Proyecciones Journal of Mathematics
Vol. 34, N ${ }^{o}$ 2, pp. 161-174, June 2015.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172015000200005

The t-pebbling number of Jahangir graph $J_{3, m}$

A. Lourdusamy
and
T. Mathivanan
St. Xavier's College (Autonomous), India
Received : December 2014. Accepted : April 2015

Abstract

The t-pebbling number, $f_{t}(G)$, of a connected graph G, is the smallest positive integer such that from every placement of $f_{t}(G)$ pebbles, t pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move removes two pebbles of a vertex and placing one on an adjacent vertex. In this paper, we determine the t-pebbling number for Jahangir graph $J_{3, m}$ and finally we give a conjecture for the t-pebbling number of the graph $J_{n, m}$.

2010 Mathematics Subject Classification : 05C99.
Keywords : Pebbling number, Jahangir graph.

1. Introduction

We begin by introducing relevant terminology and background on the subject. Here, the term graph refers to a simple graph. A function $\phi: V(G) \rightarrow$ $N \cup\{0\}$ is called a pebbling. Let $\phi(v)$ denote the number of pebbles on the vertex v and $\phi(V(A))$ denote the number of pebbles on the vertices of the subgraph A of G. The quantity $\sum_{x \in V(G)} \phi(x)$ is called the size of ϕ; the size of ϕ is just the total number of pebbles assigned to vertices. A pebbling move (step) consists of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. For a graph G, if ϕ is a distribution or configuration of pebbles onto the vertices of G and it is possible to move a pebble to the target vertex v, then we say that ϕ is v-solvable; otherwise, ϕ is v-unsolvable. Then ϕ is solvable if it is v-solvable for all $v \in V(G)$, and unsolvable otherwise. If $\phi(v)=1$ or $\phi(u) \geq 2$ where $u v \in E(G)$, then we can easily move one pebble to v. So, we always assume that $\phi(v)=0$ and $\phi(u) \leq 1$ for all $u v \in E(G)$ when v is the target vertex.

The t-pebbling number of a vertex v in a graph $G[2], f_{t}(v, G)$, is the smallest positive integer m such that however m pebbles are placed on the vertices of the graph, t pebbles can be moved to v in finite number of pebbling moves, each move removes two pebbles of one vertex and placing one on an adjacent vertex. The t-pebbling number of $G, f_{t}(G)$, is defined to be the maximum of the pebbling numbers of its vertices. Thus the t pebbling number of a graph $G, f_{t}(G)$, is the least m such that, for any configuration of m pebbles to the vertices of G, we can move t pebbles to any vertex by a sequence of moves, each move removes two pebbles of one vertex and placing one on an adjacent vertex. Clearly, $f_{1}(G)=f(G)$, the pebbling number of G.

Fact 1. ([12]) For any vertex v of a graph $G, f(v, G) \geq n$ where $n=$ $|V(G)|$.

Fact 2. ([12]) The pebbling number of a graph G satisfies

$$
f(G) \geq \max \left\{2^{\operatorname{diam}(G)},|V(G)|\right\}
$$

Jahangir graph $J_{n, m}$ [11], for $m \geq 3$, is a graph on $n m+1$ vertices, that is, a graph consisting of a cycle $C_{n m}$ with one additional vertex which is adjacent to m vertices of $C_{n m}$ at distance n to each other on $C_{n m}$.

For labeling $J_{3, m}(m \geq 3)$, let $v_{3 m+1}$ be the label of the center vertex and $v_{1}, v_{2}, \cdots, v_{3 m}$ be the label of the vertices that are incident clockwise on cycle $C_{3 m}$ so that $\operatorname{deg}\left(v_{1}\right)=3$.

With regard to t-pebbling number of graphs, we have found the following theorems:

Theorem 1. ([9]). Let K_{n} be the complete graph on n vertices where $n \geq 2$. Then $f_{t}\left(K_{n}\right)=2 t+n-2$.

Theorem 2. ([2]). Let $K_{1}=\{v\}$. Let $C_{n-1}=\left(u_{1}, u_{2}, \cdots, u_{n-1}\right)$ be a cycle of length $n-1$. Then the t-pebbling number of the wheel graph W_{n} is $f_{t}\left(W_{n}\right)=4 t+n-4$ for $n \geq 5$.

Theorem 3.

$$
f_{t}(G)=\left\{\begin{array}{c}
2 t+n-2, \text { if } 2 t \leq n-s_{1} \\
4 t+s_{1}-2, \text { if } 2 t \geq n-s_{1}
\end{array}\right.
$$

Theorem 4. ([9]). Let $K_{1, n}$ be an n-star where $n>1$. Then $f_{t}\left(K_{1, n}\right)=$ $4 t+n-2$.

Theorem 5. ([9]). Let C_{n} denote a simple cycle with n vertices, where $n \geq 3$. Then $f_{t}\left(C_{2 k}\right)=t 2^{k}$ and $f_{t}\left(C_{2 k+1}\right)=\frac{2^{k+2}-(-1)^{k+2}}{3}+(t-1) 2^{k}$.

