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Abstract

Fine spectra of various matriz operators on different sequence spaces
have been investigated by several authors. Recently, some authors have
determined the approximate point spectrum, the defect spectrum and
the compression spectrum of various matrix operators on different se-
quence spaces. Here in this article we have determined the spectrum
and fine spectrum of the upper triangular matriz U(r,s) on the se-
quence space cs. In a further development, we have also determined
the approximate point spectrum, the defect spectrum and the compres-
sion spectrum of the operator U(r,s) on the sequence space cs.
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1. Introduction

By w, we denote the space of all real or complex valued sequences. Through-
out the paper ¢, ¢y, bv, cs, bs, f1, {5 represent the spaces of all conver-
gent, null, bounded variation, convergent series, bounded series, absolutely
summable and bounded sequences respectively. Also bvg denotes the se-
quence space bv N cg.

Okutoyi [23] determined the spectrum of the Cesaro operator C; on
the sequence space bvg. The fine spectra of the Cesaro operator C7 over
the sequence space bup, (1 < p < 00) was determined by Akhmedov and
Bagar [2]. Altay and Basar [3, 4] determined the fine spectrum of the dif-
ference operator A and the generalized difference operator B(r,s) on the
sequence spaces ¢o and c. Furkan, Bilgi¢ and Kayaduman [14] have deter-
mined the fine spectrum of the generalized difference operator B(r, s) over
the sequence spaces /1 and bv. The spectrum and fine spectrum of the
Zweier Matrix on the sequence spaces £1 and bv were studied by Altay and
Karakus [5]. Altun [6, 7] determined the fine spectra of triangular Toeplitz
operators and tridiagonal symmetric matrices over some sequence spaces.
Fine spectra of operator B(r,s,t) over the sequence spaces ¢; and bv and
generalized difference operator B(r, s) over the sequence spaces ¢, and bvy,
(1 < p < o) were studied by Bilgi¢ and Furkan [11, 12]. Akhmedov and
El-Shabrawy [1] determined the fine spectrum of the operator A, on the
sequence space c¢. Panigrahi and Srivastava [24, 25| studied the spectrum
and fine spectrum of the second order difference operator A2, on the se-
quence space c¢g and generalized second order forward difference operator
A2 . on the sequence space ¢1. Fine spectrum of the generalized difference
operator A, on the sequence space £; was investigated by Srivastava and
Kumar [28]. Fine spectra of upper triangular double-band matrix U(r, s)
over the sequence spaces ¢y and ¢ were studied by Karakaya and Altun [20].
Recently, Karaisa and Basar [19] have determined the spectrum and fine
spectrum of the upper traiangular matrix A(r, s,t) over the sequence space
lp, (0 < p < 00). In a further development, they have also determined the
approximate point spectrum, defect spectrum and compression spectrum
of the operator A(r,s,t) on the sequence space £,, (0 < p < 00). The ap-
proximate point spectrum, defect spectrum and compression spectrum of
the operator B(r,s) on the sequence spaces ¢y, ¢,¢, and buy,, (1 < p < 00)
were studied by Bagar, Durna and Yildirim [9].
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The notion of matrix transformations over sequence space has been
studied from various aspects. Banach algebra of matrix maps have been
investigated by Rath and Tripathy [26]. Besides the above listed workers,
the spectrum and fine spectrum for various matrix operators has been in-
vestigated by Tripathy and Pal [29, 30], Tripathy and Saikia [31] and many
others in the recent years.

In this paper, we shall determine the spectrum and fine spectrum of
the upper triangular matrix U(r, s) on the sequence space cs. Also,we will
determine the approximate point spectrum, the defect spectrum and the
compression spectrum of the operator U(r,s) on the sequence space cs.
Clearly,cs = {x = (x) € w : limy 00 Y jug @i exists} is a Banach space
with respect to the norm ||z||cs = sup,,| > i—o Zil-

2. Preliminaries and Background

Let X and Y be Banach spaces and T' : X — Y be a bounded linear
operator. By R(T), we denote the range of T, i. e.

