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Abstract

Dominating sets play a vital role in day-to-day life problems. For
providing effective services in a location, central points are to be iden-
tified. This can easily be achieved by graph theoretic techniques. Such
graphs and relevant parameters are introduced and extensively stud-
ied. One such parameter is complementary nil vertex edge dominating
set(cnved-set). A vertex edge dominating set(ved-set) of a connected
graph G with vertex set V is said to be a complementary nil vertex edge
dominating set(cnved-Set) of G if and only if V −D is not a ved-set of
G. A cnved-set of minimum cardinality is called a minimum cnved-
set(mcnved-set)of G and this minimum cardinality is called the com-
plementary nil vertex-edge domination number of G and is denoted by
γcnve(G). We have given a characterization result for a ved-set to be
a cnved-set and also bounds for this parameter are obtained.
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1. Introduction & Preliminaries

Domination is an active topic in graph theory and has numerous applica-
tions to distributed computing, the web graph and adhoc networks. Haynes
et al.[3] gave a comprehensive introduction to the theoretical and applied
facets of domination in graphs.

A subset S of the vertex set V of G is said to be a dominating set of
G if each vertex in V − D is adjacent to some vertex of D. The domi-
nation number γ(G) is the minimum cardinality of the dominating set of
G[3]. A subset E

0
of the edge set E of a graph G is said to be an edge

dominating set of G if each edge in E − E
0
is adjacent to some edge in

E
0
. The edge domination number γ

0
(G) is the minimum cardinality of

the edge dominating set of G[3]. A subset D of vertices is said to be a
vertex edge dominating set of G if each edge in G has either one of its
ends from D (or) one of its ends is adjacent to a vertex in D. The vertex
edge domination number γve(G) is the minimum cardinality of the vertex
edge dominating set of G[5]. A subset D of vertices is said to be a com-
plementary nil dominating set of G if V −D is not a dominating set of G.
The minimum cardinality of a complementary nil dominating set is called a
complementary nil domination number of G and is denoted by γcnd(G)[6].

Many variants of vertex - vertex dominating sets have been studied. In
the present paper, we introduce a new variant of vertex-edge dominating set
namely complementary nil vertex edge dominating set. We have given the
characterization result for vertex edge dominating set to be complementary
nil vertex edge dominating set and characterized the graphs of order n hav-
ing cnved number n, characterized trees of order n having cnved numbers
n− 1, n− 2. Bounds for this parameter are also obtained.

All graphs considered in this paper are simple, finite, undirected and
connected. For standard terminology and notation, we refer Bondy &
Murthy[1].

2. Characterization and other relevant results

In this section, we mainly obtain characterization result for a proper subset
of the vertex set of G to be a cnved-set of G.

Theorem 2.1. A ved - set of a (connected)graph G is a cnved-set iff there
is an edge e1 ∈ F = {e = uv ∈ E(G) : u, v ∈ D} with N [e1] ⊆ F .

Proof: Let D be a cnved-set of G. So V − D is not a ved-set of G. So
there is an edge, say e1 with ends u1, v1 of G such that u1, v1 /∈ V − D
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and N(u1)
T
(V − D) = φ = N(v1)

T
(V − D). ⇒ u1, v1 ∈ D,N(u1) ⊆

D&N(v1) ⊆ D ⇒ N [e1] ⊆ F . Conversely assume that there is an e =
u1v1 ∈ F such that N [e] ⊆ F ⇒ u1, v1 ∈ D&N(u1), N(v1) ⊆ D. So there
is no w1 in V −D such that atleast one of u1, v1 is adjacent with w1 in G.
Hence V −D is not a ved-set of G. Thus D is a cnved-set of G.

Note: For a cnved-set there is an edge of G whose ends are in cnved-set.
So cnved- set is not an independent set in G.

Corollary 2.2. Let D be a cnved-set of a (connected)graph G. Then D
has atleast two enclaves in D.