Theorem 6. ([9]). Let P_{n} be a path on n vertices. Then $f_{t}\left(P_{n}\right)=t\left(2^{n-1}\right)$.
Theorem 7. ([9]). Let Q_{n} be the n-cube. Then $f_{t}\left(Q_{n}\right)=t\left(2^{n}\right)$.
Lourdusamy et. al proved the t-pebbling number of Jahngir graph $J_{2, m}$ for $m \geq 3$ and $t \geq 1$ in $[3,6,7,8]$. In the next section, we are going to present the pebbling number of Jahangir graph $J_{3, m}$ for $m \geq 3$. In section three, we find the t-pebbling number for $J_{3, m}$. In the last section, we give a conjecture for the t-pebbling number of Jahangir graph $J_{n, m}$, where $2<n<m$.

2. The pebbling number for Jahangir graph $J_{3, m}$

Consider Jahangir graph $J_{3, m}(m \geq 3)$, and we can see that $J_{3, m}$ has m cycles of length five, 5 -cycles, that is,

$$
\begin{aligned}
& S_{1}: v_{1} v_{2} v_{3} v_{4} v_{3 m+1} v_{1}, \\
& S_{2}: v_{4} v_{5} v_{6} v_{7} v_{3 m+1} v_{4},
\end{aligned}
$$

$$
S_{m}: v_{3 m-2} v_{3 m-1} v_{3 m} v_{1} v_{3 m+1} v_{3 m-2} .
$$

For $i, j=1,2,, m, i \neq j$, two cycles S_{i} and S_{j} are adjacent if there exists a common edge $\left(v_{k} v_{3 m+1}\right)$ between them. The vertex v_{k} is called a common vertex for S_{i} and S_{j}.

Theorem 1. For Jahangir graph $J_{3,3}, f\left(J_{3,3}\right)=17$.

Proof. Clearly, by Fact $2, f\left(J_{3,3}\right) \geq \max \{16,10\}=16$. Let $\phi\left(v_{6}\right)=15$, $\phi\left(v_{9}\right)=1$ and for all $i \neq 6,9, \phi\left(v_{i}\right)=0$. If v_{2} is a target vertex, then pebbling ϕ is v_{2}-unsolvable. Thus $f\left(J_{3,3}\right) \geq 17$.

Figure 1. Jahangir graph $J_{3,3}$

Consider the distribution of 17 pebbles on the vertices of $J_{3,3}$.
Case 1: Let v_{10} be the target vertex.
Without loss of generality, let $\phi\left(V\left(S_{1}\right)\right) \geq 5$, since $J_{3,3}$ has 17 pebbles and three 5 -cycles. Hence, we can move one pebble to v_{10} by Theorem 5 .

Case 2: Let v_{1} be the target vertex.
If $\phi\left(V\left(S_{1}\right)\right) \geq 5$ or $\phi\left(V\left(S_{3}\right)\right) \geq 5$, then we can easily move one pebble to v_{1}. Assume $\phi\left(v_{2}\right)+\phi\left(v_{3}\right) \leq 3$ and $\phi\left(v_{8}\right)+\phi\left(v_{9}\right) \leq 3$ (otherwise one pebble can be moved to v_{1}). Obviously, $\phi\left(V\left(S_{2}\right)\right) \geq 11$, and by Theorem $5, f_{2}\left(C_{5}\right)=9$. Therefore by moving two pebbles to v_{10}, we can move one pebble to v_{1}.

Case 3: Let v_{2} be the target vertex.
If $\phi\left(V\left(S_{1}\right)\right) \geq 5$, then we can easily move one pebble to v_{2}. Since, $\phi\left(V\left(J_{3,3}\right)-\right.$
$\left.\left\{v_{2}, v_{3}\right\}\right) \geq 16$, either $\phi\left(V\left(S_{2}\right)\right) \geq 8$ or $\phi\left(V\left(S_{3}\right)\right) \geq 8$.

Case 3.1: Let $\phi\left(V\left(S_{3}\right)\right) \geq 8$.
If $\phi\left(V\left(S_{3}\right)\right) \geq 9$, then by Theorem 5 we can move one pebble to v_{2}. Let $\phi\left(V\left(S_{3}\right)\right)=8$. Clearly, $\phi\left(V\left(S_{2}\right)\right) \geq 5$. Thus we can move one pebble to v_{7} or v_{10} from the pebbles on $V\left(S_{2}\right)$. Now, we have at least 9 pebbles on $V\left(S_{3}\right)$ and hence we can move one pebble to v_{2} through v_{1} by Theorem 5.

