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Abstract

Using the non-abelian Fourier transform, we find the central con-
tinuous solutions of the functional equation

n−1X
k=0

f(xσk(y)) = nf(x)f(y) x, y ∈ G,

where G is an arbitrary compact group, n ∈N\{0} and σ is a contin-
uous automorphism of G, such that σn = I. We express the solutions
in terms of the unitary (group) characters of G.
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1. Introduction

Let G be a group, n ∈ N \ {0} and σ an automorphism of G, such that
σn = I, where I denotes the identity map. We consider the functional
equation

n−1X
k=0

f(xσk(y)) = nf(x)f(y), x, y ∈ G,(1.1)

where f : G → C is the function to determine. This equation has been
solved on abelian groups. See Shin’ya [[13], Corollary 3.12] and Stetkær
[[17], Theorem 14.9]. The functional equation (1.1) is a generalization of
Cauchy’s and d’Alembert’s functional equations. In fact, Cauchy’s func-
tional equation

f(xy) = f(x)f(y), x, y ∈ G,(1.2)

results from (1.1) by taking σ = I. In the particular case where n = 2, (1.1)
reduces to functional equation

f(xy) + f(xσ(y)) = 2f(x)f(y), x, y ∈ G,(1.3)

When G is abelian and σ = −I, the functional equation (1.3) becomes
d’Alembert’s functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ G.(1.4)

This explains the choice of the title of this paper. At present the theory of
d’Alembert’s equation is extensively developed (cf. [2] -[11]; [14] -[20]).
Because of the importance of this types of equations, it is worthwhile to
provide a solution for functional equation (1.1) in the case of f being a
central function and the group G being compact and possibly non-Abelian.
Our approach uses harmonic analysis and representation theory on compact
groups. The idea of using Fourier analysis for solving it goes back to [5].

Throughout the rest of this paper, B(H) is the algebra of all bounded
linear operators on Hilbert space H, the group G is always assumed to be
compact and σ is a continuous automorphism. By solutions (resp. repre-
sentations), we always mean continuous solutions (resp. continuous repre-
sentations).
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2. Preliminaries

In this section, we set up some notation and conventions and briefly review
some fundamental facts in Fourier analysis which will be used later.

Let G be a compact group with the normalized Haar measure dx. Let
Ĝ stand for the set of equivalence classes of continuous irreducible unitary
representations of G. It is known that for [π] ∈ Ĝ, π is finite dimensional.
We denote its dimension by dπ. Consider επ = span{πij : i, j = 1, ..., dπ}
the linear span of matrix-valued representative of [π]. For f ∈ L2(G) , the
Fourier transform of f is defined by

f̂(π) = dπ

Z
G
f(x)π(x)−1dx ∈Mdπ(C),

for all [π] ∈ Ĝ, where Mdπ(C) is the space of all dπ × dπ complex matrix.

As usual, left and right regular representations of G in L2(G) are defined
by

(Lyf)(x) = f(y−1x), (Ryf)(x) = f(xy),

respectively, for all f ∈ L2(G) and x, y ∈ G. A crucial property of the
Fourier transform is that it converts the regular representations of G into
matrix multiplications. The following properties are useful.

i The Fourier inversion formula is given by

f(x) =
X
[π]∈Ĝ

tr(f̂(π)π(x)).

ii The following identities hold:

dLyf(π) = f̂(π)π(y)−1, dRyf(π) = π(y)f̂(π),

for all x, y ∈ G.

A function f : G→ C is central if

f(xy) = f(yx),

for all x, y ∈ G.

For more information about harmonic analysis we refer to [12].
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3. Main result

In this section, we shall solve (1.1) on compact groups by using harmonic
analysis of such groups. That two representations π and ρ of G are equiv-
alent is denoted π ' ρ.

Lemma 3.1. Let G be a compact group, and π a unitary irreducible rep-
resentation of G. If f : G→ C is a central function, then f̂(π) is a multiple
of the identity operator.

Proof.

π(y)f̂(π) = dπ

Z
G
f(x)π(y)π(x−1)dx

= dπ

Z
G
f(x)π((xy−1)−1)dx

= dπ

Z
G
f(xy)π(x−1)dx

= dπ

Z
G
f(yx)π(x−1)dk

= dπf̂(π)π(y),

for every y ∈ G. By Schur’s lemma, f̂(π) is a scalar multiple of the identity
operator. 2

This following lemma is inspired by the Small Dimension Lemma from
[20].

Lemma 3.2. Let G be a compact group and π a unitary irreducible rep-
resentation of G. Suppose for every x ∈ G there is cx ∈ C such that

n−1X
k=0

π(σk(x)) = cxIdπ , x ∈ G.(3.1)

Then dπ = 1.
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Proof. Consider the set S = {k ∈ {1, ..., n − 1} | π ' π ◦ σk}. We will
consider two cases, S is empty or not empty. In the first case, from (3.1)
we get

πij(x) +
n−1X
k=1

πij(σ
k(x)) = 0 for i 6= j, 1 ≤ i, j ≤ dπ, x ∈ G.(3.2)

Since S = ∅ we have επ⊥επ◦σk for all k = 1, ..., n − 1. Hence πij = 0
for i 6= j, so π is a diagonal matrix. Since π is irreducible this implies that
dπ = 1.

