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Abstract

The totally nonlinear neutral differential equation

d

dt
x (t) = −a (t) g(x (t− τ (t))) +

d

dt
G (t, x (t− τ (t))) ,

with variable delay τ (t) ≥ 0 is investigated. We find suitable condi-
tions for τ , a, g and G so that for a given continuous initial function
ψ a mapping P for the above equation can be defined on a carefully
chosen complete metric space S0ψ and in which P possesses a unique
fixed point. The final result is an asymptotic stability theorem for the
zero solution with a necessary and sufficient condition. The obtained
theorem improves and generalizes previous results due to Becker and
Burton [6]. An example is given to illustrate our main result.
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1. Introduction

Without doubt, Lyapunov’s direct method has been, for more than 100
years, the most efficient tool for investigating the stability properties of a
wide variety of ordinary, functional, partial differential and integro-differential
equations. Nevertheless, the application of this method to problems of
stability in differential and integro-differential equations with delays has
encountered serious obstacles if the delays are unbounded or if the equa-
tion has unbounded terms [8]—[10]. In recent years, several investigators
have tried stability by using a new technique. Particularly, Burton, Fu-
rumochi, Becker, Zhang and others began a study in which they noticed
that some of these difficulties vanish or might be overcome by means of
fixed point theory (see [1]—[21], [23]—[25]). The fixed point theory does not
only solve the problem on stability but has other significant advantage over
Lyapunov’s. The conditions of the former are often averages but those of
the latter are usually pointwise (see [8]). Moreover, the fixed point method
have been successfully used to conclude stability results to delay problems
which are perturbed by stochastic terms (see for example [20]). This is
another important feature for applications to real-world problems.

In this paper we focus on the totally nonlinear neutral differential equa-
tion with variable delay

d

dt
x (t) = −a (t) g(x (t− τ (t))) +

d

dt
G (t, x (t− τ (t))) ,(1.1)

with the initial condition

x (t) = ψ (t) for t ∈ [m (0) , 0] ,

such that ψ ∈ C ([m (0) , 0] , ) where m (0) = inf {t− τ (t) , t ≥ 0}.
Here C (S1, S2) denotes the set of all continuous functions ϕ : S1 → S2
with the supremum norm k·k. Throughout this paper we assume that
a ∈ C (R+,R) and τ : R+ → R+ is differentiable with t − τ (t) → ∞ as
t → ∞. The function G (t, x) is globally Lipschitz continuous in x. That
is, there is positive constant E such that

|G (t, x)−G (t, y)| ≤ E |x− y| .(1.2)

We also assume that

G (t, 0) = 0.(1.3)
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Special cases of (1.1) have been considered and investigated by many
authors. For example the equation

x0 (t) = −a (t) g(x (t− τ (t))),(1.4)

is of historical importance and has significant applications. The study of
(1.4) go back to 1951 (cf. [23] and the references therein) and it has at-
tracted the attention of a large number of investigators. To our knowledge,
the most recent work about this equation has been done by Becker and
Burton in [6]. In this paper the authors have established the following
result.

Theorem 1 (Becker and Burton [6]). Suppose that there exists a con-
stant l > 0 such that g satisfies a Lipschitz condition on [−l, l]. Assume,
further, that

(i) the function t− τ (t) : [0,∞)→ [m (0) ,∞) is strictly increasing;
(ii) g is odd and strictly increasing on [−l, l];
(iii) x− g(x) is non-decreasing on [0, l];
(iv) there is an α ∈ (0, 1) such that

2

Z t

t−τ(t)
a (u) du ≤ α for t ≥ t1,

where t1 is the unique solution of t − τ (t) = 0, and a continuous functionea : [0,∞)→ R exists such that a (t) = ea (t) (1− τ 0 (t)) on [0,∞).
Then a δ ∈ (0, l) exists such that, for each continuous function ψ : [m (0) , 0]→
(−δ, δ), there is a unique continuous function x : [m (0) ,∞) → R with
x (t) = ψ (t) on [m (0) , 0] that satisfies (1.4) on [0,∞). Moreover, x is
bounded by l on [m (0) ,∞). Furthermore, the zero solution of (1.4) is
stable at t = 0. If, in addition, g is continuously differentiable, g0 (0) 6= 0
and Z t

0
a (v) dv →∞ as t→∞,(1.5)

then the zero solution is asymptotically stable.

Our purpose here is to improve Theorem 1 and extend it to support a
wide class of nonlinear differential equation with variable delay of neutral
type presented in (1.1). We point out here that the present result does not
require that t − τ (t) be strictly increasing. Such assumption has been at
the heart of the methods used in the previous papers and here we propose
a way with no need of further hypotheses on the inverse of delay t− τ (t),



28 Abdelouaheb Ardjouni, Ahcene Djoudi

so that for a given continuous initial function ψ a mapping P for (1.1)
is constructed in such a way to map a, carefully chosen, complete metric
space S0ψ into itself and on which P is a contraction mapping possessing a
fixed point. This procedure will enable us to establish and prove by means
of the contraction mapping theorem an asymptotic stability theorem for
the zero solution of (1.1) with less restrictive conditions. The main results
improve and generalize the main results in [6]. We also provide an example
to illustrate our claim.