Case 3.2: Let $\phi\left(V\left(S_{2}\right)\right) \geq 8$.
Let $\phi\left(V\left(S_{2}\right)\right) \geq 9$. Clearly we can move one pebble to v_{2} if $\phi\left(v_{1}\right)=1$ or $\phi\left(v_{3}\right)=1$ or $\phi\left(v_{8}\right)+\phi\left(v_{9}\right) \geq 4$. So, we assume $\phi\left(v_{1}\right)=0, \phi\left(v_{3}\right)=0$ and $\phi\left(v_{8}\right)+\phi\left(v_{9}\right) \leq 3$ such that we cannot move one pebble to v_{1} from the pebbles on the vertices v_{8} and v_{9}. Now, we have $\phi\left(V\left(S_{2}\right)\right) \geq 14$. We assume $\phi\left(v_{4}\right)=0$ and $\phi\left(v_{10}\right)=0$ (otherwise one pebble could be moved to v_{2} by Theorem 5).

Case 3.2.1: Let $\phi\left(v_{8}\right)=2$ or 3 and $\phi\left(v_{9}\right)=0$.
If $\phi\left(v_{7}\right) \geq 1$, then we move one pebble to v_{7} from v_{8} and then we move one pebble to v_{10} from v_{7}. Now $V\left(S_{2}\right)-\left\{v_{10}\right\}$ contains at least 13 pebbles and hence we can easily move one pebble to v_{2} through v_{10} by Theorem 5. Assume $\phi\left(v_{7}\right)=0$. Let $\phi\left(v_{8}\right)=2$. If $\phi\left(v_{6}\right) \geq 2$, then we move one pebble v_{10} through v_{7} from v_{6} and v_{8} and hence we can easily move one pebble to v_{2} through v_{10} by Theorem 5 . If $\phi\left(v_{6}\right) \leq 1$, then we can easily move one pebble to v_{2} since $\phi\left(v_{5}\right) \geq 8$ and $d\left(v_{2}, v_{5}\right)=3$. Let $\phi\left(v_{8}\right)=3$. If $\phi\left(v_{6}\right) \geq 4$, then we move one pebble v_{8} from v_{6} and then we move one pebble to v_{1}. Now $V\left(S_{2}\right)$ contains at least 10 pebbles and hence we can move one more pebble to v_{1} through v_{10} (by Theorem 5) and then one pebble can be easily moved to v_{2}. If $\phi\left(v_{6}\right) \leq 3$, then we can easily move one pebble to v_{2} since $\phi\left(v_{5}\right) \geq 8$ and $d\left(v_{2}, v_{5}\right)=3$.

Case 3.2.2: Let $\phi\left(v_{8}\right)=\phi\left(v_{9}\right)=1$.
If $\phi\left(v_{6}\right)+\phi\left(v_{7}\right) \geq 4$, then we can move one pebble to v_{1} using the pebbles on v_{8} and v_{9}. Then $\phi\left(V\left(S_{2}\right)\right)-4 \geq 10$ and hence we can move another one pebble to v_{1} through v_{10} and then one pebble can be easily moved to v_{2}. Suppose, $\phi\left(v_{6}\right)+\phi\left(v_{7}\right) \leq 3$, then $\phi\left(v_{5}\right) \geq 8$. Thus we can easily move one pebble to v_{2} since $d\left(v_{2}, v_{5}\right)=3$.

Case 3.2.3: Let $\phi\left(v_{8}\right)+\phi\left(v_{9}\right) \leq 1$.
Since $\phi\left(v_{8}\right)+\phi\left(v_{9}\right) \leq 1$, we have $\phi\left(V\left(S_{2}\right)\right) \geq 16$. If $\phi\left(v_{5}\right) \geq 2$, then we move
one pebble to v_{4}. Then the number of remaining pebbles on the vertices of S_{2} is at least 14 and hence we can move three more pebbles to v_{4} by Theorem 5. Thus we can easily move one pebble to v_{2} from v_{4}. Assume $\phi\left(v_{5}\right) \leq 1$. In a similar way, we may assume $\phi\left(v_{7}\right) \leq 1$. This implies that $\phi\left(v_{6}\right) \geq 14$ and clearly we can move one pebble to v_{2} by moving seven pebbles to v_{5} if $\phi\left(v_{5}\right)=1$ (or v_{7} if $\phi\left(v_{7}\right)=1$), since, $d\left(v_{2}, v_{5}\right)=3$ and $d\left(v_{2}, v_{7}\right)=3$. Assume $\phi\left(v_{5}\right)=0$ and $\phi\left(v_{7}\right)=0$. Then $\phi\left(v_{6}\right)=16$ and hence one pebble can be moved to v_{2} since $d\left(v_{2}, v_{6}\right)=4$.
Therefore 17 pebbles are sufficient to pebble the vertices of $J_{3,3}$ and hence $f\left(J_{3,3}\right)=17$.

Theorem 2. For Jahangir graph $J_{3,4}, f\left(J_{3,4}\right)=21$.
Proof. Let $\phi\left(v_{8}\right)=15, \phi\left(v_{5}\right)=3, \phi\left(v_{9}\right)=\phi\left(v_{12}\right)=1$ and $\phi\left(v_{i}\right)=0$ for all $i \neq 5,8,9,12$. Then we cannot move one pebble to v_{2}. Thus $f\left(J_{3,4}\right) \geq$ 21.

