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Abstract
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1. Introduction

Let G be a simple undirected graph on n vertices. LetD(G) be the diagonal
matrix whose (i, i)−entry is the degree of the i − th vertex of G and let
A (G) be the adjacency matrix of G. The matrix L(G) = D(G) − A(G)
is the Laplacian matrix of G. L(G) is a positive semidefinite matrix and
(0, e) is an eigenpair of L (G) where e is the all ones vector. The eigenvalues
of A (G) are called the eigenvalues of G while the eigenvalues of L (G) are
called the Laplacian eigenvalues ofG. The largest eigenvalue µ1 (G) of L (G)
is known as the Laplacian index of G and the largest eigenvalue λ1 (G) of
A (G) is the adjacency index or index of G [1].

Let Tn,d be the class of all trees on n vertices and diameter d. Let Pm
be a path on m vertices and K1,p be a star on p+ 1 vertices.

In [9] the authors prove that the tree in Tn,d having the largest index is
the caterpillar Pd,n−d obtained from Pd+1 on the vertices 1, 2, ..., d+ 1 and

the star K1,n−d−1 identifying the root of K1,n−d−1 with the vertex
l
d+1
2

m
of

Pd+1. In [2], for 3 ≤ d ≤ n− 4, the first
j
d
2

k
+ 1 indices of trees in Tn,d are

determined. In [3], for 3 ≤ d ≤ n− 3, the first
j
d
2

k
+ 1 Laplacian spectral

radii of trees in Tn,d are characterized.

In a graph a vertex of degree at least 2 is called an internal vertex, a
vertex of degree 1 is a pendant vertex and any vertex adjacent to a pendant
vertex is a quasi-pendant vertex. We recall that a caterpillar is a tree in
which the removal of all pendant vertices and incident edges results in a
path. We define a complete caterpillar as a caterpillar in which each internal
vertex is a quasi-pendant vertex.

Let d ≥ 3, n > 2 (d− 1) and p =
h
p1 . . . . . . pd−1

i
.

Let Cn,d be the class of all complete caterpillars on n vertices and diam-
eter d. A caterpillar C(p) in Cn,d is obtained from the path Pd−1 and the
stars K1,p1 ,K1,p2 , ...,K1,pd−1 by identifying the root of K1,pi with the i− th
vertex of Pd−1 where p1 ≥ 1, p2 ≥ 1, . . . , pd−1 ≥ 1 and p1 + . . . + pd−1 =
n − d + 1. A special subclass of Cn,d is An,d = {A1, A2, . . . , Ad−2, Ad−1}
where Ak = C (p) ∈ Cn,d with pi = 1 for i 6= k and pk = n− 2d+ 3.
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Example 1. A4 = C( 1 1 1 5 1 ) is the caterpillar

of 14 vertices and diameter 6.

The complete caterpillars were initially studied in [5] and [6]. In par-
ticular, in [6] the authors determine the unique complete caterpillars that
minimize and maximize the algebraic connectivity (second smallest Lapla-
cian eigenvalue) among all complete caterpillars on n vertices and diameter
d. Below we summarize the result corresponding to the caterpillar attaining
the largest algebraic connectivity.

Theorem 1. [6], Theorems 3.3 and 3.6. Among all caterpillars in Cn,d the
largest algebraic connectivity is attained by the caterpillar Abd2c.

Numerical experiments suggest us that Ab d2c is also the caterpillar at-
taining the largest Laplacian index in the class Cn,d. In this paper, we prove
that this conjecture is true. Moreover, we prove that Ab d2c also attains the
largest adjacency index in Cn,d. To get these results, we first prove that the
caterpillars in Cn,d attaining the mentioned largest indices lie in An,d and
then we order the caterpillars in this subclass by their Laplacian indices as
well as by their adjacency indices.

2. The largest Laplacian index among all complete caterpil-
lars

Let x1, x2, ..., xd−1 be the vertices of the path Pd−1 of the caterpillars C(p) ∈
Cn,d. Let C (p) ∈ Cn,d with p = [p1, p2, . . . , pd−1]. Then

d (x1) = p1+1, d (p2) = p2+2, . . . , d (xd−2) = pd−2+2, d (pd−1) = pd−1+1.

