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Abstract

In this paper we use fixed point method to prove asymptotic stabil-
ity results of the zero solution of the totally nonlinear neutral differ-
ence equation with variable delay

4x (n) = −a (n) f (x (n− τ (n))) +4g (n, x (n− τ (n))) .

An asymptotic stability theorem with a sufficient condition is proved,
which improves and generalizes some results due to Raffoul (2006)
[23], Yankson (2009) [27], Jin and Luo (2009) [17] and Chen (2013)
[9].
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1. INTRODUCTION

Certainly, the Lyapunov direct method has been, for more than 100 years,
the efficient tool for the study of stability properties of ordinary, functional,
partial differential and difference equations. Nevertheless, the application of
this method to problems of stability in differential and difference equations
with delay has encountered serious difficulties if the delay is unbounded or
if the equation has unbounded terms ([6],[7],[11]-[13],[15],[25]). Recently,
Burton, Furumochi, Zhang, Raffoul, Islam, Yankson and others have no-
ticed that some of these difficulties vanish or might be overcome by means of
fixed point theory (see [1],[2],[3],[6],[7],[9],[16],[17], [23],[24],[27]-[29]). The
fixed point theory does not only solve the problem on stability but has a
significant advantage over Lyapunov’s direct method. The conditions of the
former are often averages but those of the latter are usually pointwise (see
[6]). Yet the stability theory of difference equations with/without delay has
been considered by many authors without the application of Lyapunov and
fixed point methods, see the papers [4],[5],[8],[14],[19]-[22],[30].

In this paper, we consider the nonlinear neutral difference equation with
variable delay

4x (n) = −a (n) f (x (n− τ (n))) +4g (n, x (n− τ (n))) ,(1.1)

with the initial condition

x (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z,

where ψ : [m (n0) , n0] ∩ Z→ R is a bounded sequence and for n0 ≥ 0,

m (n0) = inf {n− τ (n) , n ≥ n0} .

Throughout this paper we assume that a : Z+ → R, f : R → R and
τ : Z+ → Z+ with n − τ (n) → ∞ as n → ∞. The function g (n, x) is
locally Lipschitz continuous in x. That is, there is positive constant E so
that if |x| ≤ l for some positive constant l then

|g (n, x)− g (n, y)| ≤ E |x− y| .(1.2)

We also assume that
g (n, 0) = 0.(1.3)

Special cases of (1.1) have been considered and investigated by many
authors. For example, Raffoul in [23] and Yankson in [27] studied the
equation
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4x (n) = −a (n)x (n− τ (n)) ,(1.4)

and proved the following theorems.

Theorem A (Raffoul [23]). Suppose that τ (n) = r and a (n+ r) 6= 1 and
there exists a constant α < 1 such that

n−1X
s=n−r

|a (s+ r)|+
n−1X
s=0

⎛⎝|a (s+ r)|

¯̄̄̄
¯̄ n−1Y
k=s+1

[1− a (k + r)]

¯̄̄̄
¯̄ s−1X
u=s−r

|a (u+ r)|

⎞⎠ ≤ α,

(1.5)

for all n ∈ Z+ and
n−1Y
s=0

[1− a (s+ r)] → 0 as n → ∞ . Then, for every

small initial sequence ψ : [−r, 0] ∩ Z→ R, the solution x (n) = x (n, 0, ψ)
of (1.4) is bounded and tends to zero as n→∞.

Theorem B (Yankson [27]). Suppose that Q (n) 6= 0 for all n ∈ [n0,∞)∩Z,
the inverse sequence g of n − τ (n) exists and there exists a constant α ∈
(0, 1) for all n ∈ [n0,∞) ∩ Z such that

n−1X
s=n−τ(n)

|a (g (s))|+
n−1X
s=n0

⎛⎝|1−Q (s)|

¯̄̄̄
¯̄ n−1Y
k=s+1

Q (k)

¯̄̄̄
¯̄ s−1X
u=s−τ(s)

|a (g (u))|

⎞⎠ ≤ α,

(1.6)
where Q (n) = 1− a (g (n)). Then the zero solution of (1.4) is asymptoti-

cally stable if
n−1Y
s=n0

Q (s)→ 0 as n→∞ .