2. Main results

For each ψ ∈ C ([m (0) , 0] ,R), a solution of (1.1) through (0, ψ) is a con-
tinuous function x : [m (0) , T )→ R for some positive constant T > 0 such
that x satisfies (1.1) on [0, T ) and x = ψ on [m (0) , 0]. We denote such a
solution by x (t) = x (t, 0, ψ). From the existence theory we know that for
each ψ ∈ C ([m (0) , 0] ,R), there exists a unique solution x (t) = x (t, 0, ψ)
of (1.1) defined on [0,∞). We define kψk := max {|ψ (t)| : m (0) ≤ t ≤ 0}.
The absence of linear terms in (1.1) makes it difficult to obtain a fixed point
mapping for (1.1). So, to make (1.1) more tractable, we have to transform
it.

Generally, the investigation of the stability of an equation using fixed
point technique involves the construction of a suitable fixed point mapping.
This can, in so many cases, be a difficult task. So, we begin by transforming
(1.1) to a more tractable, but equivalent, equation which we then invert to
obtain an equivalent integral equation from which we derive a fixed point
mapping. After then, we define a suitable complete space depending on
the initial condition, so that the mapping is a contraction. Using Banach’s
contraction mapping principle [22], we obtain a solution for this mapping
and hence a solution for (1.1), which is asymptotically stable.

First, we begin by transforming (1.1) into an equivalent equation to
which we apply the variation of parameters to define a fixed point mapping.

Lemma 1. Let ψ : [m(0), 0] → R be a given continuous initial function.
If x is a solution of (1.1) on an interval [0, T ) with x = ψ on [m(0), 0], then
x is a solution of the integral equation

x(t) =
n
ψ(0)−G (0, ψ(−τ(0)))−

R 0
−τ(0)H(s)g(ψ(s))ds

o
e−
R t
0
H(v)dv

+G(t, x(t− τ(t))) +
R t
t−τ(t)H(s)g(x(s))ds
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-
R t
0 e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)g(x(u))du

´
ds

+
R t
0 e
−
R t
s
H(v)dv {[−a (s) +H(s− τ(s))(1− τ 0(s))] g(x(s− τ(s)))

−H(s)G (s, x (s− τ (s)))} ds

+

Z t

0
e−
R t
s
H(v)dvH(s) [x(s)− g(x(s))] ds,(2.1)

where H : [m(0),∞)→ R is an arbitrary continuous function. Conversely,
if a continuous function x is equal to ψ on [m(0), 0] and is a solution of
(2.1) on an interval [0, σ), then x is a solution of (1.1) on [0, σ).

Proof. Let x be a solution of (1.1). Rewrite (1.1) in the following
equivalent form

d
dt {x (t)−G (t, x (t− τ (t)))}

= −H (t) [x (t)−G (t, x (t− τ (t)))] + d
dt

R t
t−τ(t)H (s) g (x (s)) ds

−a (t) g(x(t− τ(t))) +H(t− τ(t))(1− τ 0(t))g(x(t− τ(t)))

−H (t)G (t, x (t− τ (t))) +H (t) [x (t)− g (x (t))] .(2.2)

Multiplying both sides of (2.2) by the factor e
R t
0
H(v)dv and integrating

from 0 to any t ∈ [0, T ), we obtain
x(t) =(ψ(0)−G (0, ψ(−τ(0)))) e−

R t
0
H(v)dv +G (t, x (t− τ (t)))

+
R t
0 e
−
R t
s
H(v)dv d

ds

³R s
s−τ(s)H(s)g(x(u))du

´
ds

+
R t
0 e
−
R t
s
H(v)dv [−a (s) +H(s− τ(s))(1− τ 0(s))] g(x(s− τ(s)))ds

-
R t
0 e
−
R t
s
H(v)dvH(s)G (s, x (s− τ (s))) ds

+
R t
0 e
−
R t
s
H(v)dvH(s) [x (s)− g (x (s))] ds.

Using integration by parts, we conclude that

x(t) =
n
ψ(0)−G (0, ψ(−τ(0)))−

R 0
−τ(0)H(s)g(ψ(s))ds

o
e−
R t
0
H(v)dv
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+G (t, x(t− τ(t))) +
R t
t−τ(t)H(s)g(x(s))ds

−
R t
0 e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)g(x(u))du

´
ds

+
R t
0 e
−
R t
s
H(v)dv {[−a (s) +H(s− τ(s))(1− τ 0(s))] g(x(s− τ(s)))

−H(s)G (s, x (s− τ (s)))} ds

+
R t
0 e
−
R t
s
H(v)dvH(s) [x(s)− g(x(s))] ds.

Conversely, suppose that a continuous function x is equal to ψ on [m(0), 0]
and satisfies (2.1) on an interval [0, σ). Then, x is differentiable on [0, σ).
Differentiating x with the aid of Leibniz’s rule, we obtain (1.1). 2

From equation (2.1) we shall derive a fixed point mapping P for (1.1).
But the challenge here is to choose a suitable metric space of functions
on which the map P can be defined. Below a weighted metric on a spe-
cific space is defined. Let C be the set of real-valued bounded continuous
functions on [m(0),∞) with the supremum norm k·k, that is, for φ ∈ C,

kφk := sup {|φ (t)| : t ∈ [m(0),∞)} .