Let NG (v) be the set of vertices in G adjacent to the vertex v.

Marisol
fig1
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Lemma 1. [3] Let u, v be two vertices of a tree T . For 1 ≤ s ≤ d (v) , let
v1, v2, . . . , vs be some vertices in NT (v)−(NT (u)∪{u}). For 1 ≤ t ≤ d (u) ,
let u1, u2, . . . , ut be some vertices in NT (u)− (NT (v) ∪ {v}). Let

Tu = T − vv1 − vv2 − · · ·− vvs + uv1 + uv2 + · · ·+ uvs

and
Tv = T − uu1 − uu2 − · · ·− uut + vu1 + vu2 + · · ·+ vut.

If both Tu and Tv are trees, then we have either µ1 (Tu) > µ1 (T ) or
µ1 (Tv) > µ1 (T ) .

We recall that C (p) = Ak ∈ An,d if and only if pi = 1 for i 6= k and
pk = n− 2d+ 3.

Theorem 2. Let d ≥ 3. Let C (p) ∈ Cn,d. Then there exists a caterpillar
Ak ∈ An,d such that µ1 (C (p)) ≤ µ1 (Ak) for some 1 ≤ k ≤ d− 1.

Proof. Let #S be the cardinality of a set S. Let d ≥ 3. Let C (p) ∈ Cn,d
with p =

h
p1 p2 . . . . . . pd−1

i
.

If C (p) ∈ An,d then there is nothing to prove. Let C (p) ∈ Cn,d−An,d.
Let S = {1 ≤ i ≤ d− 1 : pi > 1} . Then #S ≥ 2. Let i, j ∈ S with i < j.
Let u = xi and v = xj . Let S(u) = {u1, u2, . . . , upi−1, upi} and S(v) =n
v1, v2, . . . , vpj−1, vpj

o
be the sets of pendant vertices adjacent to u and v,

respectively. Let

Tu = C (p)− vv1 − vv2 − · · ·− vvpj−1 + uv1 + uv2 + · · ·+ uvpj−1

and

Tv = C (p)− uu1 − uu2 − · · ·− uupi−1 + vu1 + vu2 + · · ·+ vupi−1.

Then Tu = C (q) ∈ Cn,d where q = p except for qi = pi + pj − 1 and
qj = 1 and Tv = C (r) ∈ Cn,d where r = p except for ri = 1 and rj =
pj + pi − 1. By Lemma 1, µ1(Tu) > µ1(C (p)) or µ1(Tv) > µ1(C (p)).
Suppose µ1(Tu) > µ1(C (p)). Let S1 = {1 ≤ i ≤ d− 1 : qi > 1} . By the
definition of Tu, #S1 = #S − 1. Suppose now µ1(Tv) > µ1(C (p)). Let
S2 = {1 ≤ i ≤ d− 1 : ri > 1} . Also, by the definition of Tv, #S2 = #S−1.
By a repeated application of the above argument, we finally arrive at a
caterpillar Ak = C (ep) ∈ An,d where epi = 1 for all i 6= k and epk = n−2d+3
such that µ1 (Ak) > µ1 (C (p)) . 2

Corollary 1. If d = 3 then C (n− 3, 1) has the largest Laplacian index
among all trees on n vertices and diameter 3.
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Proof. Since any tree T on n vertices and diameter 3 is a complete
caterpillar, we may take T = C (p1, p2) ∈ Cn,3. By Theorem 2, there exists
C1 = C (p1 + p2 − 1, 1) = C (n− 3, 1) ∈ Cn,3 such that µ1 (C1) ≥ µ1 (C) or
there exists
C2 = C (1, p1 + p2 − 1) = C (1, n− 3) ∈ Cn,3 such that µ1 (C2) ≥ µ1 (C) .
Since C1 and C2 are isomorphic caterpillars, the result follows. 2

From Theorem 2, it follows that among the caterpillars in Cn,d the
largest Laplacian index is attained by a caterpillar in the subclass An,d.
Next, we order the caterpillars in An,d by their Laplacian indices.