Figure 2. Jahangir graph $J_{3,4}$

Consider the distribution of 21 pebbles on the vertices of $J_{3,4}$.
Case 1: Let v_{13} be the target vertex.
Without loss of generality, let $\phi\left(V\left(S_{1}\right)\right) \geq 5$, since $J_{3,4}$ has 21 pebbles and four 5 -cycles. Hence, we can move one pebble to v_{13} by Theorem 5 .

Case 2: Let v_{1} be the target vertex.
If $\phi\left(V\left(S_{1}\right)\right) \geq 5$ or $\phi\left(V\left(S_{4}\right)\right) \geq 5$, then we can easily move one pebble to v_{1}. Assume $\phi\left(v_{2}\right)+\phi\left(v_{3}\right) \leq 3$ and $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \leq 3$ (otherwise one pebble can be moved to $\left.v_{1}\right)$. Thus, $\phi\left(V\left(S_{2}\right)\right)+\phi\left(V\left(S_{3}\right)\right) \geq 15$. If both
$\phi\left(V\left(S_{2}\right)\right) \geq 5$ and $\phi\left(V\left(S_{3}\right)\right) \geq 5$, then we can easily move one pebble to v_{1}. Without loss of generality, let $\phi\left(V\left(S_{3}\right)\right) \leq 4$. So, $\phi\left(V\left(S_{2}\right)\right) \geq 11$ and hence we can move one pebble to v_{1} by moving two pebbles to v_{13}, since $f_{2}\left(C_{5}\right)=9$ by Theorem 5.

Case 3: Let v_{2} be the target vertex.
If $\phi\left(V\left(S_{1}\right)\right) \geq 5$, then clearly we can move one pebble to v_{2}. So, we have $\phi\left(V\left(S_{2}\right)\right)+\phi\left(V\left(S_{3}\right)\right)+\phi\left(V\left(S_{4}\right)\right) \geq 20$ and hence $\phi\left(V\left(S_{i}\right)\right) \geq 7$ for some $i=2,3,4$.

Case 3.1:Let $\phi\left(V\left(S_{2}\right)\right) \geq 7$.
Let $\phi\left(V\left(S_{2}\right)\right) \geq 9$. If $\phi\left(v_{1}\right)=1$ or $\phi\left(v_{3}\right)=1$ or $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \geq 4$, then clearly we can move one pebble to v_{2}. Assume $\phi\left(v_{1}\right)=0, \phi\left(v_{3}\right)=0$ and $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \leq 3$ such that we cannot move one pebble to v_{1}. We have $\phi\left(V\left(S_{2}\right)\right)+\phi\left(V\left(S_{3}\right)\right) \geq 18$.

Case 3.1.1: Let $\phi\left(v_{11}\right)=0$ and $\phi\left(v_{12}\right)=2$ or $\phi\left(v_{11}\right)=0$ and $\phi\left(v_{12}\right)=3$. If $\phi\left(v_{10}\right)=1$ or $\phi\left(v_{9}\right) \geq 2$, then we move one pebble to v_{13}. If $\phi\left(V\left(S_{3}\right)\right)-$ $2 \geq 5$, then we can move one more pebble to v_{13} and hence we are done since $\phi\left(V\left(S_{2}\right)\right) \geq 9$. Assume that $\phi\left(V\left(S_{3}\right)\right)-2 \leq 4$. Thus $\phi\left(V\left(S_{2}\right)\right) \geq 12$. If $\phi\left(v_{8}\right) \geq 2$, then we move one pebble to v_{7}. Now, $V\left(S_{2}\right)$ contains at least 13 pebbles and hence we can move three pebbles to v_{13} and so we can move one pebble to v_{2}. Let $\phi\left(v_{8}\right) \leq 1$. Clearly, $\phi\left(V\left(S_{2}\right)\right) \geq 13$ and hence we can move one pebble to v_{2} through v_{13}. Let $\phi\left(v_{10}\right)=0, \phi\left(v_{9}\right) \leq 1$ and $\phi\left(v_{8}\right) \leq 3$. Thus, $\phi\left(V\left(S_{2}\right)\right) \geq 15$. If $\phi\left(v_{13}\right)=1$ or $\phi\left(v_{4}\right)=1$ or $\phi\left(v_{5}\right) \geq 2$ or $\phi\left(v_{7}\right) \geq 2$, then we can move three additonal pebbles to either v_{4} or v_{13}, since $\phi\left(V\left(S_{2}\right)\right)-2 \geq 13$ and hence we can easily move one pebble to v_{2}. So, we assume that $\phi\left(v_{13}\right)=0, \phi\left(v_{4}\right)=0, \phi\left(v_{5}\right) \leq 1$ and $\phi\left(v_{7}\right) \leq 1$ and thus $\phi\left(v_{6}\right) \geq 13$. Let $\phi\left(v_{7}\right)=1$. If $\phi\left(V\left(S_{3}\right)\right)=4$, then we can move one pebble to v_{7} and then we move six pebbles to v_{7} from v_{6} and hence we can move one pebble to v_{2}, since $d\left(v_{2}, v_{7}\right)=3$. If not, then we can move seven pebbles to v_{7} from v_{6} and hence we are done. Thus we assume $\phi\left(v_{7}\right)=0$. For the same reason we assume $\phi\left(v_{5}\right)=0$ and thus $\phi\left(v_{6}\right) \geq 15$. If $\phi\left(V\left(S_{3}\right)\right) \geq 3$, then we can move one pebble to v_{7} and then we move seven pebbles to v_{7} from v_{6} and hence we can move one pebble to v_{2}, since $d\left(v_{2}, v_{7}\right)=3$. If not, then we can move eight pebbles to v_{7} from v_{6} and hence we are done.