In other words, we carry out our investigations in the complete metric
space (C, d) where d denotes the supremum metric d (φ1, φ2) = kφ1 − φ2k
for φ1, φ2 ∈ C. For a given initial function ψ : [m(0), 0] → [−l, l], l > 0,
define the set

Sψ := {φ : [m(0),∞)→ R | φ ∈ C, φ(t) = ψ(t) for t ∈ [m(0), 0], |φ(t)| ≤ l}.

Since Sψ is a closed subset of C, the metric space (Sψ, d) is complete.

Theorem 2. Let H : [m(0),∞)→ R be a continuous function and define
a mapping P on Sψ as follows, for φ ∈ Sψ,

(Pφ) (t) = ψ(t) if t ∈ [m(0), 0],

while for t > 0,

(Pφ) (t) =
n
ψ(0)−G (0, ψ(−τ(0)))−

R 0
−τ(0)H(s)g(ψ(s))ds

o
e−
R t
0
H(v)dv

+G (t, φ(t− τ(t))) +
R t
t−τ(t)H(s)g(φ(s))ds
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−
R t
0 e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)g(φ(u))du

´
ds

+
R t
0 e
−
R t
s
H(v)dv {[−a (s) +H(s− τ(s))(1− τ 0(s))] g(φ(s− τ(s)))

−H(s)G (s, φ (s− τ (s)))} ds

+

Z t

0
e−
R t
s
H(v)dvH(s) [φ(s)− g(φ(s))] ds.(2.3)

Suppose that (1.2) holds and the following conditions are satisfied,
(i) there exists a constant l > 0 such that g satisfies a Lipschitz condition
on [−l, l] and let L be the Lipschitz constant for both g(x) and x− g(x) on
[−l, l];
(ii) H(t) ≥ 0 for t ≥ m (0).

Assume, further, that the following condition is satisfied for some constant
k > 5

kE ≤ 1,(2.4)

where E is given by (1.2). Then there is a metric dh for Sψ such that
(Sψ, dh) is complete and P is a contraction on (Sψ, dh) if P maps Sψ into
itself.

Proof. It is clear that Pφ is continuous. Now, for t ∈ [m(0),∞) and a
constant k > 5, define

h(t) := kL

Z t

0
[H(v) + ω(v)]dv,

where

ω(v) :=

(
0, if v ∈ [m(0), 0]
|−a (v) +H(v − τ(v))(1− τ 0(v))|+ EH(v)

L , if v ∈ [0,∞).

(2.5)

Let S be the space of all continuous functions φ : [m(0),∞)→ R such that

|φ|h := sup
n
|φ(t)| e−h(t) : t ∈ [m(0),∞)

o
<∞.
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Then (S, |·|h) is a Banach space, which can be checked with Cauchy cri-
terion for uniform convergence. Thus, (S, dh) is a complete metric space
where dh denotes the induced metric dh(φ, η) = |φ− η|h for φ, η ∈ S. Being
closed in S with this metric, the space (Sψ, |·|h) is also complete. Suppose
now, that P : Sψ → Sψ. We need to show that P defined by (2.3) is a
contraction. Toward this end, let φ, η ∈ Sψ, since, by (1.2) and (i), g and
G satisfy Lipschitz conditions on [−l, l], it follows that

|(Pφ)(t)− (Pη)(t)| e−h(t)

≤ E |φ(t− τ(t))− η(t− τ(t))| e−h(t)−h(t−τ(t))+h(t−τ(t))

+
R t
t−τ(t)H(s)L |φ(s)− η(s)| e−h(t)+h(s)−h(s)ds

+
R t
o e
−
R t
s
H(v)dvH(s)

R s
s−τ(s)H(u)L |φ(u)− η(u)| e−h(t)+h(u)−h(u)duds

+
R t
0 e
−
R t
s
H(v)dv {L |−a (s) +H(s− τ(s)) (1− τ 0(s))|+EH(s)}

× |φ(s− τ(s))− η(s− τ(s))| e−h(t)+h(s−τ(s))−h(s−τ(s))ds

+

Z t

0
e−
R t
s
H(v)dvH(s)L |φ(s)− η(s)| e−h(t)+h(s)−h(s)ds,(2.6)

for t > 0. There are five terms on the right hand side of inequality (2.6),
denote them respectively by Ii, i = 1, 2, ..., 5. For t− τ(t) ≤ s ≤ v ≤ t, we
have

−h(t) + h(s) = −kL
Z t

s
[H(v) + ω(v)]dv ≤ −kL

Z t

s
H(v)dv.

Consequently,

I2 ≤
Z t

t−τ(t)
e−kL

R t
s
H(v)dvH(s)L |φ(s)− η(s)| e−h(s)ds.

For s− τ(s) ≤ u ≤ v ≤ s, we have

−h(t) + h(u) = −kL
Z t

u
[H(v) + ω(v)]dv ≤ −kL

Z s

u
H(v)dv.
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So

I3 ≤
Z t

0
e−
R t
s
H(v)dvH(s)

Z s

s−τ(s)
e−kL

R s
u
H(v)dvH(u)L |φ(u)− η(u)| e−h(u)duds.

Similarly, using (2.5), we obtain for s− τ (s) ≤ t

−h (t) + h (s− τ(s)) = −kL
Z t

s−τ(s)
[H(v) + ω(v)]dv ≤ −kL

Z t

s
ω(v)dv.

Thus

I4 ≤
Z t

0
e−kL

R t
s
ω(v)dvω (s)L |φ(s− τ(s))− η(s− τ(s))| e−h(s−τ(s))ds.

