial conditions

uj,m(x, 0) = 0, vj,m(x, 0) = 0, j = 1, 2, ..., n,

where
<1,j,m(−→u j,m−1(x, t))

= ∂
∂tuj,m−1(x, t) +

∂3

∂x3uj,m−1(x, t) +
3
2

m−1X
i=0

vj,i(x, t)
∂3

∂x3 vj,m−i−1(x, t)

+9
2

m−1X
i=0

∂
∂xvj,i(x, t)

∂2

∂x2
vj,m−i−1(x, t)− 6

m−1X
i=0

uj,i(x, t)
∂
∂xuj,m−i−1(x, t)

−6
m−1X
i=0

∂
∂xvj,m−i−1(x, t)

iX
k=0

uj,k(x, t)vj,i−k(x, t)

−32
m−1X
i=0

∂
∂xuj,m−i−1(x, t)

iX
k=0

vj,k(x, t)vj,i−k(x, t),

<2,j,m(−→v j,m−1(x, t))

= ∂
∂tvj,m−1(x, t) +

∂3

∂x3 vj,m−1(x, t)− 6
m−1X
i=0

vj,i(x, t)
∂
∂xuj,m−i−1(x, t)

−6
m−1X
i=0

∂
∂xvj,i(x, t)uj,m−i−1(x, t)

−152
m−1X
i=0

∂
∂xvj,m−i−1(x, t)

iX
k=0

vj,k(x, t)vj,i−k(x, t),

and

χm =

(
0, m ≤ 1
1, m > 1

.

Select the auxiliary linear operator L = ∂
∂t , then the mth-order defor-

mation equations (2.9) can be written in the form

uj,m(x, t) = χmuj,m−1(x, t) + h

tZ
0

<1,j,m(−→u j,m−1(x, τ))dτ,
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vj,m(x, t) = χmvj,m−1(x, t)+h

tZ
0

<2,j,m(−→v j,m−1(x, τ))dτ, j = 1, 2, ..., n.

(2.10)

The solutions of system (2.1) in each subinterval [tj−1, tj ], j = 1, 2, ..., n,
has the form

Uj(x, t) =
∞X

m=0

uj,m(x, t− tj−1),

Vj(x, t) =
∞X

m=0

vj,m(x, t− tj−1), j = 1, 2, ..., n,(2.11)

and the solution of system (2.1) for [0, T ] is given by

u(x, t) =
nX

j=1

χvUj(x, t), v(x, t) =
nX

j=1

χvVj(x, t),(2.12)

where

χv =

(
1, t ∈ [tj−1, tj ]
0, t /∈ [tj−1, tj ]

3. Numerical results

The series solutions of the functions u(x, t) and v(x, t) are given in ( 2.12).
In this work, we carefully propose the MHAM, a reliable modification of the
HAM, that improves the convergence of the series solution. Furthermore,
we should note that if one chooses a good enough initial guess, one can get
accurate approximations using MHAM by only a few terms with h = −1.To
demonstrate the efficiency of the MHAM for Jaulent-Miodek equations, we
compare approximate solutions of u(x, t) and v(x, t), with exact solutions

u(x, t) =
1

8
λ2(1 + 4 sech2[

1

2
λ(x+

1

2
λ2t)]),

v(x, t) = λ sech[
1

2
λ(x+

1

2
λ2t)],(3.1)

where λ is arbitrary constant. To demonstrate the effectiveness of the pro-
posed algorithm as an approximate tool for solving the Jaulent-Miodek
equations (2.1), (2.2) for larger t, we apply the proposed algorithm on the
interval [0, 30]. We choose to divide the interval [0, 30] to subintervals.
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Figure 1 shows the series solution of the MHAM of the Jaulent-Miodek
equations (2.1), (2.2) and the displacement of the exact solution (3.1) when
(λ = 0.1). From the graphical results it can be seen that the results ob-
tained using the MHAM match the results of the exact solution very well.
Therefore, the proposed method is very effcient and accurate method that
can be used to provide analytical solutions for linear and nonlinear partial
differential equations..