Case 3.1.2: Let $\phi\left(v_{11}\right)=1$ and $\phi\left(v_{12}\right)=1$.
Clearly, we can move one pebble to v_{1} using the pebbles on v_{11} and v_{12}
if $\phi\left(V\left(S_{3}\right)\right) \geq 7$ and then we move one more pebble to v_{1} from $\phi\left(V\left(S_{2}\right)\right)$ and hence we are done. Assume $\phi\left(V\left(S_{3}\right)\right) \leq 6$ and so $\phi\left(V\left(S_{2}\right)\right) \geq 13$. If $\phi\left(V\left(S_{3}\right)\right) \geq 5$, then also we can easily move one pebble to v_{2}. Assume $\phi\left(V\left(S_{3}\right)\right) \leq 4$ and thus $\phi\left(V\left(S_{2}\right)\right) \geq 15$. We do the same thing as we did above when $\phi\left(V\left(S_{2}\right)\right) \geq 15$ to put one pebble at v_{2}. Next, we assume $\phi\left(V\left(S_{2}\right)\right)=7$ or 8 . If $\phi\left(V\left(S_{3}\right)\right) \geq 5$ and $\phi\left(V\left(S_{4}\right)\right) \geq 5$, then we can easily move one pebble to v_{2}. Assume that $\phi\left(V\left(S_{3}\right)\right) \leq 4$ and so $\phi\left(V\left(S_{4}\right)\right) \geq 8$. Either we can move one more pebble to v_{10} from $\phi\left(V\left(S_{3}\right)\right)$ or we should have $\phi\left(V\left(S_{4}\right)\right) \geq 9$ and hence we can easily move one pebble to v_{2}. Assume that $\phi\left(V\left(S_{4}\right)\right) \leq 4$ and so $\phi\left(V\left(S_{3}\right)\right) \geq 8$. If $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \geq 4$ or $\phi\left(v_{3}\right)=1$, then we can move one pebble to v_{2} either through v_{1} or v_{3}. So we assume that $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \leq 3$ and $\phi\left(v_{3}\right)=0$ and hence we can move 'four pebbles to v_{13} ' or 'one pebble to v_{1} and two pebbles to v_{13} ', like we did above. Thus we can easily move one pebble to v_{2}.

Case 3.2: Let $\phi\left(V\left(S_{4}\right)\right) \geq 7$.
Either $\phi\left(V\left(S_{4}\right)\right) \geq 9$ or we can add one or two pebbles (if $\phi\left(V\left(S_{4}\right)\right)=8$ or 7) to $V\left(S_{4}\right)$ from $V\left(S_{2}\right)$ and $V\left(S_{3}\right)$. Thus we can easily move one pebble to v_{2}.

Case 3.3: Let $\phi\left(V\left(S_{3}\right)\right) \geq 7$.
Let $\phi\left(V\left(S_{3}\right)\right) \geq 9$. Clearly, we can move one pebble to v_{2} if $\phi\left(V\left(S_{4}\right)\right) \geq 5$ or $\phi\left(v_{1}\right)=1$ or $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \geq 4$. So we assume that $\phi\left(v_{1}\right)=0$ and $\phi\left(v_{11}\right)+\phi\left(v_{12}\right) \leq 3$.

Case 3.3.1: Let $\phi\left(V\left(S_{2}\right)\right) \geq 7$.
Clearly, we can move one pebble to v_{2} by Case 3.1.

Case 3.3.2: Let $\phi\left(V\left(S_{2}\right)\right)=5$ or 6 .
Clearly we can move one pebble to v_{2} if $\phi\left(v_{3}\right)=1$. So, we assume $\phi\left(v_{3}\right)=0$. If $\phi\left(v_{11}\right) \geq 2$, then we move one pebble to v_{10} and hence $V\left(S_{3}\right)$ contains 13 pebbles. Thus we can move four pebbles to v_{13} from $V\left(S_{2}\right)$ and $V\left(S_{3}\right)$ and hence we can move one pebble to v_{2}. Let $\phi\left(v_{11}\right) \leq 1$. Thus, $\phi\left(S_{3}\right) \geq 13$ and hence we can move one pebble to v_{2} through v_{13}.