Proof: By the above Characterization Result, there is atleast one edge ,
say e1 = u1v1 in F = {e = uv ∈ E(G) : u, v ∈ D} with N(e1) ⊆ F ⇒
N(u1) ⊆ D&N(v1) ⊆ D. Hence u1&v1 are enclaves in D.

Result 2.3. If D1,D2 are ved - sets such that atleast one of them is a
cnved-set then D1

T
D2 6= φ.

Proof: If D1
T
D2 = φ then D1 ⊆ V − D2 and D2 ⊆ V − D1 ⇒ Both

D1,D2 are not cnved-sets and this contradicts the hypothesis.

We now give the bounds for cnved number of connected graphs.

Theorem 2.4 If G is a connected graph , then

γve(G) + 2 ≤ γcnve(G)

Proof: Let D be a minimum cnved-set of G. By the Characterization
Result there is an edge e1 = u1v1 in F such that N [e1] ⊆ F . Hence follows
that D− {u1, v1} is a ved-set of G. Thus γve(G) ≤ |D|− 2 = γcnve(G)− 2,
which implies γve(G) + 2 ≤ γcnve(G).

Furthermore the lower bound is attained in the case of P8. Hence the
bound is sharp.

A lower bound for γcnve(G) is obtained in terms of the number of
edges( ) and maximum degree ∆(G) of the vertices of G.

Corollary 2.5. For any graph G(6= K2), d∆(G)(∆(G)−1)e+ 2 ≤ γcnve(G)

( being the number of edges of G).
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Proof: Clearly ∆(G) ≥ 2. Any vertex v can have atmost ∆(G) neigh-
bours. Furthermore any neighbour u of v can dominate atmost ∆(G) − 1
edges(excluding the edge uv)

⇒ d
∆(G)(∆(G)− 1)e ≤ γve(G).

Then by the above Theorem the inequality follows.

Note: The bound is sharp as it is attained in the case of C4. For any k -
regular graph G(6= K2) with n vertices ,

d n
k−1e+ 2 ≤ γcnve(G)

Proof: The proof follows from the above theorem and the fact that

k ≥ 2,∆(G) = k, = nk.

Theorem 2.7. If G is a connected graph of order n and having edges,
then

d2 − n2 + 5n

4
e ≤ γcnve(G).

Proof: Let S be a minimum cnved-set of G. Since V − S is not a cnved-
set of G, there is an edge uv such that N [uv] ⊆ S. Each of u, v are non
adjacent to all the vertices in V − S. So

≤ nC2 − 2(n− γcnve(G))

⇒ d2 −n2+5n4 e ≤ γcnve(G)

Note: The bound is sharp as it is attained in the case of < v4v1v2v3v1 >.

Theorem 2.8 For a connected graph G with g(G) 6= 3, 2δ(G) ≤ γcnve(G)
.
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Proof: Let S be a minimum cnved-set of G. Since V −S is not a cnved-set
of G, there is an edge e = uv such that N [e] ⊆ S. That is |N [e]| ≤ |S|.
Hence 2δ(G) ≤ γcnve(G).

Note: The bound is sharp as it is attained in the case of C5.
Corollary 2.9 For a connected Bipartite graph G , 2δ(G) ≤ γcnve(G) .

Proof: The proof follows from the fact that G cannot have odd cycles.

Note The bound is sharp as it is attained in the case of C4.

Theorem 2.10. If G is a connected graph , then

γcnve(G) ≤ γve(G) + 2∆(G).

Proof: Let D be the minimum vertex edge dominating set for G. Then
for any edge e in G, D

S
N [e] is a cnved-set of G. Hence

γcnve(G) ≤ |D
[

N [e]|

≤ |D|+ d(u) + d(v)

≤ γve(G) + 2∆(G)

Note: The bound is sharp as it is attained in the case of C6.

Remark: Since γve(G) ≤ γ(G), follows that γcnve(G) ≤ γ(G) + 2∆(G)

Theorem 2.11. If G is a connected graph having a pendant vertex, then
γcnve(G) ≤ γve(G) +∆(G).