A generalized Bethe tree is a rooted tree in which vertices at the same
distance from the root have the same degree. In [7], we characterize the
eigenvalues of the Laplacian and adjacency matrices of the tree Pm {Bi}
obtained from the path Pm and the generalized Bethe trees B1, B2, ..., Bm

obtained by identifying the root vertex of Bi with the i− th vertex of Pm.
This is the case for C (p) in which the path is Pd−1 and each star K1,pi is
a generalized Bethe tree of 2 levels. From Theorem 2 in [7], we get

Theorem 3. The Laplacian eigenvalues of C (p) are 1 with multiplicityPd−1
i=1 pi− (d− 1) and the eigenvalues of the (2d− 2)× (2d− 2) irreducible

nonnegative matrix

M (p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T (p1) E
E S (p2) E

. . .
. . .

. . .
. . . S (pd−2) E

E T (pd−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

T (x) =

"
1

√
x√

x x+ 1

#
, E =

"
0 0
0 1

#
, S (x) = T (x) +E.

Let ρ(A) be the spectral radius of the matrix A.

Corollary 2. The matrix M (p) is singular, ρ (M (p)) > 1 and ρ (M (p))
is the Laplacian index of C (p) .
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Proof. Since 0 is a Laplacian eigenvalue of any graph, an immedi-
ate consequence of Theorem 3 is that M (p) is a singular matrix. Since
M (p) is a nonnegative irreducible matrix whose row sums are no constant,
ρ (M (p)) > 1 [10]. From this fact and Theorem 3, ρ (M (p)) is the Lapla-
cian index of C (p) . 2

Let t (λ, x) and s (λ, x) be the characteristic polynomials of the matrices
T (x) and S (x) respectively. That is

t (λ, x) = λ2 − (x+ 2)λ+ 1

and
s (λ, x) = λ2 − (x+ 3)λ+ 2.

Then
s (λ, x)− t (λ, x) = 1− λ.

Let us denote by |A| the determinant of a square matrix A and by eB
the matrix obtained from a matrix B by deleting its last row and its last
column. We recall Lemma 2.2 in [8].

Lemma 2. For i = 1, 2, ..., r, let Bi be a matrix of order ki × ki and µi,j
be arbitrary scalars. Then

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

B1 µ1,2E1,2 · · · µ1,r−1E1,r−1 µ1,rE1,r
µ2,1E

T
1,2 B2 · · · · · · µ2,rE2,r

µ3,1E
T
1,3 µ3,2E

T
2,3

. . . · · ·
...

...
...

... Br−1 µr−1,rEr−1,r
µr,1E

T
1,r µr,2E

T
2,r · · · µr,r−1ET

r−1,r Br

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

=

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄

|B1| µ1,2
¯̄̄fB2 ¯̄̄ · · · µ1,r−1

¯̄̄ gBr−1
¯̄̄

µ1,r
¯̄̄fBr

¯̄̄
µ2,1

¯̄̄fB1 ¯̄̄ |B2| · · · · · · µ2,r
¯̄̄fBr

¯̄̄
µ3,1

¯̄̄fB1 ¯̄̄ µ3,2
¯̄̄fB2 ¯̄̄ . . . · · ·

...
...

...
... |Br−1| µr−1,r

¯̄̄fBr

¯̄̄
µr,1

¯̄̄fB1 ¯̄̄ µr,2
¯̄̄fB2 ¯̄̄ · · · µr,r−1

¯̄̄ gBr−1
¯̄̄

|Br|

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄̄̄
.

The notation |A|l will be used to denote the determinant of the matrix
A of order l × l.

The next result is an immediate consequence of the application of
Lemma 2 to the characteristic polynomial of M (p).
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Corollary 3. The characteristic polynomial of M (p) is

|λI −M (p)| =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

t (λ, p1) 1− λ
1− λ s (λ, p2) 1− λ

. . .
. . .