Case 3.3.3: Let $\phi\left(V\left(S_{2}\right)\right) \leq 4$.
We have $\phi\left(V\left(S_{3}\right)\right) \geq 13$. Hence, we can move 'four pebbles to v_{13} ' or 'one pebble to v_{1} and two pebbles to v_{13} ', by considering the cases $\phi\left(v_{11}\right)=2$ or 3 or $\phi\left(v_{11}\right)=1$ and $\phi\left(v_{12}\right)=1$ or $\phi\left(v_{12}\right)+\phi\left(v_{12}\right) \leq 1$. Otherwise, $\phi\left(V\left(S_{3}\right)\right) \geq 17$ and hence we can easily move one pebble to v_{2} by Theorem
5.

For the case $\phi\left(V\left(S_{3}\right)\right)=7$ or 8 , one could see that we can easily always move a pebble to v_{2}.

Thus we can always move one pebble to v_{2} using 21 pebbles on the vertices of $J_{3,4}$. So, $f\left(J_{3,4}\right)=21$.

Theorem 3. For Jahangir graph $J_{3, m}(m \geq 5), f\left(J_{3, m}\right)=3 m+10$.

Proof. Consider the following distribution: $\phi\left(v_{8}\right)=15, \phi\left(v_{9}\right)=\phi\left(v_{3 m}\right)=$ $\phi\left(v_{3 m-1}\right)=1, \phi\left(v_{4}\right)=3$ and $\phi\left(v_{i}\right)=3$ for all $i \in\{12+3 k\}(0 \leq k \leq m-5)$. Then we cannot move one pebble to v_{2}. Since this distribution contains $15+1+1+1+3+(m-4) 3=3 m+9$ pebbles, $f\left(J_{3, m}\right) \geq 3 m+10$ for $m \geq 5$.

Now, we consider the distribution of $3 m+10$ pebbles on the vertices of $J_{3, m}$ where $m \geq 5$.

Case 1: Let $v_{3 m+1}$ be the target vertex.
If any one of the 5 -cycle contains five or more pebbles, then we can easily move one pebble to $v_{3 m+1}$. Consider every 5 -cycle contains at most four pebbles only. Since we have placed $3 m+10$ pebbles on the vertices of $J_{3, m}$, ten 5 -cycles must contain exactly four pebbles. Without loss of generality, let $\phi\left(V\left(S_{1}\right)\right)=4$. If one of adjacect cycle also has four pebbles or the adjacent vertex of a common vertex from the adjacent cycle contains more than two pebbles, then we can move one pebble to $v_{3 m+1}$ through the common vertex v_{1} or v_{4}. If both the adjacent vertices of a common vertex have more than one pebble each, then also we can move one pebble to $v_{3 m+1}$. Otherwise, the graph $J_{3, m}$ must contain at most $3 m+1$ pebbles - which is a contradiction to the total number of pebbles placed on the vertices of $J_{3, m}$.

Case 2: Let v_{1} be the target vertex.
If $\phi\left(V\left(S_{1}\right)\right) \geq 5$ or $\phi\left(V\left(S_{m}\right)\right) \geq 5$, then we can easily move one pebble to v_{1}. Also if $\phi\left(v_{2}+v_{3}\right) \geq 4$ or $\phi\left(v_{3 m}+v_{3 m-1}\right) \geq 4$, then we can move one pebble to v_{1}. So, we assume $\phi\left(v_{2}+v_{3}\right) \leq 3$ and $\phi\left(v_{3 m-1}+v_{3 m}\right) \leq 3$. If $\phi\left(V\left(S_{i}\right)\right) \geq 5$ and $\left.\phi\left(V\left(S_{j}\right)\right)\right) \geq 5$ for some $i \neq 1, m, j \neq 1, m$, then we can move two pebbles to $v_{3 m+1}$ and hence one pebble is moved to v_{1}. Assume $\phi\left(V\left(S_{i}\right)\right) \geq 5$ and all other cycles contain at most four pebbles each except S_{1} and S_{m}. Suppose we cannot move one more pebble to $v_{3 m+1}$ or we cannot move one pebble to v_{1}, then the graph $J_{3, m}$ contains at most $3 m+2$ pebbles - a contradiction to the total number of pebbles placed on the vertices of $J_{3, m}$. Next, we assume that every cycle contains at most
four pebbles only. If we have two adjacent cycles with four pebbles each on them, then we can move two pebbles to $v_{3 m+1}$ and hence we move one pebble to v_{1}. Thus we assume only one adjacent copy has four pebbles each on them. We move one pebble to $v_{3 m+1}$ from that adjacent cycle. Suppose if we cannot move one more pebble to $v_{3 m+1}$ or if we cannot move one pebble to v_{1}, then the grpah has at most $3 m+2$ pebbles - a contradiction to the total number of pebbles placed on the vertices of $J_{3, m}$. Suppose if there is no such adjacent cycles, then we can move two pebbles to $v_{3 m+1}$, since we have $3 m+10$ pebbles and ten cycles have exactly four pebbles. If we cannot move one pebble to v_{1}, then the graph $J_{3, m}$ has at most $3 m$ pebbles a contradiction to the total number of pebbles placed on the vertices of $J_{3, m}$.