Proof: Suppose that D is a minimum vertex edge dominating set for G.
Let v be adjacent to pendant vertex u(say) in G. Clearly D

S
N [v] is a

cnved-set for G. Hence

γcnve(G) ≤ |D
[

N [v]|
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≤ γve(G) +∆(G)

Note: The bound is sharp as it is attained in the case of P5.

Corollary 2.12. If G = Pn, then γcnve(G) ≤ γve(G) + 2.

Proof: Since ∆(G) = 2, the proof follows from the above theorem.

Theorem 2.13. If G is a connected graph, then

γcnve(G) ≤ γ
0
(G) + 2∆(G)− 1.

Proof: Let E
0
= {e1 = x1y1, e2 = x2y2, ..., eγ0(G) = xγ0(G)yγ0(G)} be a

minimum edge dominating set for G. Let ei(1 ≤ i ≤ γ
0
(G)) be any edge in

E
0
. Then {x1, x2, x3..., xγ0(G), N(ei)} is a cnved-set for G whose cardinality

is γ
0
(G) + d(e

0
)− 1. Hence

γcnve(G) ≤ γ
0
(G) + d(xi) + d(yi)− 1

≤ γ
0
(G) + 2∆(G)− 1

Note: The bound is sharp as it is attained in the case of K2.

Theorem 2.14. If G is a tree with n vertices and diam(G) ≥ 3, then
γcnve(G) < n− ν

0
+∆(G),where ν

0
is the number of pendant vertices in G.

Proof: Clearly the non pendant vertices of G along with all the neighbours
of a support vertex v(say) forms a cnved - set for G, whose cardinality is
n− ν

0
+ d(v). Hence the inequality follows.

Theorem 2.15. If G is a connected graph such that G(the complement of
G) is connected, then γcnve(G) + γcnve(G) ≤ 5n

2 + 2(∆(G)− δ(G)).

Proof: By the Remark in Theorem.2.10,

γcnve(G) ≤ γ(G) + 2∆(G)

γcnve(G) ≤ γ(G) + 2∆(G)



Complementary nil vertex edge dominating sets 7

So,

γcnve(G) + γcnve(G) ≤ γ(G) + γ(G) + 2(∆(G) +∆(G))

≤ n

2
+ 2 + 2(∆(G) + n− δ(G)− 1)(see[3])

≤ 5n

2
+ 2(∆(G)− δ(G))

Theorem 2.16. If G is a connected graph with γ(G) > 3 , then
γcnve(G) + γcnve(G) ≤ 3(n− δ(G)) + 2∆(G).

Proof: By the Remark in Theorem.2.10 and [2] the proof follows.

Theorem 2.17. If G is a connected graph with γ(G) > 3 , then

γcnve(G) + γcnve(G) ≤ 2∆(G)− δ(G) + 3.

Proof: By the Remark in Theorem.2.10 and [2] the proof follows.

Theorem 2.18. If G is a connected graph such that G is connected, then
γcnve(G) + γcnve(G) ≤ (n− 1)(n− 2) + 2.

Proof: For any graph G,

γcnve(G) ≤ n

= 2(n− 1)− n+ 2

≤ 2 − n+ 2
Similarly, γcnve(G) ≤ 2

0 − n+ 2(here
0
is the number of edges in G).

So,

γcnve(G) + γcnve(G) ≤ 2( +
0
)− 2(n− 2)

≤ n(n− 1)− 2(n− 2)
=(n -1)(n - 2)+ 2

Note: If G is a connected graph with n vertices, then γcnved(G) ≤ n.
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Now, we characterize the graphs for which γcnve(G) = n.

Theorem 2.19. For a connected graph G with n vertices, γcnved(G) = n
iff for each edge v1v2 in G, N(v1)

S
N(v2) = V .