4. Conclusions

The analytical approximations to the solutions of Jaulent-Miodek equations
(2.1), (2.2) are reliable and confirm the power and ability of the MHAM as
an easy device for computing the solution of nonlinear problems. In this pa-
per, a system of partial differential equations is studied and its approximate
solution is presented using a MHAM. The approximate solutions obtained
by MHAM are highly accurate and valid for a long time. The reliability of
the method and the reduction in the size of computational domain give this
method a wider applicability. Finally, the recent appearance of nonlinear
partial differential equations as models in some fields such as models in
science and engineering makes it is necessary to investigate the method of
solutions for such equations, and we hope that this work is a step in this
direction.

References

[1] M. Jaulent and J. Miodek, Nonlinear evolution equations associated
with energy-dependent Schrödinger potentials, Lett Math Phys 1, pp.
243—250, (1976).

[2] J. L. Zhang, M. L. Wang, and X. R. Li, The subsidiary elliptic-
like equation and the exact solutions of the higher-order nonlinear
Schrödinger equation, Chaos Solitons Fractals, 33, pp. 1450—1457,
(2007).

[3] E. Fan, Uniformly constructing a series of explicit exact solutions to
nonlinear equations in mathematical physics, Chaos Solitons Fractals,
16, pp. 819—839, (2003).



52 Mohammad Zurigat, Asad A. Freihat and Ali H. Handam

[4] J. B. Chen and X. G. Geng, Decomposition to the modified Jaulent—
Miodek hierarchy, Chaos Solitons Fractals, 30, pp. 797—803, (2006).

[5] A. M. Wazwaz, The tanh-coth and the sech methods for exact solutions
of the Jaulent—Miodek equation, Phys Lett A, 366, pp. 85—90, (2007).

[6] D. D. Ganji, M. Jannatabadi, and E. Mohseni, Application of He’s
variational iteration method to nonlinear Jaulent—Miodek equations
and comparing it with ADM, J Comput Appl Math, 207, pp. 35—45,
(2007).

[7] J. Cang, Y. Tan, H. Xu, S. Liao, Series solutions of non-linear Riccati
differential equations with fractional order, Chaos, Solitons & Fractals,
40 (1), pp. 1-9, (2009).

[8] M. Zurigat, S. Momani, Z. odibat, A. Alawneh, The homotopy anal-
ysis method for handling systems of fractional differential equations,
Applied Mathematical Modelling, 34 (1), pp. 24-35, (2010).

[9] M. Zurigat, S. Momani, A. Alawneh, Analytical approximate solutions
of systems of fractional algebraic-differential equations by homotopy
analysis method, Computers and Mathematics with Applications, 59
(3), pp. 1227-1235, (2010).

[10] A. K. Alomari, M. S. M. Noorani, R. Nazar, C. P. Li, Homotopy anal-
ysis method for solving fractional Lorenz system, Commun Nonliear
Sci Numer Simult, 15 (7), pp. 1864-1872, (2010).

[11] A. Rafiq, M. Rafiullah, Some multi-step iterative methods for solving
nonlinear equations, Computers & Mathematics with Applications, 58
(8), pp. 1589-1597, (2009).

[12] M. M. Rashidi, G. Domairry and S. Dinarvand, The Homotopy Analy-
sis Method for Explicit Analytical Solutions of Jaulent—Miodek Equa-
tions, Numerical Methods for Partial Differential Equations, 25 (2),
pp. 430-439, (2008).

[13] H. T. Ozer and S. Salihoglu, Nonlinear Schrödinger equations and N =
1 superconformal algebra, Chaos Solitons Fractals 33, pp. 1417—1423,
(2007).

[14] J. L. Zhang, M. L. Wang, and X. R. Li, The subsidiary elliptic-
like equation and the exact solutions of the higher-order nonlinear



The multi-step homotopy analysis method for solving the ... 53

Schrödinger equation, Chaos Solitons Fractals 33, pp. 1450—1457,
(2007).

[15] J. M. Zhu and Z. Y. Ma, Exact solutions for the cubic-quintic nonlinear
Schrödinger equation, Chaos Solitons Fractals 33, pp. 958—964, (2007)

[16] A. Yildirim and A. Kelleci, Numerical Simulation of the Jaulent-
miodek Equation byHe’s Homotopy Perturbation Method,World Ap-
plied Sciences Journal 7 (Special Issue for Applied Math), (2009).

Fig. 1. The surfaces show exact and approximate solutions of
u(x, t) and v(x,t)

(a) uMHAM , (b) uex, (c) vMHAM , (d) vex.
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