In the second case, if S 6= ∅ , then

S = {s0, 2s0, ...,Ns0} and n = (N + 1)s0,(3.3)

where s0 = minS and N = cardS. Indeed, let k ∈ S, there exists (q, r) ∈
N×N such that k = qs0 + r and 0 ≤ r < s0. From π ' π ◦ σs0 we arrive
at π ◦ σr ' π ◦ σqs0+r, so π ◦ σr ' π ◦ σk. This implies that π ' π ◦ σr.
Since 0 ≤ r < s0 and s0 = minS, we have r = 0. Then S is contained in
the set of integer multiples of s0. An additional simple inductive argument
is needed to show that S has the form S = {s0, 2s0, ...,Ns0}. Furthermore,
π ' π ◦ σs0 is equivalent to π ' π ◦ σn−s0 . From π ' π ◦ σn−s0 we infer
that n− s0 ∈ S. Since n− s0+ s0 = n 6∈ S we see that n− s0 is the biggest
element in S = {s0, 2s0, ..., Ns0}, i.e., n− s0 = Ns0 and n = (N + 1)s0.

Let (H, h, i) denote the complex Hilbert space on which the representa-
tion π acts. Since π ' π ◦ σs0 , there exists a unitary operator T ∈ B(H)
such that

π ◦ σs0(x) = T ∗π(x)T,

for all x ∈ G, from which induction gives the more general formula so

π ◦ σks0(x) = (T k)∗π(x))T k,

for all x ∈ G and any k = 0, 1, . . . . H has an orthonormal basis (e1, e2, . . . , edπ)
consisting of eigenvectors of T (by the spectral theorem for normal opera-
tors applied to T ). We write Tei = λiei, where λi ∈ C for i = 1; 2, . . . , dπ :
Actually |λi| = 1, T being unitary.

For any i = 1; 2, . . . , dπ, k ∈ S and x ∈ G we compute that

(π ◦ σks0)ii(x) =
D
(π ◦ σks0)(x)ei, ei

E
=
D
(T k)∗π(x))T kei, ei

E
=

D
T kπ(x)T kei, T

kei
E
=
D
λki π(x)ei, λ

k
i ei
E

= λki λ
k
i hπ(x)ei, eii = |λi|2kπii(x) = πii(x).
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It is easy to see from (3.1) that

πii(x) +
NX
k=1

πii(σ
ks0(x)) +

X
k∈S

πii(σ
k(x)) = cx,(3.4)

for all i = 1, ..., dπ and x ∈ G, where S is the complement of S in {1, ..., n−
1}. Since πii ◦ σks0 = πii for all k = 1, ...,N. From (3.4) we obtain

(N + 1)πii(x) +
X
k∈S

πii(σ
k(x)) = cx,

for all i = 1, ..., dπ, x ∈ G. Then dπ = 1. Indeed, if dπ > 1, then for all
i = 2, ..., dπ we have

(N + 1)πii +
X
k∈S

πii ◦ σk = (N + 1)π11 +
X
k∈S

π11 ◦ σk,

so

(N + 1)(πii − π11) =
X
k∈S
(π11 − πii) ◦ σk.(3.5)

Since π is not equivalent to π ◦ σk for any k ∈ S, we have επ⊥επ◦σk for
all k ∈ S. (3.5) implies that πii = π11 for all i = 2, ..., dπ. But if we use
Schur’s orthogonality relations which say 1

dπ
πij is an orthonormal basis, we

get a contradiction. Then dπ = 1. 2

Theorem 3.3. Let G be a compact group and σ is a continuous automor-
phism of G such that σn = I. If f is a central continuous non-zero solution
of the functional equation (1.1), then there is a unitary character χ of G
such that

f =
1

n

n−1X
k=0

χ ◦ σk.

Proof. Suppose that f satisfies (1.1). Rewrite (1.1) as
Pn−1

k=0 Rσk(y)f =
nf(y)f,
for all y ∈ G. Taking the Fourier transform to the above equation and using
the identities given in section 2, we have

n−1X
k=0

π(σk(y))f̂(π) = nf(y)f̂(π)(3.6)
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Since f 6= 0, there exists [π] ∈ Ĝ with f̂(π) 6= 0. But f is central so
f̂(π) = λπI, and so

n−1X
k=0

π(σk(y)) = nf(y)I,(3.7)

for all y ∈ G. By applying Lemma 3.2, we conclude from (3.7) that dπ = 1.
From dπ = 1 we see that π is a character, say π = χ where χ is a unitary
character of G. Then (3.7) implies

f =
1

n

n−1X
k=0

χ ◦ σk.

2

Corollary 3.4. Let G be a compact group and σ is a continuous automor-
phism of G such that σn = I. If f is a central continuous non-zero solution
of the functional equation (1.3), then there is a unitary character χ of G
such that

f =
χ+ χ ◦ σ

2
.
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