Proof: Assume that γcnve(G) = n. Suppose that there is an edge v1v2 in
G such that N(v1)

S
N(v2) 6= V . Consider the set V − [N(v1)

S
N(v2)].

Let E
0
= {uv : u, v ∈ V − [N(v1)

S
N(v2)]}.

If E
0
= φ,then [N(v1)

S
N(v2)](⊂ V ) is a cnved-set of G whose cardi-

nality is less than n.
Suppose E

0 6= φ.

Let E
0
= {x1y1, x2y2, ..., xsys}. Then [N(v1)

S
N(v2)]

S{x1, x2, ..., xs}
is a cnved-set of G whose cardinality is less than n.

Hence in either case we get a contradiction to our assumption.
Assume that the converse holds. Let D be the minimum cnved-set

of G. By the Characterization Result for cnved-set there is an edge v1v2
such that the neighbours of v1, v2 are from D. Then by our assumption
N(v1)

S
N(v2) = V . Hence γcnve(G) = n.

Corollary 2.20. If G = Cn, then γcnve(G) = n iff n = 3, 4.

Corollary 2.21. If G = Pn, then γcnve(G) = n iff n = 2, 3.

Corollary 2.22.

1. γcnve(Sn) = n, n ≥ 3

2. γcnve(Kn) = n, n ≥ 3

3. γcnve(Km,n) = m+ n

Theorem 2.23. Let G be a connected graph with diam(G) = 2 and
circumference of G is three, then γcnve(G) 6= n iff there is a triangle T in
G for which there is a vertex in V − V (T ) adjacent to exactly one vertex
in T .

Proof: Assume that γcnve(G) 6= n.
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By Theorem.2.19. there is an edge uv in G such that N [u]
S
N [v] 6= V .

Since diam(G) = 2 and c(G) = 3, for x ∈ V − [N [u]SN [v]] there is
w ∈ N [u]

T
N [v] such that wx is an edge in G. So < uvw > (= T ) is a

triangle in G. Supposing that all the vertices in V − V (T ) are adjacent to
atleast two vertices in T we get a contradiction to that N [u]

S
N [v] 6= V .

Hence there is atleast one vertex in V − V (T ) which is adjacent to exactly
one vertex in T .

The converse part is clear.

Theorem 2.24. If G is a connected graph such that G is connected and
diam(G) ≥ 4, then γcnve(G) + γcnve(G) ≤ (n− 1)(n− 2).

Proof: By Theorem.2.19, observe that for any graph G,

γcnve(G) ≤ n− 1

Now we construct the proof as in the case of Theorem.2.18.

Corollary 2.25. G be a tree with n vertices, then γcnve(G) = n iffG ∼= Sn.

Proof: Assume that γcnve(G) = n. Then by the Characterization Result
for each edge v1v2 in G, N(v1)

S
N(v2) = V . So for any pendant edge uv

in G, N(u)
S
N(v) = V , which implies one of u, v is adjacent to all the

vertices in G. W.l.g assume that v is the vertex adjacent to all the vertices
in G(i.e u is a pendant vertex). Since G is a tree there is no edge between
v1, v2 ∈ V −{v}(i.e. all the vertices in V −{v} are pendant). Hence G ∼= Sn.

For the converse part, any edge uv in Sn has the property thatN(u)
S
N(v) =

V . Hence by the Characterization Result the claimant holds.

Now we characterize the graphs for which γcnve(G) = 3.

Theorem 2.26. G be a tree, then γcnve(G) = 3 iff G = P3 or G is obtained
by adding zero or more leaves to exactly one pendant vertex of P4.

Proof: Assume that γcnve(G) = 3. Let D = {v1, v2, v3} be a minimum
cnved-set of G. Then by the Characterization Result < D > is connected .

Clearly atleast one of v1 or v3 is a pendant vertex.

Suppose both v1, v3 are pendant vertices.
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If there is any vertex in G adjacent to v2 then it should be a member
of D, which is a contradiction to our assumption. Hence G = P3.
Suppose exactly one of v1, v3 is a pendant vertex.