RT)={yeY:y=Tz,z e X}.

By B(X) ,we denote the set of all bounded linear operators on X into
itself. If T' € B(X), then the adjoint T* of T' is a bounded linear operator
on the dual X* of X defined by (T*f)(x) = f(Tz), for all f € X* and
x € X. Let X # {0} be a complex normed linear space, where 6 is the zero
element and 7' : D(T') — X be a linear operator with domain D(T") C X.
With T', we associate the operator

Ty =T — M,

where A is a complex number and I is the identity operator on D(T"). If T
has an inverse which is linear, we denote it by T 1 that is

Tyt =(T - D),
and call it the resolvent operator of T'. A reqular value \ of T' is a complex

number such that

(R1) Ty ' exists,
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(R2) Ty ' is bounded,
(R3) T, ' is defined on a set which is dense in X i. e. R(Ty) = X.

The resolvent set of T', denoted by p(T, X), is the set of all regular val-
ues A of T. Its complement (T, X) = C — p(T, X) in the complex plane
C is called the spectrum of T. Furthermore, the spectrum o(7, X) is par-
titioned into three disjoint sets as follows:

The point(discrete) spectrum a,(T, X) is the set such that 75 * does not
exist. Any such A € 0,,(T, X) is called an eigenvalue of 7.

The continuous spectrum o.(T, X) is the set such that T, ! exists and
satisfies (R3), but not (R2), that is, T * is unbounded.

The residual spectrum o,(T, X) is the set such that T} ! exists (and may
be bounded or not), but does not satisfy (R3), that is, the domain of T} *
is not dense in X.

From Goldberg [17], if X is a Banach space and T' € B(X), then there
are three possibilities for R(T') and T~

(1) R(T) = X,
(I) R(T) + R(D) = X
(1) R(T) # X

and

(1) T~ exists and is continuous,
(2) T~ exists but is discontinuous,

(3) T~ does not exist.
Applying Goldberg [17] classification to Ty , we have three possibilities
for T\ and T L.
(I) Ty is surjective,

(D) R(Ty) # R(T)) = X,
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(III) R(Ty) # X,
and
)\ 1s Injective an y ~ 1s continuous
(I) Ty is i J . d T)\ 1. . :
(IT) T is injective but T 1'is discontinuous,
(III) Ty is not injective.

If these possibilities are combined in all possible ways, nine different
states are created which may be shown as in the Table 2.1.

These are labelled by: I1,I5,13,111, 115, I13, 111y, I115 and I113. If A is
a complex number such that Ty € I; or T) € Iy ,then A is in the resolvent
set p(T', X) of T. The further classification gives rise to the fine spectrum of
T. If an operator is in state Iy for example, then R(T') # R(T) = X and
T—1 exists but is discontinuous and we write A € Iloo(T, X). The state
I1; is impossible as if T}, is injective, then from Kreyszig [[22], Problem 6,
p. 290] T’y ! is bounded and hence continuous if and only if R(T}) is closed.

Again, following Appell et. al. [8], we define the three more subdivisions
of the spectrum called as the approzimate point spectrum, defect spectrum
and compression spectrum.

Given a bounded linear operator T in a Banach space X, we call a se-
quence (z) in X as a Weyl sequence for T if ||xg|| = 1 and ||Tzg|| — 0 as

k — oo.