Obviously, Theorem B improves and generalizes Theorem A. On other
hand, Jin and Luo in [17] and Chen in [9] considered the generalized form
of (1.4),

4x (n) = −a (n) f (x (n− τ (n))) ,(1.7)

and obtained the following theorems.

Theorem C (Jin and Luo [17]). Suppose that τ (n) = r. Let f be odd,
increasing on [0, l], satisfy a Lipschitz condition, and let x− f (x) be non-
decreasing on [0, l]. Suppose that |a (n)| < 1 and for each l1 ∈ (0, l] we
have
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|l1 − f (l1)| supn∈Z+
Pn−1

s=0 |a (s+ r)|
n−1Y

k=s+1

[1− a (k + r)]

+ f (l1) supn∈Z+
Pn−1

s=0 |a (s+ r)|
n−1Y

k=s+1

[1− a (k + r)]
Pn−1

u=s−r |a (u+ r)|

+ f (l1) supn∈Z+
Pn−1

s=n−r |a (s+ r)| ≤ αl1.
(1.8)

Then the zero solution of (1.7) is stable.

Theorem D (Chen [9]). Suppose that the following conditions are satisfied

(i) the function f is odd, increasing on [0, l],

(ii) f (x) and x−f (x) satisfy a Lipschitz condition with constant K on
an interval [−l, l], and x− f (x) is nondecreasing on [0, l],

(iii) the inverse function g (n) of n− τ (n) exists and |a (g (n))| < 1,
(iv) there exists a constant α ∈ (0, 1) for all n ∈ Z+ such that

Pn−1
s=0 |a (g (s))|

n−1Y
k=s+1

[1− a (g (k))] +
Pn−1

s=n−r |a (g (s))|

+
Pn−1

s=0 |a (g (s))|
n−1Y

k=s+1

[1− a (g (k))]
Pn−1

u=s−r |a (g (u))|

≤ α.

Then the zero solution of (1.7) is asymptotically stable if
n−1Y
k=0

[1− a (g (k))]→ 0 as n→∞.

Obviously, Theorem D improves Theorem C.

Our purpose here is to improve Theorems A—D and extend it to inves-
tigate a wide class of nonlinear neutral difference equation with variable
delay presented in (1.1). Our results are obtained with no need of further
assumptions on the inverse of sequence n−τ (n), so that for a given bounded
initial sequence ψ a mapping P for (1.1) is constructed in such a way to
map a, carefully chosen, complete metric space Sψ into itself on which P is
a contraction mapping possessing a fixed point. This procedure will enable
us to establish and prove by means of the contraction mapping theorem
an asymptotic stability theorem for the zero solution of (1.1) with a less
restrictive conditions. It is important to note that, in our consideration,
the neutral term 4g (n, x (n− τ (n))) of (1.1) produces nonlinearity in the
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neutral term 4x (n− τ (n)). While, the neutral term in [3] enters linearly.
As a consequence, we have performed an appropriate analysis which is dif-
ferent from that used in [3] to construct the mapping in order to employ
fixed point theorems. For details on contraction mapping principle we re-
fer the reader to [26] and for more on the calculus of difference equations,
we refer the reader to [10] and [18]. The results presented in this paper
improve and generalize the main results in [9],[17],[23],[27].

2. Main results

For a fixed n0, we denoteD (n0) the set of bounded squences ψ : [m (n0) , n0]∩
Z→ R with the norm |ψ|0 = max {|ψ (n)| : n ∈ [m (n0) , n0] ∩ Z}. For each
(n0, ψ) ∈ Z+ ×D (n0), a solution of (1.1) through (n0, ψ) is a sequence x :
[m (n0) ,∞)∩Z→ R such that x satisfies (1.1) on [n0,∞)∩Z and x = ψ on
[m (n0) , n0]∩Z. We denote such a solution by x (n) = x (n, n0, ψ). For each
(n0, ψ) ∈ Z+×D (n0), there exists a unique solution x (n) = x (n, n0, ψ) of
(1.1) defined on [m (n0) ,∞) ∩ Z.

