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Abstract

In this paper, based on the Lyapunov-Krasovskii functional ap-
proach, we obtain sufficient conditions which guarantee stability, uni-
formly stability, boundedness and uniformly boundedness of solutions
of certain third order non- autonomous differential equations of re-
tarded type. Our results complement and improve some recent ones.
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1. Introduction

In this paper, we are interested in obtaining sufficient conditions for all so-
lutions of the third order non-autonomous differential equation of retarded
type

x000(t) = a(t)ϕ(x00(t−τ))x00(t)+b(t)ψ(x0(t))+h(x(t))+f(x(t), x0(t−τ))+p(t),
(1.1)
to be bounded and uniformly bounded, and in case p(t) ≡ 0, sufficient
conditions for the zero solution to be stable and uniformly stable. Our mo-
tivation comes partially from a recent paper of El-Nahhas [11] who studied
the stability of the autonomous differential equation of retarded type

x000(t) = ax00(t) + bx0(t) + cx(t) + f(x(t), x0(t− τ)),(1.2)

where a, b and c are negative constants; τ (> 0) is constant retardation;
f(0, 0) = 0.

Differential equations of the type (1.1) and (1.2) have been shown to
be useful in modeling many phenomena in various fields of science and
engineering and in more recent years to problems in biomathematics (see,
for example, Cronin-Scanlon [8] and Smith [19]). One special case of non-
linear differential equations of third order is what is known as the jerky
dynamics equation

x000(t) + k1(x(t), x
0(t))x00(t) + k2(x(t), x

0(t), x00(t)) = 0

that has gained some attention in the literature (see, Chlouverakis and
Sprott [7], Eichhorn et al. [9], Elhadj and Sprott [10] and Linz [14]). Be-
sides, qualitative properties of solutions of third order differential equations
such as stability, instability, boundedness, oscillation, and periodicity of
solutions have been studied by many authors; in this regard, we refer the
reader to the monograph by Reissig et al. [17], and the recent papers of
Adams et al. [1], Ademola and Arawomo [2], Afuwape and Adesina [3], Bai
and Guo [5], Ogundare and Okecha [15], Rauch [16], Sadek [18], Tunç ([20]-
[27]), Zhang and Yu [29] and the references cited therein. However, to the
best of our knowledge, there exist few results on the mentioned qualitative
behaviors of solutions for the non-autonomous third order differential equa-
tions of retarded type (see, the references of this paper). Motivated by the
above discussions, the main purpose of this paper is to give some sufficient
conditions for the stability, uniformly stability, boundedness and uniformly
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boundedness of solutions of equation (1.1). Our results complement and
improve some recent ones.

One tool to be used here is the stability and boundedness theorems.

Let us consider non-autonomous delay differential equation

x0 = F (t, xt), xt = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0,(1.3)

where F : <+×CH → <n, <+ = [0,∞), is a continuous mapping, F (t, 0) =
0, and we suppose that F takes closed bounded sets into bounded sets of <n.
Here (C, k. k) is the Banach space of continuous function φ : [−r, 0] →
<n with supremum norm; CH is the open H -ball in C; CH := {φ ∈
(C[−r, 0], <n) : kφk < H}. Let S be the set of φ ∈ C such that kφk ≥ H
denote by S• the set of all functions φ ∈ C such that |φ(0)| ≥ H, where H
is large enough.

First, we will give some basic definitions.

Definition 1.1. (Burton [6]) Let F (t, 0) = 0. The zero solution of equation
(1.3) is stable if for each

ε > 0 there is a δ > 0 such that [t ≥ 0, kφk < δ, t ≥ t0] implies that
|x(t, t0, φ)| < ε.

Definition 1.2. (Burton [6]) A continuous functions W : <+ → <+ with
W (0) = 0, W (s) > 0 if s > 0, and W strictly increasing is a wedge. (We
denote wedges by W or Wi, where i an integer.)

Definition 1.3. (Burton [6]) Let D be an open set in <n with 0 ∈ D. A
function V : <+ ×D→ <+ is called
(i) positive definite if V (t, 0) = 0 and if there is a wedge W1 with V (t, x) ≥
W1(|x|);
(ii) decresent if there is a wedge W2 with V (t, x) ≤W2(|x|).