W.l.g assume that v1 is the pendant vertex. Clearly no vertex other
than v1, v3 can be adjacent with v2. Hence any vertex or edge in < V −
{v1, v2, v3} > is adjacent to v3. Then G = P4 or G is obtained by adding
zero or more leaves to exactly one pendant vertex of P4.

The converse part is clear.

Theorem 2.27. G be a connected graph with δ(G) ≥ 2. Then γcnve(G) =
3 iff

(i) there is a C3 edge disjoint with the other cycles in G.

(ii) each edge in G lies on a cycle of length atmost four that has a
common vertex with C3.

Proof: Assume that γcnve(G) = 3.
Let D be a minimum cnved- set of G. By the Characterization Result and
by the hypothesis,

< D > = C3 = < uvw > (say). By our assumption none of the
edges of C3 are common to two cycles. Hence C3 is edge disjoint with the
remaining cycles in G. If any edge in G lies on a cycle of length greater
than four then there is atleast one edge not dominated by the vertices of
D. Hence (ii) holds.

Conversely let C3 be the cycle through u, v,w satisfying conditions
(i)&(ii).

Denote D = {u, v, w}. Let v be the vertex in C3 through which the
vertices in V −V (C3) reach the vertices {u,w}. Let v1v2 be an any edge in
G. Then by (ii) of our assumption, v1v2 lies on a cycle of length three or
four for which v is one of the vertices. In either case v1v2 is ve dominated
by v. Hence D is a cnved-set. Since δ(G) ≥ 2, D is the γcnve(G) − set of
cardinality 3.

This proves the result.
G is a union of edge disjoint triangles, where all the triangles having a

common vertex, then γcnve(G) = 3.
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Theorem 2.29. G be a tree and D be the set of all pendant vertices in
G. Then D is a cnved-set iff G = P2.

Proof: Suppose that D is cnved-set of G. Then by the Characterization
Result for cnved-set, there is an edge v1v2(v1, v2 ∈ D) in G all of whose
neighbours are from D. This implies v1, v2 are pendant vertices. Hence
G = P2.

The converse part is clear.

Theorem 2.30. G be a tree with n vertices, then γcnve(G) = n − 2 iff
G = P5 or G = P6 or G = S1,2 or G = S2,2.

Proof: Assume that γcnve(G) = n− 2.

Suppose diam(G) = k where k ≥ 6.

If any two pendant vertices v1, v2 in G are adjacent(with v3), then
V − {v1, v2, v3} is a cnved-set of cardinality n− 3 which is a contradiction
to our assumption.
Suppose that P = < v1v2v3.....vk−1vk > be the diammetral path in G.
Then V −{v1, v2, vk−1, vk} is a cnved-set of G of cardinality less than n−2
leading to a contradiction.

Hence diam(G) < 6.

Suppose diam(G) = 5.

If G has exactly two pendant vertices, then G = P6,which implies
γcnve(G) = n− 2. Suppose G has more than two pendant vertices. Clearly
no two pendant vertices in G have a common neighbour.
Let P = < v1v2v3v4v5v6 > be the diammetral path in G. Any vertex in
V − {v1, v2, v3, v4, v5, v6} can be adjacent to v3 or v4. If v7 is a pendant
vertex not adjacent to v3 or v4 then there is a path from v1 to v7 through
v3 or a path from v6 to v7 through v4. In any case V − {v1, v2, v5, v6} is
a cnved-set of cardinality less than n − 2 which contradicts our assump-
tion. If each vertex in V − {v1, v2, v3, v4, v5, v6} is adjacent to v3 or v4,
then V − {v1, v5, v6} is a cnved-set of cardinality less than n− 2 which is a
contradiction.

Hence when diam(G) = 5, G = P6.
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Suppose diam(G) = 4.