Consequently, inequality (2.6), became |(Pφ)(t)− (Pη)(t)| e−h(t)

≤ e
−kL

R t
t−τ(t)[H(v)+ω(v)]dvE |φ(t− τ(t))− η(t− τ(t))| e−h(t−τ(t))

+
R t
t−τ(t) e

−kL
R t
u
H(v)dvH (s)L |φ(s)− η(s)| e−h(s)ds

+
R t
0 e
−
R t
s
H(v)dvH(s)

R s
s−τ(s) e

−kL
R s
u
H(v)dvH(u)L |φ(u)− η(u)| e−h(u)duds

+
R t
0 e
−kL

R t
s
ω(v)dvω(s)L |φ(s− τ(s))− η(s− τ(s))| e−h(s−τ(s))ds

+
R t
0 e
−(kL+1)

R t
s
H(v)dvH(s)L |φ(s)− η(s)| e−h(s)ds.

Consequently, by using (2.4), we obtain

|(Pφ)(t)− (Pη)(t)| e−h(t) ≤
∙
1

k
+

µ
1

kL
+
1

kL
+
1

kL
+

1

kL+ 1

¶
L

¸
|φ− η|h ,

for all t > 0. Since Pφ and Pη agree on [m (0) , 0], the last inequality holds
for all t ≥ m (0).

Thus

|Pφ− Pη|h ≤
5

k
|φ− η|h .

Since k > 5, we conclude that P is a contraction on (Sψ, dh). 2

Below, we choose kψk sufficiently small to establish the existence and
uniqueness of solutions by showing that P : Sψ → Sψ. Furthermore, we
prove that the zero solution of (1.1) satisfies the following definition.
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Definition 1. The zero solution of (1.1) is said to be stable at t = 0 if, for
every ε > 0, there exists a δ > 0 such that ψ : [m (0) , 0] → (−δ, δ) implies
that |x (t)| < ε for t ≥ m (0).

Theorem 3. Suppose g and H satisfy conditions (i)—(iii) in Theorem 2,
(1.2), (1.3) and (2.4) hold, and suppose further that
(i) g is odd and strictly increasing on [−l, l];
(ii) x− g(x) is non-decreasing on [0, l];
(iii) there exists an α ∈ (0, 1) such that, for t ≥ 0

2lE + g (l)

µR t
t−τ(t)H (s) ds+

R t
0 e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)du

´
ds

+
R t
0 e
−
R t
s
H(v)dv |−a (s) +H(s− τ(s)) (1− τ 0(s))| ds

¶
≤ αg (l) .

Then a δ ∈ (0, l) exists such that for each initial continuous function ψ :
[m(0), 0] → (−δ, δ), there is a unique continuous function x : [m(0),∞)→
R with x = ψ on [m(0), 0], which is a solution of (1.1) on [0,∞). Moreover,
x is bounded by l on [m(0),∞). Furthermore, the zero solution of (1.1) is
stable at t = 0.

Proof. Since g is odd and satisfies the Lipschitz condition on [−l, l],
g(0) = 0 and g is uniformly continuous on [−l, l]. So we can choose a δ that
satisfies

δ (1 +E) + g(δ)

Z 0

−τ(0)
H(s)ds ≤ (1− α)g (l) .(2.7)

Let ψ : [m(0), 0]→ (−δ, δ) be a continuous function. Note that (2.7) implies
δ < l since g(l) ≤ l by condition (ii). Thus, |ψ (t)| ≤ l for m(0) ≤ t ≤ 0.
Now we show that for such a ψ the mapping P : Sψ → Sψ. Indeed, consider
(2.3). For an arbitrary φ ∈ Sψ, it follows from (1.2), (1.3) and conditions
(i) and (ii) that

|(Pφ)(t)|

≤ δ (1 +E) + g(δ)
R 0
−τ(0)H(s)ds+ lE

+g(l)
R t
t−τ(t)H(s)ds+ g(l)

R t
o e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)du

´
ds
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+
R t
0 e
−
R t
s
H(v)dv {g(l) |−a (s) +H(s− τ(s)) (1− τ 0(s))|+ lEH(s)} ds

+(l − g(l))
R t
0 e
−
R t
s
H(v)dvH(s)ds,

for t > 0. By applying (iii) and (2.7), we see that
|(Pφ)(t)| ≤ δ (1 +E) + g(δ)

R 0
−τ(0)H(s)ds+ αg (l) + l − g(l)

≤ (1− α)g (l) + αg (l) + l − g(l) = (1− α)g (l) + (α− 1)g (l) + l = l.

Hence, |(Pφ)(t)| ≤ l for t ∈ [m(0),∞) because |(Pφ)(t)| = |ψ (t)| ≤ l for
t ∈ [m (0) , 0]. Therefore, Pφ ∈ Sψ. By Theorem 2, P is a contraction
on the complete metric space (Sψ, dh). Then P has a unique fixed point
x ∈ Sψ. Thus |x (t)| ≤ l for all t ≥ m (0) and is a solution of (1.1) on [0,∞)
by Lemma 1. Hence x is the only continuous function satisfying (1.1) such
that x(t) = ψ(t) for t ∈ [m(0), 0].
To prove the stability at t = 0, let ε > 0 be given and choose r > 0 such that
r < min {ε, l}. Replacing l with r beginning with (2.7), we see that there
is a δ > 0 such that kψk < δ implies that the unique continuous solution x
agreeing on [m (0) , 0] with ψ, satisfies |x(t)| ≤ r < ε for all tm(0). 2

Supposing that the conditions in Theorem 2 and Theorem 3 hold for
some l > 0, we investigate asymptotic stability with a necessary and suf-
ficient condition by shifting our attention to the subset of functions in Sψ
that tend to zero as t→∞, namely,

S0ψ := {φ ∈ Sψ | φ (t)→ 0 as t→∞} .