The following theorems are basic tools for our results.
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Theorem 1.1. (Burton [6]) Let V : <+×CH → <+ be continuous, (where
V is Lyapunov functional for equation (1.3). If
(i) If W1(|φ(0)|) ≤ V (t, φ), V (t, 0) = 0,
and

V0(t, xt) ≤ 0, then the zero solution of equation (1.3) is stable;
(ii) If W1(|φ(0)|) ≤ V (t, φ) ≤W2(kφk), V (t, 0) = 0,
and
V0(t, xt) ≤ 0, (where W1 and W2 are wedges), then the zero solution of equa-
tion (1.3) is uniformly stable.

Theorem 1.2. (Yoshizawa [28]) Suppose that there exists a continuous
Lyapunov functional V (t, φ) defined for all t ∈ <+ and φ ∈ S•, which
satisfies the following conditions;
(i) a(|φ(0)|) ≤ V (t, φ) ≤ b1(|φ(0)|) + b2(kφk),
where a(r), b1(r), b2(r) ∈ CI, (CI denotes the families of continuous in-
creasing functions), and are positive for r > H and a(r) − b2(r) → ∞ as
r →∞;
(ii) V0(t, φ) ≤ 0.

Then, the solutions of equation (1.3) are uniformly bounded.

2. Main results

We consider the nonlinear third order differential equation with constant
delay τ ,

x000(t) = a(t)ϕ(x00(t−τ))x00(t)+b(t)ψ(x0(t))+h(x(t))+f(x(t), x0(t−τ))+p(t),
(2.1)
where < = (−∞,∞), <+ = [0,∞), a(t) and b(t) are negative and con-
tinuous functions in <+ = [0,∞), ϕ : < → <, ψ : < → <, h : < → <,
f : <2 → < and p : <+ → < are continuous with ψ(0) = 0, h(0) = 0,
f(0, 0) = 0, and τ is a positive constant.The continuity of the functions
a(t), b(t), ϕ, ψ, h, f and p guarantees the existence of the solutions, and
we assume that ϕ, ψ, h and f satisfy local Lipschitz conditions so that we
have uniqueness of solutions to initial value problems as well (see, Èl’sgol’ts
[12]), and the functions h, f and b(t) are differentiable.

We can write equation (2.1) as the system

x0(t) = y(t),

y0(t) = z(t),
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z0(t) = a(t)ϕ(z(t− τ))z(t) + b(t)ψ(y(t))

+h(x(t)) + f(x(t), y(t− τ)) + p(t).

Let g(x(t),y(t-τ)) = h(x(t)) + f(x(t), y(t− τ)).
Hence, we have

x0(t) = y(t),

y0(t) = z(t),

z0(t) = a(t)ϕ(z(t− τ))z(t) + b(t)ψ(y(t)) + g(x(t), y(t− τ)) + p(t),

which implies that

x0(t) = y(t),

y0(t) = z(t),

z0(t) = a(t)ϕ(z(t− τ))z(t) + b(t)ψ(y(t)) + g(x(t), y(t))

−
0Z

−τ

gy(x(t), y(t+ σ))z(t+ σ)dσ + p(t),(2.2)

where

gy =
∂g

∂y
.

Assume that:
(C1) a0 ≥ a(t) ≥ 1, b0 ≥ b(t) ≥ 1, b0(t) ≥ 0, where a0, b0 ∈ <;
(C2) v(t+ τ)[f(x(t), 0) + h0(x(t))x(t)] ≤ 0;

(C3)
v(t+τ)R
0
[f(x(t), u)du− f(x(t), 0)]v(t+ τ) < 0 for v(t+ τ) 6= 0;

(C4) v(t+ τ)[h0(x)v(t+ τ) +
v(t+τ)R
0

fx(x(t), u)du] ≥ 0;

(C5) |fv(x, v)| < P <∞;
(C6) a+ τα < 0, a, τ , α ∈ <, a < 0, τ > 0, α > 0;
(C7) 4α(a+ τα) + τ P 2 < 0.