The approzimate point spectrum of T' ,denoted by o4, (T, X) , is defined
as the set

(2.1) 04p(T, X) = {X € C : there exists a Weyl sequence for T — X}
The defect spectrum of T',denoted by os(T, X),is defined as the set
(2.2) o5(T,X)={Ae€ C:T -\ is not surjective}

The two subspectra given by equations (2.1) and (2.2) form a (not
necessarily disjoint) subdivisions

(2.3) (T, X) = 04p(T, X) U o5(T, X)
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of the spectrum. There is another subspectrum
00T, X)={A€ C: R(T'—\) # X}

which is often called the compression spectrum of T. The compression
spectrum gives rise to another (not necessarily disjoint) decomposition

(2.4) o(T,X) =04p(T,X)Uoceo(T, X)

Clearly, o,(T,X) C 04p(T, X) and 0.,(T,X) C o5(T,X). Moreover,
it is easy to verify that o,.(7,X) = 0co(T, X) \ 0p(T, X) and o.(T, X) =
o(T, X) \ [op(T, X) Uoeo(T, X))

By the definitions given above, we can illustrate the subdivisions spec-
trum in the Table 2.2.

Proposition 2.1. [Appell et al. [8], Proposition 1.3, p. 28] Spectra
and subspectra of an operator T' € B(X) and its adjoint 7% € B(X™) are
related by the following relations:

a) o(T*, X*)=0o(T, X).
b) o.(T*, X*) C ogp

c) ogp(T*, X*) =05

e) op(T*, X*) = 0co

)

) (T, X)

) (T, X)

d) o5(T*, X*) = 0ap(T, X).

) (T, X)

£) oco(T™, X™) 2 0p(T’, X)
g)

o(T, X) = 0ap(T, X) U 0(T*, X*) = 0(T, X) U 0 (T*, X*).

The relations (c)-(f) show that the approximate point spectrum is in
a certain sense dual to defect spectrum, and the point spectrum dual to
the compression spectrum. The equality (g) implies, in particular, that
o(T,X) = 04qp(T,X) if X is a Hilbert space and T is normal. Roughly
speaking, this shows that normal (in particular, self-adjoint) operators on
Hilbert spaces are most similar to matrices in finite dimensional spaces
(Appell et al. [8]).

Let A and p be two sequence spaces and A = (a,x) be an infinite matrix
of real or complex numbers a,, where n,k € No = {0,1,2,...}. Then, we
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say that A defines a matrix mapping from A into u, and we denote it by
A: X\ — p,if for every sequence x = (zp) € A, the sequence Az = {(Ax),},
the A-transform of z, is in u, where

(2.5) (Az), = Z ke, € No.
k=0

By (A : u), we denote the class of all matrices such that A : A\ — pu.
Thus, A € (A : p) if and only if the series on the right hand side of
equation (2.5) converges for each n € Ny and every x € A and we have
Az = {(Az)n}neN, € pfor all z € A

The upper triangular matrix U(r, s) is an infinite matrix of the form

S

—~

3

VA

~—

I
S O O 3
SO 3 »
S 3 »w O
s OO

where s # 0.
The following results will be used in order to establish the results of
this article.

Lemma 2.2. [Wilansky [32] Example 6B, Page 130] The matrix
A = (ank) gives rise to a bounded linear operator T' € B(cs) from cs to
itself if and only if:

m
(1) S 321 X (ank — an )] < oo
n=

(ii) Y ang is convergent for each k.
n

Lemma 2.3. [Goldberg [17], Page 59] T" has a dense range if and only
if T* is one to one.

Lemma 2.4. [Goldberg [17], Page 60] T" has a bounded inverse if and
only if T is onto.
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3. Spectrum and fine spectrum of the operator U(r,s) over
the sequence space cs

The following result will be used for establishing some results of this section.

Lemma 3.1. [Akhmedov and El-Shabrawy [1], Lemma 2.1] Let (¢;,)
and (d,,) be two sequences of complex numbers such that lim, .. ¢, = ¢
and |c| < 1. Define the sequence (z,) of complex numbers such that z,+1 =
Cni12n + dpaq for all n € Ng. Then

(i) if (dy) is bounded, then (z,) is bounded.
(ii) if (d,,) is convergent then (z,) is convergent.

(iii) if (dy)is a a null sequence, then (z,,) is a null sequence.