Since S0ψ is a closed subset of Sψ, the metric space
³
S0ψ, d

´
is complete.

Under the conditions of the next theorem, the zero solution of (1.1) is
asymptotically stable.

Definition 2. The zero solution of (1.1) is asymptotically stable if it is
stable at t = 0 and a δ > 0 exists such that for any continuous functions
ψ : [m (0) , 0] → (−δ, δ), the solution x with x = ψ on [m (0) , 0] tends to
zero as t→∞.

Recall here that B. Zhang was the first to establish necessary and suffi-
cient condition for the stability of solutions of functional differential equa-
tions by the fixed point theory. The necessity of condition (2.8) below for
the main stability result is due to him (see [25]).

Theorem 4. Suppose all of the conditions in Theorem 2 and Theorem 3
hold. Furthermore, suppose g is continuously differentiable on [−l, l] and
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g0 (0) 6= 0. Then the zero solution of (1.1) is asymptotically stable if and
only if Z t

0
H (v) dv →∞ as t→∞.(2.8)

Proof. First, suppose that (2.8) holds. We set

K := sup
t≥0

½
e−
R t
0
H(v)dv

¾
.(2.9)

We show that P : S0ψ → S0ψ when the conditions of Theorems 2 and 3 hold,
l > 0 satisfies (2.11) and kψk is sufficiently small. For δ > 0 satisfying (2.7),
let ψ : [m (0) , 0]→ (−δ, δ) be a continuous function. Let φ ∈ S0ψ. The proof
of Theorem 3 shows that δ < l and |(Pφ) (t)| ≤ l for t ∈ [m(0),∞). Hence,
(Pφ) (t)→ 0 would imply that P maps S0ψ into itself. To show that this is

the case, we consider |(Pφ) (t)|. But first note for any φ ∈ S0ψ that
|g (φ (t))| ≤ L |φ (t)| and |φ (t)− g (φ (t))| ≤ L |φ (t)| ,

since g (x) and x − g (x) satisfy a Lipschitz condition on [−l, l] with a
common Lipschitz constant L and g (0) = 0. Because of this and (iii) of
Theorem 3, it follows from (2.3) that

|(Pφ) (t)|

≤
n
|ψ(0)|+ |G (0, ψ(−τ(0)))|+

R 0
−τ(0)H(s) |g(ψ(s))| ds

o
e−
R t
0
H(v)dv

+ |G (t, φ(t− τ(t)))|+
R t
t−τ(t)H(s) |g(φ(s))| ds

+
R t
0 e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u) |g(φ(u))| du

´
ds

+
R t
0 e
−
R t
s
H(v)dv {|−a (s) +H(s− τ(s)) (1− τ 0(s))| |g(φ(s− τ(s)))|

+H(s) |G (s, φ(s− τ(s)))|} ds

+

Z t

0
e−
R t
s
H(v)dvH(s) |φ(s)− g(φ(s))| ds.(2.10)

Denote the six terms on the right hand side of (2.10) by I1, I2, ..., I6, re-
spectively. It is obvious that the first term I1 tends to zero as t → ∞, by
condition (2.8). Also, due to the conditions (1.2) and (1.3) and the facts
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that φ (t) → 0 and t − τ (t) → ∞ as t → ∞, the second term I2 in (2.10)
tends to zero as t→∞. What is left to show is that each of the remaining
terms in (2.10) tends to zero as t→∞.

Let φ ∈ S0ψ be fixed. For a given > 0, we choose T0 > 0 large enough
such that t− τ (t) ≥ T0, implies |φ (s)| < if s ≥ t − τ (t). Therefore, the
third term I3 in (2.10) satisfies

I3 ≤
R t
t−τ(t)H(s)L |φ(s)| ds

≤ L
R t
t−τ(t)H(s)ds ≤ Lα .

Thus, I3 → 0 as t→∞. Now consider I4. For the given > 0, there exists
a T1 > 0 such that s ≥ T1 implies |φ (s− τ (s))| < . Thus, for t ≥ T1, the
term I4 in (2.10) satisfies

I4 ≤
R T1
o e−

R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)L |φ(s)| du

´
ds

+
R t
T1
e−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)L |φ(s)| du

´
ds

≤ sup
σ≥m(0)

|φ(σ)|L
R T1
o e−

R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)du

´
ds

+L
R t
T1
e−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)du

´
ds.

By (2.8), there exists T2 > T1 such that t ≥ T2 implies

sup
σ≥m(0)

|φ(σ)|L
R T1
o e−

R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)du

´
ds

= sup
σ≥m(0)

|φ(σ)|Le−
R t
T2

H(v)dv R T1
o e−

R T2
s

H(v)dvH(s)
³R s

s−τ(s)H(u)du
´
ds

< L .