. . .
. . . s (λ, pd−2) 1− λ

1− λ t (λ, pd−1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
d−1

.

From now on, let a = n− 2d+3 and let ak be the (d− 1)−dimensional
vector in which the k − th component is equal to a and all the other
components are equal to 1. Using this notation, Ak = C (ak) . Since the
Laplacian index of C (p) ∈ Cn,d is the spectral radius of M (p) , to find an
order in An,d by the Laplacian index is equivalent to order the matrices
M (a1) ,M (a2) , . . . ,M (ad−1) by their spectral radii. Since Ak and Ad−k
are isomorphic, we may take 1 ≤ k ≤

j
d
2

k
. Let φk(λ) be the characteristic

polynomial of M(ak), that is,

φk (λ) = |λI −M (ak)| .

By Corollary 3, the (k, k)− entry of φk (λ) = |λI −M (ak)| is t(λ, a) if
k = 1 and s (λ, a) if k 6= 1.

Let el be the all ones column vector with l entries. Let ϕl (λ) =
|λI −M (el)| . By application of Corollary 3, we have

ϕl (λ) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

t (λ, 1) 1− λ
1− λ s (λ, 1) 1− λ

. . .
. . .

. . .
. . . s (λ, 1) 1− λ

1− λ t (λ, 1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
l

.

Let
r0(λ) = 1, r1 (λ) = t (λ, 1)

and, for 2 ≤ k ≤
j
d
2

k
, let

rk (λ) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

s (λ, 1) 1− λ

1− λ
. . . 1− λ
. . .

. . .
. . .

. . . s (λ, 1) 1− λ
1− λ t (λ, 1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄
k

.
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Expanding along the first row, we obtain

rk (λ) = s (λ, 1) rk−1 (λ)− (λ− 1)2 rk−2 (λ) .(2.1)

Since s (λ, x) = t (λ, x)+1−λ, by linearity on the first column, we have

rk (λ) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

t (λ, 1) 1− λ
1− λ s (λ, 1) 1− λ

. . .
. . .

. . .
. . . s (λ, 1) 1− λ

1− λ t (λ, 1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
k

+ (1− λ) rk−1 (λ) .

Therefore
rk (λ) = ϕk (λ) + (1− λ) rk−1 (λ) .(2.2)

Let 1 ≤ k ≤
j
d
2

k
− 1. We search for the difference φk (λ) − φk+1 (λ) .

We recall that (k, k)− entry of φk (λ) = |λI −M (ak)| is t (λ, a) if k = 1
and s (λ, a) if k 6= 1. Since t (λ, a) = t (λ, 1) + (1− a)λ and s (λ, a) =
s (λ, 1) + (1− a)λ, by linearity on the k − th column, we have

φk (λ) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

t (λ, 1) 1− λ
1− λ s (λ, 1) 1− λ

. . .
. . .

. . .
. . . s (λ, 1) 1− λ

1− λ t (λ, 1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
d−1

(2.3)

+(1− a)λ

¯̄̄̄
¯ rk−1 (λ) 0

0 rd−k−1 (λ)

¯̄̄̄
¯ .

The (k + 1, k + 1)−entry of the determinant of order d−1 on the second
right hand of (2.3) is s(λ, 1) and since s (λ, 1) = s (λ, a) + (a− 1)λ, by
linearity on the (k + 1)− th column, we obtain

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

t (λ, 1) 1− λ
1− λ s (λ, 1) 1− λ

. . .
. . .

. . .
. . . s (λ, 1) 1− λ

1− λ t (λ, 1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
d−1
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= φk+1 (λ) + (a− 1)λ
¯̄̄̄
¯ rk (λ) 0

0 rd−k−2 (λ)

¯̄̄̄
¯ .