Case 3: Let v_{2} be the target vertex.
If $\phi\left(V\left(S_{1}\right)\right) \geq 5$, then clearly we can move one pebble to v_{2}. Suppose four cycles have five pebbles each on them. Then we can move four pebbles to $v_{3 m+1}$ pebbles and hence one pebbles is moved to v_{2}. Let three cycles only have more than four pebbles. So we can move three pebbles to $v_{3 m+1}$. If we cannot move one more pebble to $v_{3 m+1}$ or if we cannot move one pebble to v_{2}, then the graph $J_{3, m}$ has at most $3 m+8$ pebbles - a contradiction. Let two cycles have more than four pebbles. Suppose if we cannot move one pebble to v_{2}, then the graph has at most $3 m+6$ pebbles - a contradiction. Let only one cycle has more than four pebbles. Suppose if we cannot move one pebble to v_{2}, then the graph has at most $3 m+9$ pebbles - a contradiction. Assume every cycle has at most four pebbles only. Suppose if we cannot move one pebble to v_{2}, then the graph has at most $3 m+5$ pebbles - a contradiction.

Thus we can always move one pebble to v_{2} using $3 m+10$ pebbles on the vertices of $J_{3, m}$. So, $f\left(J_{3, m}\right)=3 m+10$.

3. The t-pebbling number of Jahangir graph $J_{3, m}$

Theorem 1. For Jahangir graph $J_{3,3}, f_{t}\left(J_{3,3}\right)=16 t+1$.
Proof. Let $\phi\left(v_{6}\right)=16(t-1)+15, \phi\left(v_{9}\right)=1$ and $\phi\left(v_{i}\right)=0$ for all $i \neq 6,9$. Then we cannot move t pebbles to v_{2}. Thus $f_{t}\left(J_{3,3}\right)>16 t$.

Now, consider the distribution of the $16 t+1$ pebbles on the vertices of $J_{3,3}$. Clearly the result is true for $t=1$. Assume the result is true for $2 \leq t^{\prime}<t$. Clearly, the graph $J_{3,3}$ has at least 33 pebbles and hence we can move one pebble to any target vertex at a cost of at most sixteen pebbles.

Then the remaining number of pebbles on the vertices of $J_{3,3}$ is at least $16(t-1)+1$ and hence we can move $t-1$ additional pebbles to that target vertex by induction. Thus $f_{t}\left(J_{3,3}\right) \leq 16 t+1$.

Theorem 2. For Jahangir graph $J_{3,4}, f_{t}\left(J_{3,4}\right)=16 t+5$.
Proof. Let $\phi\left(v_{8}\right)=16(t-1)+15, \phi\left(v_{5}\right)=3, \phi\left(v_{9}\right)=\phi\left(v_{12}\right)=1$ and $\phi\left(v_{i}\right)=0$ for all $i \neq 5,8,9,12$. Then we cannot move one pebble to v_{2}. Thus $f\left(J_{3,4}\right)>16 t+4$.

Now, consider the distribution of the $16 t+5$ pebbles on the vertices of $J_{3,4}$. Clearly the result is true for $t=1$. Assume the result is true for $2 \leq t^{\prime}<t$. Clearly, the graph $J_{3,4}$ has at least 37 pebbles and hence we can move one pebble to any target vertex at a cost of at most sixteen pebbles. Then the remaining number of pebbles on the vertices of $J_{3,4}$ is at least $16(t-1)+5$ and hence we can move $t-1$ additional pebbles to that target vertex by induction. Thus $f_{t}\left(J_{3,4}\right) \leq 16 t+5$.

Theorem 3. For Jahangir graph $J_{3, m}(m \geq 5), f_{t}\left(J_{3, m}\right)=16 t+3 m-6$.
Proof. Consider the following distribution: $\phi\left(v_{8}\right)=16(t-1)+15$, $\phi\left(v_{9}\right)=\phi\left(v_{3 m}\right)=\phi\left(v_{3 m-1}\right)=1, \phi\left(v_{4}\right)=3$ and $\phi\left(v_{i}\right)=3$ for all $i \in$ $\{12+3 k\}(0 \leq k \leq m-5)$. Then we cannot move one pebble to v_{2}. Since this distribution contains $16(t-1)+3 m+9$ pebbles, $f\left(J_{3, m}\right) \geq 16 t+3 m-6$ for $m \geq 5$.

Now, consider the distribution of the $16 t+3 m-6$ pebbles on the vertices of $J_{3, m}$. Clearly the result is true for $t=1$. Assume the result is true for $2 \leq t^{\prime}<t$. Clearly, the graph $J_{3, m}$ has at least $3 m+24$ pebbles and hence we can move one pebble to any target vertex at a cost of at most sixteen pebbles. Then the remaining number of pebbles on the vertices of $J_{3, m}$ is at least $16(t-1)+3 m-6$ and hence we can move $t-1$ additional pebbles to that target vertex by induction. Thus $f_{t}\left(J_{3, m}\right) \leq 16 t+3 m-6$.