Theorem 3.2. U(r,s) : cs — c¢s is a bounded linear operator and

H U(T, S) H(cs:cs)g ”I”‘ + ‘S‘

Proof. From Lemma 2.2, it is easy to show that U(r,s) : cs — cs is a
bounded linear operator.

Now,
n

|Uz| = [U(r,s)z| = |Z(7’Hfi—1+smi)|
i=1

n n
11D @il + sl Y il
i=1 i=1

< (el 1) Nl fles

IN

And hence,|| U(r, s) [|(csies) < |7| + [s] O

Theorem 3.3. The point spectrum of the operator U(r, s) over cs is given
by

op(U(r,s),es) ={a € C:|a—r| <|s|}.
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Proof. Let a be an eigenvalue of the operator U(r, s). Then there exists
x#60=(0,0,0,0,...)in ¢s such that U(r, s)x = azx. Then, we have

Ty + Sr1 = Qg
rr1 4+ Sre = a1
Ty + STr3 = QX9
TTn + STp+1 = aTp, N >0
Then, we have
a—rT
I = i)
S
2
a—rT a—rT
Ty = T = Iy
S S
3
a—rT a—r
r3 = T2 = o
S S
n
a—r
Tp = g, n>1
S

Since, z = (z,) € cs, 80 liMy 00 D io @i = limp oo D oipf
exists if and only if
| —r| < |s|. Hence, op(U(r,s),cs) ={a € C:la—r|<]s|}. D

If T : cs — c¢s is a bounded linear operator represented by a matrix
A, then it is known that the adjoint operator T™ : ¢s* — cs* is defined by
the transpose A! of the matrix A. It should be noted that the dual space
cs* of ¢s is isometrically isomorphic to the Banach space bv of all bounded
variation sequences normed by ||  ||po= Y020 [Tn+1 — Tn| + limy o0 |Tn)-

Theorem 3.4. The point spectrum of the operator U(r,s)* over cs* is
given by
op(U(r,s)*,cs* =2 bv) = ¢.

Proof. Let a be an eigenvalue of the operator U(r,s)*. Then there
exists  # 0 = (0,0,0, ...) in bv such that U(r, s)z = ax. Then, we have

rryg = aXx
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ST+ rxry = axy

STr1+rry = axy

8Tp + TTpt1 = Ty, n>1

If zy,, is the first non-zero entry of the sequence (x,), then a = r. Then
from the relation sz, + 7&p,+1 = aTpe4+1 , We have sz,, = 0. But s # 0
and hence, z,, = 0, a contradiction. Hence,o,(U(r, 5)*,cs* = bv) = ¢. O

Theorem 3.5. For any o € C, U(r, s) — al has a dense range.
Proof. By Theorem 3.4, o,(U(r, s)*, cs* = bv) = ¢.

Hence, U(r, s)* —al ie. (U(r,s) —al)* is one to one for all « € C. So,
by applying Lemma 2.3, we get the required result. O

Corollary 3.6. The residual spectrum of the operator U(r,s) over cs is
given by
o (U(r, s),cs) = ¢.

Proof.  Since,U(r, s)—al has a dense range for all « € C, so 0, (U(r, s),cs) =

$. O

Theorem 3.7. The continuous spectrum and the spectrum of the operator
U(r,s) over cs are respectively given by

oc(U(r,s),cs) ={a € C:la—r|=]s|}

and
o(U(r,s),cs) ={a e C:|a—r|<|s|}.