Replacing in (2.3), we get

φk (λ)− φk+1 (λ)

= (1− a)λ

¯̄̄̄
¯ rk−1 (λ) 0

0 rd−k−1 (λ)

¯̄̄̄
¯+ (a− 1)λ

¯̄̄̄
¯ rk (λ) 0

0 rd−k−2 (λ)

¯̄̄̄
¯ .

Thus

φk (λ)− φk+1 (λ) = (a− 1)λ [rk (λ) rd−k−2 (λ)− rk−1 (λ) rd−k−1 (λ)] .

(2.4)

Applying the recurrence formula (2.1) to rk (λ) and rd−k−1 (λ) , we ob-
tain

rk (λ) rd−k−2 (λ)− rk−1 (λ) rd−k−1 (λ)

=
h
s (λ, 1) rk−1 (λ)− (λ− 1)2 rk−2 (λ)

i
rd−k−2 (λ)

−rk−1 (λ)
h
s (λ, 1) rd−k−2 (λ)− (λ− 1)2 rd−k−3 (λ)

i
.

Then

rk (λ) rd−k−2 (λ)− rk−1 (λ) rd−k−1 (λ)

= (λ− 1)2 [rk−1 (λ) rd−k−3 (λ)− rk−2 (λ) rd−k−2 (λ)] .

By a repeated application of this process, we conclude

rk (λ) rd−k−2 (λ)− rk−1 (λ) rd−k−1 (λ)

= (λ− 1)2(k−1) (r1 (λ) rd−2k−1 (λ)− rd−2k (λ)) .

Therefore

rk (λ) rd−k−2 (λ)− rk−1 (λ) rd−k−1 (λ)

= (λ− 1)2(k−1)
h
t (λ, 1) rd−2k−1 (λ)− s (λ, 1) rd−2k−1 (λ) + (λ− 1)2 rd−2k−2 (λ)

i
= (λ− 1)2(k−1)

h
(λ− 1) rd−2k−1 (λ) + (λ− 1)2 rd−2k−2 (λ)

i
= (λ− 1)2k−1 [rd−2k−1 (λ) + (λ− 1) rd−2k−2 (λ)]
= (λ− 1)2k−1 ϕd−2k−1 (λ) .
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The last equality being a consequence of (2.2). Replacing in (2.4), we
finally get

φk (λ)− φk+1 (λ) = (a− 1)λ (λ− 1)2k−1 ϕd−2k−1 (λ) .(2.5)

From the Perron-Frobenius Theory for nonnegative matrices [10], if A
is a nonnegative irreducible matrix then A has a unique eigenvalue equal
to its spectral radius ρ(A) and ρ(A) increases whenever any entry of A
increases. Hence ρ(B) < ρ(A) if B is a proper submatrix of a nonnegative
irreducible matrix A.

The next theorem gives a total ordering in An,d by the Laplacian index.

Theorem 4. Let d ≥ 4. Then

µ1 (A1) = µ1 (Ad−1) < µ1 (A2) = µ1 (Ad−2) < . . . < µ1
³
Abd2c

´
=

µ1
³
Ad−b d2c

´
.

Proof. Since Ak and Ad−k are isomorphic caterpillars, we may take 1 ≤
k ≤

j
d
2

k
. Let 1 ≤ k ≤

j
d
2

k
−1. From Corollary 2, ρ (M (ak)) = µ1 (Ak) > 1.

Moreover, from the fact that M (ak) is a nonnegative irreducible matrix,
µ1 (Ak) is a simple eigenvalue. The identity (2.5) involves the polynomials
φk (λ) and φk+1 (λ) of degrees 2d − 2 which are the characteristic polyno-
mials of M (ak) and M (ak+1) , respectively. Let

µ1 (Ak) = α1 > α2 ≥ . . . ≥ α2d−2 = 0

and
µ1 (Ak+1) = β1 > β2 ≥ . . . ≥ β2d−2 = 0

be the eigenvalues of M (ak) and M (ak+1) , respectively. Then (2.5) be-
comes

λΠ2d−3j=1 (λ− αj)− λΠ2d−3j=1 (λ− βj) = (a− 1)λ (λ− 1)2k−1 ϕd−2k−1 (λ) .