Now, apply condition (iii) in Theorem 3 to have I4 < L + Lα < 2L .
Thus, I4 → 0 as t→∞. Similarly, by using (1.2), (1.3) and condition (iii)
in Theorem 3, then, if t ≥ T2 then the terms I5 and I6 in (2.10) satisfy

I5 ≤ sup
σ≥m(0)

|φ(σ)| e−
R t
T2

H(v)dv R T1
o e−

R T2
s

H(v)dv

×{L |−a (s) +H(s− τ(s)) (1− τ 0(s))|+EH(s)} ds

+
R t
T1
e−
R t
s
H(v)dv {L |−a (s) +H(s− τ(s)) (1− τ 0(s))|+EH(s)} ds

< L + Lα + αg(l)
l <

³
2L+ g(l)

l

´
,

and
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I6 ≤ sup
σ≥m(0)

|φ(σ)|Le−
R t
T2

H(v)dv R T1
o e−

R T2
s

H(v)dvH(s)ds

+L
R t
T1
e−
R t
s
H(v)dvH(s)ds

< L + L = 2L .

Thus, I5, I6 → 0 as t → ∞. In conclusion (Pφ) (t) → 0 as t → ∞, as
required. Hence P maps S0ψ into S

0
ψ.

Now we verify that P is a contraction on
³
S0ψ, d

´
. In a similar way as

in [6, Theorem 3.13], we let ζ ∈ [0, l] and define

q (ζ) := min
©
g0 (x) : |x| ≤ ζ

ª
and Q (ζ) := max

©
g0 (x) : |x| ≤ ζ

ª
.

As we shall see, the mapping P defined by (2.3) will be a contraction on³
S0ψ, d

´
provided

αQ (l) < q (l) ,(2.11)

where α is given by condition (iii) in Theorem 3. We may assume (2.11)
holds for if it does not, we merely decrease the value of l > 0 until it does.
To see this, first notice from (iii) in Theorem 3 that α < 1. Thus,

α = 1− ,(2.12)

for some ∈ (0, 1). Clearly, lim
ζ→0

q (ζ) = lim
ζ→0

Q (ζ) = g0 (0). Since g is

strictly increasing, g0 (0) 6= 0, and g0 is continuous, a neighborhood of x = 0
exists in which g0 (x) > 0. Consequently, Q (ζ) > 0 for 0 ≤ ζ ≤ l. This and
lim
ζ→0

Q (ζ) 6= 0 imply

lim
ζ→0

q (ζ)

Q (ζ)
=

lim
ζ→0

q (ζ)

lim
ζ→0

Q (ζ)
= 1.

Hence, there is a ς ∈ (0, l] such that¯̄̄̄
q (ζ)

Q (ζ)
− 1

¯̄̄̄
< ,

for 0 < ζ < ς. Choosing a value for ζ from (0, ς), we have (1− )Q (ζ) <
q (ζ). This, along with (2.12), yields

αQ (ζ) = (1− )Q (ζ) < q (ζ) .
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Replacing the original value of l with l = ζ, we obtain (2.11). Note that
the conditions in Theorems 2 and 3 will still hold with this smaller l.

In the ensuing argument, bounds on the derivatives of g (x) and b (x) :=
x − g (x) on the interval [−l, l] are used. By (i) in Theorem 3 and the
definition of Q, 0 ≤ g0 (x) ≤ Q (l). By (i) and (ii) in Theorem 3, b is non-
decreasing on [−l, l]. This and g0 (x) ≥ q (l) imply 0 ≤ b0 (x) ≤ 1 − q (l).
Let φ, η ∈ S0ψ. By (2.3) and the Mean Value Theorem, we have

|(Pφ) (t)− (Pη) (t)|

≤ E |φ(t− τ(t))− η(t− τ(t))|

+
R t
t−τ(t)H(s) |g(φ(s))− g(η(s))| ds

+
R t
0 e
−
R t
s
H(v)dvH(s)

R s
s−τ(s)H(u) |g(φ(u))− g(η(u))| duds

+
R t
0 e
−
R t
s
H(v)dv {|−a (s) +H(s− τ(s)) (1− τ 0(s)) |

× |g (φ(s− τ(s)))− g(η(s− τ(s)))| +EH (s) |φ(s− τ(s))− η(s− τ(s))|} ds

+
R t
0 e
−
R t
s
H(v)dvH(s) |b (φ(s))− b (η(s))|

¾
ds

≤ [αQ (l) + (1− q (l))] kφ− ηk = ρ kφ− ηk ,
for all t > 0, where ρ = αQ (l) + (1− q (l)). This implies kPφ− Pηk ≤
ρ kφ− ηk. Note ρ ∈ (0, 1). Consequently, for a continuous ψ : [m (0) , 0]→
(−δ, δ), P has a unique fixed point x ∈ S0ψ. By Lemma 1, x is the unique
continuous solution of (1.1) with x (t) = ψ (t) on [m (0) , 0]. By virtue of
x ∈ S0ψ, x tends to 0 as t→∞. By Theorem 3, the zero solution is stable
at t = 0. This shows that the zero solution of (1.1) is asymptotically stable
if (2.8) holds.

Conversely, suppose (2.8) fails. Then, there exists a sequence {tn},
tn →∞ as n→∞ such that n→∞lim

R tn
0 H (v) dv = β for some β ∈ R+.