Proof. Let y = (yn) € bv be such that (U(r,s) — al)*z = y for some
x = (z). Then we have following system of linear equations:

(r—a)rg = o
sro+ (r—a)ry = ny
st1+ (r—a)zy = yo
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Stp1+(r—a)r, = yp+1, n>1

Solving these equations we get,

1
Trog =
r— o
1
rpT =
’r‘_
1
Tro =
r —
1
r3 =
r— o
1
T —
r—ao X
Also x4 =
Now,
|Tpy1 — x| =

1 S
(Y1 — sz0) = Py s L
1 S 2
(y2 — sz1) = P e L
1 52 s3
(y?) - S‘TQ) = ay?) - (7" )2 Y2 ( )3y1 (T Oé)4y0

Ek:(—rja> _Zyz‘

1=

k+1—i
1 k+1 S .
Lo (-25) e

e k+1—i . k—i
s s
|r — ;(_r—a) yl_;(_r—a) Yi
E+1 k
1 S S
- Yot | — Y1+t Ykt
|r — r— o r—a
k k—1
s s
r—a r—a

k+1 k
1 S S
<——) y0+(— ) (y1 —vo) +
r— o r— o

Ir — a
k-1
(— S) (y2 —y1) + -+ (Yrg1 — )

r—«

1
=«

k41
lyo| +

k
S

S
—| |y1 —yol +
r—ao r—a




118 Binod Chandra Tripathy and Rituparna Das

k—1

lyo —yi| + - + [Yk1 — Vil

Since y = (yn) € bv, therefore limy,_,o0 > i |Yi+1 — ¥i| exists and
o0
|y lloo= ZO Ynt1 — Ynl +7}LH;O [Yn-
oy

Therefore |yn+1 — Yn| <|| ¥ oo and |yn| <|| y ||pn for all n € Ny.
Hence,

n
lim 3 |zp41 — o
k=0

n—oo
- i n s |kl . n s |F
1 nggo kZ::O r—a ’yO‘ - nggo kZ::O r-o ’yl B y0’
STal | L e R im 3"
+ lim > |2 ly2 — 1| + -+ lim 3 |yer1 — Yl
[ " =0 n—o0 k=
N ol e o S s
11m 1m 1m
< |ria\ n—o0 o 1T e = R = N 19160
+oot |2+

Let a € C such that |r —a| > [s|. Then lim, 0o > 1o |Tkt1 — Tk| < 00
and hence x = (x,,) is in bv. Therefore the operator (U(r,s) — al)* is onto
if |r — a| > |s|. Then by Lemma 2.4, U(r, s) — ol has a bounded inverse if
Ir —al > |s].

Hence,

oc(U(r,s),cs) C{a e C:|r—al <|s|}.

Now
a(U(r,s),cs) =

op(U(r,8),cs) Uop(U(r,s),cs) Joe(U(r,s),cs) C{aecC:lr—al <|s|}.
By Theorem 3.3, we have
{aeC:lr—al <|s|} =0p(U(r,s),cs) Ca(U(r,s),cs)

Since o(U(r, s),cs) is a compact set, so it is closed and hence,

{aeC:|r—al <|s|} Ca(U(r,s),cs) =oa(U(r,s),cs)
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and therefore, {a € C: |r —a| < |s|} C a(U(r,s),cs).
Hence, o(U(r, s),cs) ={a e C: |a—r| < |s|}.

Since o(U(r, s), ¢s) is disjoint union of o,(U(r, s), cs),0.(U(r, s), cs) and
oc(U(r, s),cs),

therefore o.(U(r, s),cs) = {a € C: |a—r|=|s|}.
(]

Theorem 3.8. If |a — r| < |s], then a € I30(U(r, s),cs) (See Table 2.2).

Proof. Let | —r| < |s|. Then by Theorem 3.3, a € o, (U(r,s),cs). So
« satisfies Goldberg’s condition 3.

To get the result we need to show that U(r, s)—al is onto when |a—r| <
|s].

Let y = (yn) € cs be such that (U(r,s) — al)z =y for some = = (x,).