(2.6)

We recall that ϕd−2k−1 (λ) of degree 2d−4k−2 is the characteristic poly-
nomial of the matrixM (ed−2k−1) whose spectral radius is µ1 (C (ed−2k−1)) .
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Since M (ed−2k−1) is a proper submatrix of M (ak), µ1 (C (ed−2k−1)) <
µ1 (Ak) . Hence ϕd−2k−1 (µ1 (Ak)) > 0. We claim µ1 (Ak) < µ1 (Ak+1) .
Suppose that µ1 (Ak) ≥ µ1 (Ak+1) . Then µ1 (Ak) ≥ βj for all j. Taking
λ = µ1 (Ak) in (2.6) , we obtain

−µ1 (Ak)Π
2d−3
j=1 (µ1 (Ak)− βj) =

(a− 1)µ1 (Ak) (µ1 (Ak)− 1)2k−1 ϕd−2k−1 (µ1 (Ak))

which is a contradiction because

−µ1 (Ak)Π
2d−3
j=1 (µ1 (Ak)− βj) ≤ 0

and

(a− 1)µ1 (Ak) (µ1 (Ak)− 1)2k−1 ϕd−2k−1 (µ1 (Ak)) > 0.

Therefore µ1 (Ak) < µ1 (Ak+1) . This completes the proof. 2

Theorem 5. Among all complete caterpillars on n vertices and diameter
d the largest Laplacian index is attained by Ab d2c.

Proof. The case d = 3 is given in Corollary 1. If d ≥ 4, the result
follows from Theorem 2 and Theorem 4. 2

3. The largest adjacency index among all complete caterpil-
lars

In this section, we find the caterpillar having the largest adjacency index
among all complete caterpillars on n vertices and diameter d.

Lemma 3. Let u, v be two vertices of a connected graph G. For 1 ≤ s ≤
d (v) , let v1, v2, . . . , vs be some vertices in NG (v)− (NG (u) ∪ {u}) . Let

x =
h
x1 x2 . . . . . . xn

iT
be the unit Perron vector of G corresponding to the adjacency index λ1 (G) .
Let

Gu = G− vv1 − . . .− vvs + uv1 + . . .+ uvs.

If xu ≥ xv then λ1(Gu) > λ1(G).
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Proof. By hypothesis, xu ≥ xv. Then

λ1 (Gu)− λ1 (G) ≥ xTA (Gu)x− xTA (G)x

= 2 (xu − xv)
sX

i=1

xi ≥ 0.

Suppose that λ1 (Gu) = λ1 (G) . Then, from the above inequality, we
get

xTA (Gu)x = x
TA (G)x =λ1 (G) = λ1 (Gu) .

Since A(Gu) is a real symmetric matrix, from xTA (Gu)x = λ1 (Gu) , we
obtain

A (Gu)x = λ1 (Gu)x.

It follows that
λ1 (Gu)xv =

X
w∈NGu(v)

xw.(3.1)

Moreover

λ1 (G)xv =
X

w∈NG(v)

xw =
X

w∈NGu(v)

xw +
sX

i=1

xvi .(3.2)

Subtracting (3.1) from (3.2) , we obtain

0 =
sX

i=1

xvi > 0,

which is a contradiction. Hence λ1 (Gu) > λ1 (G) . 2
We comment that a version of Lemma 3 for the Laplacian index of a

connected bipartite graph is given in [4].
An immediate consequence of Lemma 3 is

Lemma 4. Let u, v be two vertices of a connected graph G. For 1 ≤ s ≤
d (v) , let v1, v2, . . . , vs be some vertices in NG (v) − (NG (u) ∪ {u}) . For
1 ≤ t ≤ d (u) , let u1, u2, . . . , ut be some vertices in NG (u)−(NG (v) ∪ {v}).
Let

Gu = G− vv1 − vv2 − · · ·− vvs + uv1 + uv2 + · · ·+ uvs

and
Gv = G− uu1 − uu2 − · · ·− uut + vu1 + vu2 + · · ·+ vut.