We may also choose a positive constant J satisfying

−J ≤
Z tn

0
H (v) dv ≤ J,

for all n ≥ 1. To simplify our expressions, we define

θ (s) := (lE + L)H (s) + g (l) {|−a (s) +H(s− τ(s)) (1− τ 0(s))|
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+H (s)
R s
s−τ(s)H (u) du

o
,

for all s ≥ 0. By by condition (iii) in Theorem 3, we haveZ tn

0
e−
R tn
s

H(v)dvθ (s) ds ≤ αg (l) + L.

This yieldsZ tn

0
e
R s
0
H(v)dvθ (s) ds ≤ (αg (l) + L) e

R tn
0

H(v)dv ≤ (g (l) + L) eJ .

The sequence

½R tn
0 e

R s
0
H(v)dvθ (s) ds

¾
is bounded, so there exists a conver-

gent subsequence. For brevity of notation, we may assume that

lim
n→∞

Z tn

0
e
R s
0
H(v)dvθ (s) ds = γ,

for some γ ∈ R+ and choose a positive integer m so large thatZ tn

tm
e
R s
0
H(v)dvθ (s) ds < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies(
δ0 (1 +E) + g(δ0)

Z tm

tm−τ(tm)
H(s)ds

)
KeJ ≤ (1− α) g (l) .

If we replace l by 1 in the proof of Theorem 3, we have |x(t)| ≤ 1 for t ≥ tm.
Now we consider the solution x (t) = x (t, tm, ψ) of (1.1) with ψ (tm) = δ0
and |ψ (s)| ≤ δ0 for s ≤ tm. We may choose ψ so that

ψ (tm)−G (tm, ψ (tm − τ (tm)))−
Z tm

tm−τ(tm)
H (s) g (ψ (s)) ds ≥ 1

2
δ0.

It follows from (2.3) with x (t) = (Px) (t) that for n ≥ m¯̄̄
x (tn)−G (tn, x (tn − τ (tn)))−

R tn
tn−τ(tn)H (s) g (x (s)) ds

¯̄̄
≥ 1

2δ0e
−
R tn
tm

H(v)dv −
R tn
tm

e−
R tn
s

H(v)dvθ (s) ds

= 1
2δ0e

−
R tn
tm

H(v)dv − e−
R tn
0

H(v)dv R tn
tm

e
R s
0
H(v)dvθ (s) ds

= e
−
R tn
tm

H(v)dv
µ
1
2δ0 − e−

R tm
0

H(v)dv R tn
tm

e
R s
0
H(v)dvθ (s) ds

¶
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≥ e
−
R tn
tm

H(v)dv
µ
1
2δ0 −K

R tn
tm

e
R s
0
H(v)dvθ (s) ds

¶

≥ 1
4
δ0e

−
R tn
tm

H(v)dv ≥ 1
4
δ0e

−2J > 0.(2.13)

On the other hand, if the zero solution of (1.1) is asymptotically stable,
then x (t) = x (t, tm, ψ) → 0 as t → ∞. Since tn − τ (tn) → ∞ as n → ∞
and condition (iii) in Theorem 3 holds, we have

x (tn)−G (tn, x (tn − τ (tn)))−
Z tn

tn−τ(tn)
H (s) g (x (s)) ds→ 0 as n→∞,

which contradicts (2.13). Hence condition (2.8) is necessary for the asymp-
totic stability of the zero solution of (1.1). The proof is complete. 2

Remark 1. Obviously, if G(t, x) = 0, Theorem 4 extends Theorem 1.

3. An Example

In this section, we give an example to illustrate the application of Theorem
4.

Example 1. Consider the following totally nonlinear neutral differential
equation with variable delay

d

dt
x (t) = −a (t) g (x (t− τ (t))) +

d

dt
G (t, x (t− τ (t))) ,(3.1)

where τ (t) = 0.172t, a (t) = 0.391/ (0.828t+ 1) , g (x) = sinx, G (t, x) =
0.096 sin (x/3). Then the zero solution of (3.1) is asymptotically stable.

Proof. Choosing l = π/3, k = 6 and H (t) = 1/ (t+ 1), clearly, con-
dition (2.8) holds. Furthermore, we have L = 2, E = 0.032, g (0) = 0,
g (l) =

√
3/2, g0 (0) = 1 and G (t, 0) = 0. Obviously, g is odd and strictly

increasing on [−π/3, π/3], x− g (x) is non-decreasing on [0, π/3],R t
t−τ(t)H (s) ds =

R t
0.828t

1
s+1ds = ln

³
t+1

0.828t+1

´
< 0.189,

R t
0 e
−
R t
s
H(v)dvH(s)

³R s
s−τ(s)H(u)du

´
ds < 0.189,

and
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R t
0 e
−
R t
s
H(v)dv |−a (s) +H(s− τ(s)) (1− τ 0(s))| ds

=
R t
0 e
−
R t
s

1
v+1

dv
¯̄̄
− 0.391
0.828s+1 +

0.828
0.828s+1

¯̄̄
ds

< 0.437
0.828

R t
0 e
−
R t
s

1
v+1

dv 1
s+1ds < 0.528.

It is easy to see that all the conditions of Theorems 2, 3 and 4 hold for

α =
h
(π/3) /

³√
3/2

´i
(0.064) + 0.189 + 0.189 + 0.528 ' 0.984 < 1.Thus,

Theorem 4 implies that the zero solution of (3.1) is asymptotically stable.
2

Acknowledgment. The authors would like to thank the anonymous ref-
eree for his/her valuable comments.