Define the function H(x, y) by

H(x, y) = −
yZ
0

g(x, u)du− 1
2
by2, b ∈ <, b < 0, ( x, y) ∈ Ω0,
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Ω0 = {(x(t), y(t)) : (x(t), y(t+ τ)) ∈ Ω, t ≥ 0},

and Ω0 is a domain of the two dimensional Euclidean space <2.

Lemma 2.1. Assume that

(D1) ψ(0) = 0, ψ(y)
y ≤ b for y 6= 0, where b ∈ <, b < 0;

(D2) yg(x, 0) ≤ 0 for x, y, and
yR
0
g(x, u)du− g(x, 0)y < 0 for x, y 6= 0.

Then, the function H(x, y) = Lx2 + 2Mxy +Ny2 is positive definite and
decrescent, where

L = L(x, y) =
1

x2

⎡⎣− yZ
0

g(x, u)du+

yZ
0

g(x, 0)du

⎤⎦ ,
M =M(x) = − 1

2x
g(x, 0), andN = −1

2
b.

Proof. By noting the assumptions of Lemma 2.1, it follows that

L =
1

x2

⎡⎣− yZ
0

g(x, u)du+

yZ
0

g(x, 0)du

⎤⎦ > 0,

2Mxy = −yg(x, 0) ≥ 0

and

Ny2 = −1
2
by2 ≥ 0.

Then, we can conclude that

H(x, y) ≥ K(x2 + y2),

where K = min{[inf L(x, y)] for all x, y ∈ Ω0, N},K > 0. This means that
H(x, y) is positive definite. It is also clear that the quadratic form H(x, y)
can be rearranged as

H(x, y) = [x, y] T (x, y)

"
x
y

#
,

where
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T(x,y)=

⎡⎢⎢⎢⎣
1
x2

"
−

yR
0
g(x, u)du+

yR
0
g(x, 0)du

#
− 1
2xg(x, 0)

− 1
2xg(x, 0) −12b

⎤⎥⎥⎥⎦ .

Let λ1(x, y) and λ2(x, y) denote the characteristic roots of the matrix
T (x, y). Then, it is clear that

H(x, y) ≤ K
1
2 (x2 + y2),

where K = sup[λ21(x, y) + λ22(x, y)] for all x, y ∈ Ω0, and K > 0. Thus, the
function H(x, y) = Lx2 + 2Mxy +Ny2 is decrescent. This completes the
proof of Lemma 2.1. 2

Theorem 2.1. Assume that p(t) ≡ 0, conditions (C1) − (C7) hold, and
ψ(0) = 0, ψ(y)y ≤ b for y 6= 0, b ∈ <, b < 0; ϕ(z(t−τ)) ≤ a for z(t−τ), a ∈
<, a < 0.

Then, the zero solution of equation (2.1) is stable.

Proof. We define the Lyapunov-Krasovskii functional [13]
V = V (t, xt, yt, zt) by

V = −
yZ
0

g(x, u)du− b(t)

yZ
0

ψ(u)du+
1

2
z2 + α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ,(2.3)

where

g(x,y(t-τ)) = f(x, y(t − τ)) + h(x), (x,y)∈ Ω0, z = {z(t) : z(t) =
y0(t), t ≥ 0}, and α is a certain positive constant.

Consider the terms

-
yR
0
g(x, u)du− b(t)

yR
0
ψ(u)du,which are involved in (2.3).

It is clear that

−
yZ
0

g(x, u)du− b(t)

yZ
0

ψ(u)du = −
yZ
0

g(x, u)du− b(t)

yZ
0

ψ(u)

u
udu
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≥ −
yZ
0

g(x, u)du−
yZ
0

budu

= −
yZ
0

g(x, u)du− 1
2
by2

by the assumptions of Theorem 2.1.
Then, it is clear that the Lyapunov-Krasovskii functional V = V (t, xt, yt, zt)
is positive definite, and

V ≥ −
yZ
0

g(x, u)du− 1
2
by2 +

1

2
z2

+α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ.
In view of the above discussion and the functional V , we can conclude

that

K(x2 + y2) +
1

2
z2 + α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ ≤ V.(2.4)

Differentiating the functional V with respect to t, we have

V 0 = −y
yZ
0

gx(x, u)du+ a(t)ϕ(z(t− τ))z2 − b0(t)

yZ
0

ψ(u)du

−
0Z

−τ

gy(x(t), y(t+ σ))z(t)z(t+ σ)dσ + α

0Z
−τ

[z2(t)− z2(t+ σ)]dσ.