Let h : [m (n0) ,∞) ∩ Z → R be an arbitrary sequence. Rewrite (1.1)
as 4x (n) = −h (n) f (x (n)) +4n

Pn−1
s=n−τ(n) h (s) f (x (s))

+{h (n− τ (n))− a (n)} f (x (n− τ (n))) +4g (n, x (n− τ (n)))
= −h (n)x (n) + h (n) [x (n)− f (x (n))] +4n

Pn−1
s=n−τ(n) h (s) f (x (s))

+ {h (n− τ (n))− a (n)} f (x (n− τ (n))) +4g (n, x (n− τ (n))) ,
(2.1)

where 4n represents that the difference is with respect to n. If we let
H (n) = 1− h (n) then (2.1) is equivalent to

x (n+ 1) = H (n)x (n)+h (n) [x (n)− f (x (n))]+4n

n−1X
s=n−τ(n)

h (s) f (x (s))

+ {h (n− τ (n))− a (n)} f (x (n− τ (n))) +4g (n, x (n− τ (n))) .

(2.2)
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In the process, for any sequence x, we denote

bX
k=a

x (k) = 0 and
bY

k=a

x (k) = 1 for any a > b.

Lemma 2.1. Suppose that H (n) 6= 0 for all n ∈ [n0,∞) ∩ Z. Then x is a
solution of equation (1.1) if and only if

x(n) =
n
x (n0)− g (n0, x (n0 − τ (n0)))−

Pn0−1
s=n0−τ(n0) h (s) f (x (s))

o
×

n−1Y
u=n0

H (u)

+
Pn−1

s=n0 h (s)
n−1Y

u=s+1

H (u) [x (s)− f (x (s))] +
Pn−1

s=n−τ(n) h (s) f (x (s))

−Pn−1
s=n0 {h (s)}

n−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) h (v) f (x (v))

+
Pn−1

s=n0

n−1Y
u=s+1

H (u) {h (s− τ (s))− a (s)} f (x (s− τ (s)))

+ g (n, x (n− τ (n)))−Pn−1
s=n0 {h (s)}

n−1Y
u=s+1

H (u) g (s, x (s− τ (s))) .

(2.3)

Proof. Let x be a solution of (1.1). By multiplying both sides of (2.2)

by
nY

u=n0

[H (u)]−1 and by summing from n0 to n− 1 we obtain

n−1X
s=n0

4
"
s−1Y
u=n0

[H (u)]−1 x (s)

#

=
n−1X
s=n0

sY
u=n0

[H (u)]−1 h (s) [x (s)− f (x (s))]

+
n−1X
s=n0

sY
u=n0

[H (u)]−14s

s−1X
v=s−τ(s)

h (v) f (x (v))
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+
n−1X
s=n0

sY
u=n0

[H (u)]−1 {h (s− τ (s))− a (s)} f (x (s− τ (s)))

+
n−1X
s=n0

sY
u=n0

[H (u)]−14g (s, x (s− τ (s))) .

As a consequence, we arrive at
n−1Y
u=n0

[H (u)]−1 x (n)−
n0−1Y
u=n0

[H (u)]−1 x (n0)

=
n−1X
s=n0

sY
u=n0

[H (u)]−1 h (s) [x (s)− f (x (s))]

+
n−1X
s=n0

sY
u=n0

[H (u)]−14s

s−1X
v=s−τ(s)

hj (v) fj (x (v))

+
n−1X
s=n0

sY
u=n0

[H (u)]−1 {h (s− τ (s))− a (s)} f (x (s− τ (s)))

+
n−1X
s=n0

sY
u=n0

[H (u)]−14g (s, x (s− τ (s))) .

By dividing both sides of the above expression by
n−1Y
u=n0

[H (u)]−1 we get

x(n) = x (n0)
n−1Y
u=n0

H (u)

+
n−1X
s=n0

n−1Y
u=s+1

H (u)h (s) [x (s)− f (x (s))]

+
n−1X
s=n0

n−1Y
u=s+1

H (u)4s
Ps−1

v=s−τ(s) h (v) f (x (v))

+
n−1X
s=n0

n−1Y
u=s+1

H (u) {h (s− τ (s))− a (s)} f (x (s− τ (s)))

+
n−1X
s=n0

n−1Y
u=s+1

H (u)4g (s, x (s− τ (s))) .