4. An upper bound for the t-pebbling number of Jahangir graph $J_{n, m}$

Here, we present the known results about the pebbling number of Jahangir graphs from $[6,7,8]$. The pebbling number of Jahangir graph $J_{2, m}(m \geq 3)$ is as follows:

Theorem 1. [6] For Jahangir graph $J_{2,3}, f\left(J_{2,3}\right)=8$.

Theorem 2. [6] For Jahangir graph $J_{2,4}, f\left(J_{2,4}\right)=16$.
Theorem 3. [6] For Jahangir graph $J_{2,5}, f\left(J_{2,5}\right)=18$.
Theorem 4. [6] For Jahangir graph $J_{2,6}, f\left(J_{2,6}\right)=21$.
Theorem 5. [6] For Jahangir graph $J_{2,7}, f\left(J_{2,7}\right)=23$.
Theorem 6. [7] For Jahangir graph $J_{2, m}$ where $m \geq 8, f\left(J_{2, m}\right)=2 m+10$.
The t-pebbling number of Jahangir graph $J_{2, m}(m \geq 3)$ is as follows:
Theorem 7. [8] For Jahangir graph $J_{2,3}, f_{t}\left(J_{2,3}\right)=8 t$.
Theorem 8. [8] For Jahangir graph $J_{2,4}, f_{t}\left(J_{2,4}\right)=16 t$.
Theorem 9. [8] For Jahangir graph $J_{2,5}, f_{t}\left(J_{2,5}\right)=16 t+2$.
Theorem 10. [8] For Jahangir graph $J_{2, m}, f_{t}\left(J_{2, m}\right)=16(t-1)+f\left(J_{2, m}\right)$ where $m \geq 6$.

From the above results and the results from this paper, we can conclude that $f_{t}\left(J_{n, m}\right) \geq t\left(2^{k}\right)$, where $k=2^{2\left\lfloor\frac{n}{2}\right\rfloor+2}$ is the diameter of $J_{n, m}$ for $3 \leq$ $n<m$ (for $n=2$, we take $m \geq 4$).

After seeing the behaviour of Jahangir graph $J_{n, m}$, we give the following conjecture for the t-pebbling number of $J_{n, m}$.

Conjecture 1. For Jahangir graph $J_{n, m}(3 \leq n<m)$,

$$
f_{t}\left(J_{n, m}\right) \leq \begin{cases}t\left(2^{k}\right)+(m-2)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor}-1\right) & \text { if } n \text { is even } \\ t\left(2^{k}\right)+(m-3)\left(2^{\left\lfloor\frac{n}{2}\right\rfloor+1}-1\right)+n & \text { if } n \text { is odd, }\end{cases}
$$

where $k=2^{2\left\lfloor\frac{n}{2}\right\rfloor+2}$ is the diameter of $J_{n, m}$.

References

[1] F.R.K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math., 2 (4), pp. 467-472, (1989).
[2] A. Lourdusamy, t-pebbling the graphs of diameter two, Acta Ciencia Indica, XXLX (M. No.3), pp. 465-470, (2003).
[3] A. Lourdusamy, and T. Mathivanan, The pebbling number of the Jahangir graph $J_{2, m}$, Submitted for publication.
[4] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, The pebbling number of the square of an odd cycle, Sciencia Acta Xaveriana Vol. 3 (2), pp. 21-38, (2012).
[5] A. Lourdusamy and A. Punitha Tharani, Ont-pebbling graphs, Utilitas Mathematica (To appear in Vol. 87, March 2012).
[6] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, Pebbling number for Jahangir graph $J_{2, m}(3 \leq m \leq 7)$, Sciencia Acta Xaveriana Vol. 3 (1), pp. 87-106, (2012).
[7] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, On pebbling Jahangir graph, General Mathematics Notes, 5 (2), pp. 42-49, (2011).
[8] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, The t pebbling number of Jahangir graph, International Journal of Mathematical Combinatorics, Vol. 1, pp. 92-95, (2012).
[9] A. Lourdusamy and S. Somasundaram, The t-pebbling number of graphs, South East Asian Bulletin of Mathematics, 30, pp. 907-914, (2006).
[10] D. Moews, Pebbling graphs, J. Combin, Theory Series B, 55, pp. 244252, (1992).
[11] D. A. Mojdeh and A. N. Ghameshlou, Domination in Jahangir graph $J_{2, m}$, Int. J. Contemp. Math. Sciences, 2, No. 24, pp. 1193-1199, (2007).
[12] L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Congressus Numerantium, 107, pp. 65-80, (1995).
[13] C. Xavier and A. Lourdusamy, Pebbling numbers in graphs, Pure Appl. Math. Sci., 43, No. 1-2, pp. 73-79, (1996).

A. Lourdusamy

Department of Mathematics
St. Xavier's College (Autonomous), Palayamkottai - 627 002, Tamilnadu, India
e-mail : lourdusamy15@gmail.com
and

T. Mathivanan

Department of Mathematics
St. Xavier's College (Autonomous),
Palayamkottai - 627 002,
Tamilnadu,
India
e-mail : tahit_van_man@yahoo.com