Then (r — @)z, + $Tpy1 = yn; n >0,

Now,
$Tpy1 = (@ —7)Tp +Yn
(a—1) 1
= Tptl = Ty + ;yn
k (a—7) & 1k
= Zajn—f—l: an+_2yn
n=0 § n=0 § n=0
k+1 k k
a—r 1
= an:( )an+(—2yn—|—xo)
n=0 § n=0 § n=0
Let cp = 5, 2 = Zﬁzo Tp and dyy1 = %ZZ:O Yn + To-

Then zpy1 = cpq12k + dpy1. Now, limy_ocp, = 95T and [2F] < 1.
Also, as y = (yn) € cs, 80 limy 00 Zﬁ:o yn exists and hence, (d) € c.
Hence, by Lemma 3.1 (i), the sequence (z,) = (XF_, ) is also con-

vergent and so,
x = (zp) € cs. Therefore, U(r,s) — al is onto. So, a € I (See Table 2.2).
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Hence the result.
O

Theorem 3.9. The approximate point spectrum of the operator U(r, s)
over cs is given

by
ap(U(r,8),c5) ={a € C:|a—r| <|s|}.
Proof. From Table 2,
oap(U(r,s),cs) =a(U(r,s),cs) \I111o(U(r,s),cs).
Also o,.(U(r,s),cs) = I11I1o(U(r,s),cs) U IIIs0(U(r,s),cs) (See Table
2)
By Corollary 3.6, o.(U(r,s),cs) = ¢ and so, I[1110(U(r,s),cs) = ¢.

Hence, from Theorem 3.6, 04,(U(r,s),cs) ={a e C:|a—r| <|s|}. O

Theorem 3.10. The compression spectrum of the operator U (r, s) over cs
is given by
oeo(U(r, 8),c8) = ¢.
Proof. By Proposition 3.6(e), we get
op(U(r,8)*,¢s*) = 0eo(U(r, s), cs).

Using Theorem 3.4, we get the required result. O

Theorem 3.11. The defect spectrum of the operator U(r,s) over cs is
given by
o5(U(r,s),cs) ={a e C:la—r|=]s|}.
Proof. From Table 2.2,we have
06(U(T7 8)7 CS) = U(U(Ta 8)7 CS)\I3U(U(T7 8)7 CS)‘
Using Theorem 3.7 and Theorem 3.8, we get the required result. O
Corollary 3.12. The following statements hold:
(i) op(U(r,s)*,cs* = bv) ={a € C:|a—r|=]|s|}.

(ii) os(U(r,8)*,cs* = bv) ={a € C:|a—r| <|s|}.
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Proof.  Using Proposition ??(c) and (d), we get

op(U(r, )", cs* =bv) = o5(U(r,s),cs)
os(U(r,s)*,cs" =bv) = oqp(U(r,s),cs)

Using Theorem 3.9 and Theorem 3.11, we get the required results. O

4. Conclusion

In this article we have determined the spectrum and fine spectrum of the
matrix operator U(r,s) over the sequence space cs. In a further develop-
ment, we have introduced the concept of the approximate point spectrum,
defect spectrum and compression spectrum of the operator U(r, s) on the
sequence space U(r,s). This is a new development and the work can be
applied to investigate the spectra and fine spectra of some other matrix
operators too.
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I

II 111

1| p(T,X)

or (T, X)

o(T, X)

o(T, X)

or (T, X)

3| op(T, X)

op(T, X)

op(T, X)

Table 2.1: Subdivisions of spectrum of a linear operator

1 2 3
Ty T exists Ty T exists Ty 1 does not exist
and is bounded | and is not bounded
I |R(T—-XM)=X A€ p(T, X) A€ op(T, X)
A€ 0gy(T, X)
A€o (T, X) A€ op(T,X)
II | RT—=X)=X A€ p(T,X) A€ 0T, X) A€ ogp(T, X)
)\605(T,X) )\605(T,X)
A€o (T, X) A€o, (T, X) A€ op(T, X)
I | R(T = M) # X | Aeos(T,X) A€ 0T, X) A€ ogp(T, X)
A€ oeo(T, X) A€ os(T,X) A€ os(T,X)
A€ oe(T, X) A€ oe(T, X)

Table 2.2: Subdivisions of spectrum of a linear operator