Then λ1(Gu) > λ1(G) or λ1(Gv) > λ1(G).
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By a repeated application of Lemma 4, using a similar argument to the
proof of Theorem 2, we obtain

Theorem 6. Let d ≥ 3. Let C (p) ∈ Cn,d with p = [p1, . . . , pd−1]. There
exists a caterpillar Ak ∈ An,d for some 1 ≤ k ≤ d− 1 such that λ1 (Ak) ≥
λ1 (C (p)) .

Corollary 4. If d = 3 then C (n− 3, 1) has the largest adjacency index
among all trees on n vertices and diameter 3.

Proof. Clearly A1 = C (n− 3, 1) and A2 = C (1, n− 3) are isomorphic
caterpillars. Since any tree of diameter 3 is a complete caterpillar, from
Theorem 6, λ1 (A1) = λ1 (A2) ≥ λ1(T ) for any tree T on n vertices and
diameter 3. 2

Now, we order the caterpillars in An,d by their adjacency indices. From
Theorem 6 in [7], we have

Theorem 7. The adjacency eigenvalues of C (p) are 0 with multiplicityPd−1
i=1 pi− (d− 1) and the eigenvalues of the (2d− 2)× (2d− 2) irreducible

nonnegative matrix

H (p) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S (p1) E
E S (p2) E

. . .
. . .

. . .
. . . S (pd−2) E

E S (pd−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

S (x) =

"
0
√
x√

x 0

#
, E =

"
0 0
0 1

#
.

An immediate consequence of Theorem 3 is

Corollary 5. The spectral radius ofH (p) is the adjacency index of C (p) .

Let s (λ, x) be the characteristic polynomial of S (x). That is

s (λ, x) = λ2 − x.

We now apply Lemma 2 to the matrix H (p).
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Corollary 6. The characteristic polynomial of H (p) is

|λI −H (p)|

=

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

s (λ, p1) −λ
−λ s (λ, p2) −λ

. . .
. . .

. . .
. . . s (λ, pd−2) −λ

−λ s (λ, pd−1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
d−1

.

We have Ak = C (ak) . Since the adjacency index of C (p) ∈ Cn,d is
equal to the spectral radius of H (p), to order the caterpillars in An,d by
their adjacency indices is equivalent to order the matrices
H (a1) ,H (a2) , . . . ,H (ad−1) by their spectral radii. We may take 1 ≤ k ≤j
d
2

k
.

Let
φk (λ) = |λI −H (ak)| .

Let
r0 (λ) = 1, r1 (λ) = s (λ, 1)

and, for 2 ≤ k ≤
j
d
2

k
, let

rk (λ) =

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄

s (λ, 1) −λ
−λ . . . −λ

. . .
. . .

. . .
. . . s (λ, 1) −λ

−λ s (λ, 1)

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯̄
k

.

Expanding along the first row, we have

rk (λ) = s (λ, 1) rk−1 (λ)− λ2rk−2 (λ) .

Clearly s (λ, a) = s (λ, 1) + (1− a). Let 1 ≤ k ≤
j
d
2

k
− 1.

Applying the same techniques of Section 2, the difference φk (λ) −
φk+1 (λ) becomes

φk (λ)− φk+1 (λ) = (a− 1)λ2krd−2k−2 (λ) .

The next theorem gives a total ordering in An,d by the adjacency index.
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Theorem 8. Let d ≥ 4. Then

λ1 (A1) = λ1 (Ad−1) < λ1 (A2) = λ1 (Ad−2) < . . . < λ1
³
Ab d2c

´
= λ1

³
Ad−b d2c

´
.

Proof. Similar to the proof of Theorem 4. 2

Theorem 9. Among all complete caterpillars on n vertices and diameter
d the largest adjacency index is attained by Ab d2c.

Proof. The case d = 3 is given in Corollary 4. If d ≥ 4, the result
follows from Theorem 6 and Theorem 8. 2
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