(2.4)

By performing a summation by parts, we have
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n−1X
s=n0

n−1Y
u=s+1

H (u)4s

s−1X
v=s−τ(s)

h (v) f (x (v))

=
n−1X

s=n−τ(n)
h (s) f (x (s))−

n−1Y
u=n0

H (u)
n0−1X

s=n0−τ(n0)
h (s) f (x (s))

−
n−1X
s=n0

{h (s)}
n−1Y

u=s+1

H (u)
s−1X

v=s−τ(s)
h (v) f (x (v)) ,

(2.5)

and

n−1X
s=n0

n−1Y
u=s+1

H (u)4g (s, x (s− τ (s)))(2.6)

= −g (n0, x (n0 − τ (n0)))
n−1Y
u=n0

H (u) + g (n, x (n− τ (n)))

−Pn−1
s=n0 {h (s)}

n−1Y
u=s+1

H (u) g (s, x (s− τ (s))) .

Finally, substituting (2.5) and (2.6) into (2.4) completes the proof. 2
From equation (2.3) we shall derive a fixed point mapping P for (1.1).

But the challenge here is to choose a suitable metric space of sequences on
which the map P can be defined. Below a weighted metric on a specific
space is defined. Let C be the Banach space of real bounded sequences
ϕ : [m (n0) ,∞) ∩ Z→ R with the supremum norm k.k, that is, for ϕ ∈ C,

kϕk = sup {|ϕ (n)| : n ∈ [m (n0) ,∞) ∩ Z} .

In other words, we carry out investigations in the complete metric space
(C, d) where d denotes the supremum metric d (ϕ1, ϕ2) = kϕ1 − ϕ2k for
ϕ1, ϕ2 ∈ C. For a given initial sequence ψ : [m (n0) , n0] ∩ Z→ [−l, l] with
l > 0, define the set

Sl
ψ = {ϕ ∈ C, ϕ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, |ϕ (n)| ≤ l} .

Since Sl
ψ is a closed subset of C, the metric space

³
Sl
ψ, d

´
is complete.
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Definition 2.2. The zero solution of (1.1) is Lyapunov stable if for any
> 0 and any integer n0 ≥ 0 there exists a δ > 0 such that |ψ (n)| ≤ δ for

n ∈ [m (n0) , n0] ∩ Z implies |x (n, n0, ψ)| ≤ for n ∈ [n0,∞) ∩ Z.

Theorem 2.3. Define a mapping P on Sl
ψ as follows, for ϕ ∈ Sl

ψ (Pϕ) (n) =
ψ (n) if n ∈ [m (n0) , n0] ∩ Z, while, for n ∈ [n0,∞) ∩ Z

(Pϕ) (n) =
n
ψ (n0)− g (n0, ψ (n0 − τ (n0)))−

Pn0−1
s=n0−τ(n0) h (s) f (ψ (s))

o
×

n−1Y
u=n0

H (u)

+
Pn−1

s=n0 h (s)
n−1Y

u=s+1

H (u) [ϕ (s)− f (ϕ (s))] +
Pn−1

s=n−τ(n) h (s) f (ϕ (s))

−Pn−1
s=n0 h (s)

n−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) h (v) f (ϕ (v))

+
Pn−1

s=n0

n−1Y
u=s+1

H (u) {h (s− τ (s))− a (s)} f (ϕ (s− τ (s)))

+ g(n, ϕ (n− τ (n)))−Pn−1
s=n0 h (s)

n−1Y
u=s+1

H (u) g (s, ϕ (s− τ (s))) .