By the assumptions of Theorem 2.1, we have

V 0 ≤ −y
yZ
0

gx(x, u)du+

0Z
−τ

∙µ
a

τ
+ α

¶
z2(t)− αz2(t+ σ)

¸
dσ

−
0Z

−τ

gy(x(t), y(t+ σ))z(t)z(t+ σ)dσ,

where
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gx =
∂g
∂x , gy =

∂g
∂y .

In view of the assumption (C4), it follows that y
yR
0
gx(x, u)du ≥ 0.

Consider the terms
0R
−τ

£¡a
τ + α

¢
z2(t)− αz2(t+ σ)

¤
dσ −

0R
−τ

gy(x(t), y(t +

σ))z(t)z(t+ σ)dσ.
By noting assumptions (C4)-(C6), it can be seen that

− α2 − aα

τ
− 1
4
g2
y
(x(t), y(t+ σ)) = −

4τα2 + 4aα+ τg2
y
(x(t), y(t+ σ))

τ

≥ −4τα
2 + 4aα+ τP 2

τ
.

Therefore, if 4τα2 + 4aα+ τP 2 < 0, then the quadratic form

αz2(t+ σ) + gy(x(t), y(t+ σ))z(t+ σ)z(t)−
µ
a

τ
+ α

¶
z2(t)

= [z(t+ σ), z(t)]

⎡⎢⎣ α 1
2gy(x(t), y(t+ σ))

1
2gy(x(t), y(t+ σ)) −

¡a
τ + α

¢
⎤⎥⎦
⎡⎢⎣ z(t+ σ)

z(t)

⎤⎥⎦
is positive for any z(t+ σ) and z(t).
Then, we have V0 ≤ 0.

Thus, in view of the discussion made and Theorem 1.1, we can conclude
that the zero solution of equation (2.1) is stable. 2

Remark 2.1. 2.1 If the assumptions of Theorem 2.1 hold, then

K(x2 + y2) +
1

2
z2 + α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ ≤ V

≤ K
1
2 (x2 + y2) +

1

2
z2 + α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ.
Hence, we can conclude that the zero solution of equation (2.1) is uni-

formly stable.

Finally, for the case p(t) 6= 0, we prove the following theorem.
Theorem 2.2. In addition to conditions (C1) − (C7), assume that p ∈
L1(0,∞). Then, all solutions of equation (2.1) are bounded.
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Proof. For the case p(t) 6= 0, it is easy to see from V, which is given in
(2.3), that

V 0 ≤ zp(t).

Then, we have

V 0 ≤ |z| |p(t)| ≤ (1 + z2) |p(t)| .

From the discussion made for (2.3), it follows that
K(x2 + y2) + 1

2z
2 ≤ V.

Hence, V0 ≤ (1+2V ) |p(t)| , and an application of Gronwall’s inequality
[4] bounds V.

Thus, all solutions of (2.1) are bounded. 2

Remark 2.2. If the assumptions of Theorem 2.1 hold, then

K(x2 + y2) +
1

2
z2 + α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ ≤ V

≤ K
1
2 (x2 + y2) +

1

2
z2 + α

0Z
−τ

⎡⎣ 0Z
θ

z2(σ)dσ

⎤⎦ dθ.
Hence, we can conclude that all solutions of equation (2.1) are uniformly

bounded.

3. Conclusion

A kind of functional differential equations of third order with retarded argu-
ment has been considered. Defining an appropriate Lyapunov-Krasovskii
functional [13], stability, uniformly stability, boundedness and uniformly
boundedness of solutions have been investigated. Our results complement
and improve some recent ones.
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Yüzüncü Yil University,
65080, Van - Turkey
Turkey
e-mail : cemtunc@yahoo.com