References

[1] A. Ardjouni, A. Djoudi, Fixed points and stability in linear neutral
differential equations with variable delays. Nonlinear Analysis 74, pp.
2062-2070, (2011).

[2] A. Ardjouni, A. Djoudi, Stability in nonlinear neutral differential with
variable delays using fixed point theory, Electronic Journal of Quali-
tative Theory of Differential Equations, No. 43, pp. 1-11, (2011).

[3] A. Ardjouni, A. Djoudi, Fixed point and stability in neutral nonlin-
ear differential equations with variable delays, Opuscula Mathematica,
Vol. 32, No. 1, pp. 5-19, (2012).

[4] A. Ardjouni, A. Djoudi, I. Soualhia, Stability for linear neutral integro-
differential equations with variable delays, Electronic journal of Dif-
ferential Equations, No. 172, pp. 1-14, (2012).

[5] A. Ardjouni, A. Djoudi, Fixed points and stability in nonlinear neutral
Volterra integro-differential equations with variable delays, Electronic
Journal of Qualitative Theory of Differential Equations, No. 28, pp.
1-13, (2013)

[6] L. C. Becker, T. A. Burton, Stability, fixed points and inverse of delays,
Proc. Roy. Soc. Edinburgh 136A, pp. 245-275, (2006).



Stability in totally nonlinear neutral differential equations 43

[7] T. A. Burton, Fixed points and stability of a nonconvolution equation,
Proceedings of the American Mathematical Society 132, pp. 3679—
3687, (2004).

[8] T. A. Burton, Stability by Fixed Point Theory for Functional Differ-
ential Equations, Dover Publications, New York, (2006).

[9] T. A. Burton, Liapunov functionals, fixed points, and stability by
Krasnoselskii’s theorem, Nonlinear Studies 9, pp. 181—190, (2001).

[10] T. A. Burton, Stability by fixed point theory or Liapunov’s theory: A
comparison, Fixed Point Theory 4, pp. 15—32, (2003).

[11] T. A. Burton, T. Furumochi, A note on stability by Schauder’s theo-
rem, Funkcialaj Ekvacioj 44, pp. 73—82, (2001).

[12] T. A. Burton, T. Furumochi, Fixed points and problems in stability
theory, Dynamical Systems and Applications 10, pp. 89—116, (2001).

[13] T. A. Burton, T. Furumochi, Asymptotic behavior of solutions of func-
tional differential equations by fixed point theorems, Dynamic Systems
and Applications 11, pp. 499—519, (2002).

[14] T. A. Burton, T. Furumochi, Krasnoselskii’s fixed point theorem and
stability, Nonlinear Analysis 49, pp. 445—454, (2002).

[15] Y. M. Dib, M. R. Maroun, Y. N. Raffoul, Periodicity and stability
in neutral nonlinear differential equations with functional delay, Elec-
tronic Journal of Differential Equations, Vol. No. 142, pp. 1-11, (2005).

[16] A. Djoudi, R. Khemis, Fixed point techniques and stability for neu-
tral nonlinear differential equations with unbounded delays, Georgian
Mathematical Journal, Vol. 13, No. 1, pp. 25-34, (2006).

[17] C. H. Jin, J. W. Luo, Stability of an integro-differential equation, Com-
puters and Mathematics with Applications 57, pp. 1080-1088, (2009).

[18] C. H. Jin, J. W. Luo, Stability in functional differential equations
established using fixed point theory, Nonlinear Anal. 68, pp. 3307-
3315, (2008).

[19] C. H. Jin, J. W. Luo, Fixed points and stability in neutral differential
equations with variable delays, Proceedings of the American Mathe-
matical Society, Vol. 136, Nu. 3, pp. 909-918, (2008).



44 Abdelouaheb Ardjouni, Ahcene Djoudi

[20] J. Luo, Fixed points and exponential stability for stochastic Volterra—
Levin equations, Journal of Computational and Applied Mathematics,
Vol. 234, Issue 3, 1 June 2010, pp. 934—940, (2010).

[21] Y. N. Raffoul, Stability in neutral nonlinear differential equations with
functional delays using fixed-point theory, Math. Comput. Modelling
40, pp. 691—700, (2004).

[22] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics,
No. 66. Cambridge University Press, London-New York, (1974).

[23] J. A. Yorke, Asymptotic stability for one dimensional differential delay
equations, J. Diff. Eqns 7, pp. 189-202, (1970).

[24] B. Zhang, Fixed points and stability in differential equations with
variable delays, Nonlinear Anal. 63, pp. e233—e242, (2005).

[25] B. Zhang, Contraction mapping and stability in a delay differential
equation, Dynamical systems and appl. 4, pp. 183—190, (2004).

Abdelouaheb Ardjouni
Faculty of Sciences and Technology,
Department of Mathematics and Informatics,
University Souk Ahras,
P. O. Box 1553,
Souk Ahras, 41000,
Algeria
e-mail : abd ardjouni@yahoo.fr

and

Ahcene Djoudi
Applied Mathematics Lab,
Faculty of Sciences,
Department of Mathematics,
University Annaba,
P. O. Box 12, Annaba 23000,
Algeria
e-mail : adjoudi@yahoo.com