If G = P5, then γcnve(G) = n − 2. Suppose G 6= P5. Clearly no two
pendant vertices are adjacent. Let P = < v1v2v3v4v5 > be the diammetral
path in G. Then any vertex in V − {v1, v2, v3, v4, v5} is adjacent to v3
or a pendant vertex at a distance two from v3. In the later case V −
{v1, v2, v4, v5} is a cnved-set of cardinality n − 4 which contradicts our
assumption. In the former case V − {v1, v2, v3} is cnved-set of cardinality
n− 3 which again contradicts our assumption.

Hence when diam(G) = 4, G = P5.

Suppose diam(G) = 3.

If G = P4, then γcnve(G) = n− 1 > n− 2, which is a contradiction.
Suppose G 6= P4. Then G ∼= Sp,q(p + q ≥ 3). If max{p, q} ≥ 3, then
γcnve(G) = n − max{p, q} < n − 2, which is a contradiction. Therefore
max{p, q} = 2. Then G = S1,2 or G = S2,2. In any case γcnve(G) = n− 2.

Hence when diam(G) = 4,G = S1,2 or G = S2,2.

If diam(G) ≤ 2, then by Theorem.2.19. γcnve(G) = n.
The converse part is clear.

Theorem 2.31. G be a tree with n vertices, then γcnve(G) = n − 1 iff
G = P4.

Proof: Suppose that γcnve(G) = n− 1.

Suppose diam(G) ≥ 6.
Let P =< v1v2v3v4....vk > (k ≥ 7) be a diammetral path in G. Then
V − {v1, vk} is a cnved-set of G

⇒ γcnve(G) ≤ n− 2 < n− 1, a contradiction.

Hence diam(G) < 6.

Suppose diam(G) = 5.
If G = P6, then γcnve(G) = n − 2. So G 6= P6. Clearly any two pendant
vertices in G do not have a common neighbour. Let v be an arbitrary ver-
tex in V − {v1, v2, v3, v4, v5, v6}. Then
(i) v can be adjacent to v3 or v4
(ii) v is at a distance three from v3 or v4.
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In any of the cases, γcnve(G) = n− 2 < n− 1.
Suppose diam(G) = 4.

If G = P5, then γcnve(G) = n− 2. So G 6= P5. Clearly any two pendant
vertices in G do not have a common neighbour. Let v be an arbitrary ver-
tex in V − {v1, v2, v3, v4, v5}. Then v is adjacent to v3 or at a distance two
from v3. In any case γcnve(G) = n− 2 < n− 1.
Suppose diam(G) = 3.

If G = P4, then γcnve(G) = n − 1. Suppose G 6= P4. This implies
there is a pair of pendant vertices in G having a common neighbour. Then
γcnve(G) < n− 1.
If diam(G) ≤ 2, then γcnve(G) = n > n− 1.
The converse part is clear.

Proposition 2.31.

1. γcnve(Sn,m) = min{n+ 1,m+ 1}

2. γcnve(Cn) = n, n ≥ 3

3. γcnve(Pn) = n

Result 2.33. G be connected graph and D be a cnved-set of G. If E
0
=

{uv/u ∈ D or v ∈ D}, then the minimum edge domination number is
atmost |E0 |− 1.

Proof: Assume that the hypothesis holds. Clearly E
0
is an edge domi-

nating set of G. Since D is a cnved-set of G there is v1v2 in E(G) such
that N [v1] ⊆ D;N [v2] ⊆ D ⇒ v1v2 ∈ E

0
. Clearly E

0 − {v1v2} is also an
edge dominating set of G. Hence min edge domination number is atleast
|E0 |− 1.

Result 2.34. G be a connected graph and D be a cnved-set. Then D is
connected ved-set of G iff < D > has exactly one component and |D| ≥ 3.

Proof: Suppose that the hypothesis holds. Assume that D is connected
ved-set of G. Then < D > has exactly one component. By the nature of
D, it has atleast three vertices. Converse is clear.
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