(2.7)

Suppose that (1.2) and (1.3) hold and the following conditions are sat-
isfied,

(i) the function f is odd, increasing on [0, l],
(ii) f (x) and x−f (x) satisfy a Lipschitz condition with constant K on

an interval [−l, l], and x− f (x) is nondecreasing on [0, l],
(iii) |h (n)| < 1 for n ∈ [m (n0) ,∞) ∩ Z and |h (n− τ (n))− a (n)| < 1,

ρE < 1 for n ∈ [n0,∞) ∩ Z, ρ > 6,
(iv) there exist a constant α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such that

f (l)

⎧⎨⎩Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u) +
Pn−1

s=n−τ(n) |h (s)|

+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)|
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+
Pn−1

s=n0

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)|

⎫⎬⎭
+ lE

⎧⎨⎩1 +Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u)

⎫⎬⎭ ≤ αf (l) .

Then there exists δ > 0 such that for any ψ : [m n0) , n0]∩Z→ (−δ, δ),
we have that P : Sl

ψ → Sl
ψ and P is a contraction mapping with respect to

the metric defined on Sl
ψ.

Proof. Since f is odd and satisfies the Lipshitz condition on [−l, l],
f (0) = 0 and f is uniformly continuous on [−l, l]. So we can choose a δ
that satisfies

δ

⎛⎝1 +E +K
n0−1X

s=n0−τ(n0)
|h (s)|

⎞⎠ ≤ (1− α) l.(2.8)

Let ψ ∈ D (n0) such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z. Note
that (2.8) implies δ < l since f (l) ≤ l by condition (ii). Thus, |ψ (n)| ≤ l
for n ∈ [m (n0) , n0] ∩ Z. Now we show that for such a ψ the mapping
P : Sl

ψ → Sl
ψ. Indeed, consider (2.7). For an arbitrary ϕ ∈ Sl

ψ, if follows
from conditions (i) and (ii) that

|(Pϕ) (n)| ≤
n
(1 +E) kψk+Pn0−1

s=n0−τ(n0) |h (s)| |f (ψ (s))|
o n−1Y
u=n0

H (u)

+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u) |ϕ (s)− f (ϕ (s))|

+
Pn−1

s=n−τ(n) |h (s)| |f (ϕ (s))|

+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)| |f (ϕ (v))|

+
Pn−1

s=n0

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)| |f (ϕ (s− τ (s)))|

+ |g (n, ϕ (n− τ (n)))|+Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u) |g (s, ϕ (s− τ (s)))|
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≤ δ
³
1 +E +K

Pn0−1
s=n0−τ(n0) |h (s)|

´
+(l − f (l))

Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u) + f (l)
Pn−1

s=n−τ(n) |h (s)|

+f (l)
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)|

+f (l)
Pn−1

s=n0

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)|

+lE

⎧⎨⎩1 +Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u)

⎫⎬⎭ ,

for n ∈ [n0,∞) ∩ Z. By applying (iv) and (2.8), we see that

|(Pϕ) (n)| ≤ δ

⎛⎝1 +E +K
n0−1X

s=n0−τ(n0)
|h (s)|

⎞⎠+ (l − f (l))α+ f (l)α

≤ (1− α) l + (l − f (l))α+ f (l)α = l.

Hence, |(Pϕ) (n)| ≤ Z because |(Pϕ) (n)| = |ψ (n)| ≤ l for
n ∈ [m (n0) , n0] ∩ Z. Therefore, Pϕ ∈ Sl

ψ.

Suppose that ρ > max {6, 1/K}. If we define a metric on Sl
ψ as follows,

|ϕ− η|ρ

:= sup
n∈[n0,∞)∩Z

n−1Y
u=n0

[1− |h (u)|] [1− |h (s− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

× |ϕ (n)− η (n)| ,
(2.9)

then
³
Sl
ψ, |.|ρ

´
is a complete metric space.

Next, we show that P is a contraction mapping on Sl
ψ with respect to

the metric (2.9). For ϕ, η ∈ Sl
ψ, we have

|(Pϕ) (n)− (Pη) (n)|
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≤Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u) |ϕ (s)− f (ϕ (s))− η (s) + f (η (s))|

+
Pn−1

s=n−τ(n) |h (s)| |f (ϕ (s))− f (η (s))|

+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)| |f (ϕ (v))− f (η (v))|

+
Pn−1

s=n0

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)| |f (ϕ (s− τ (s)))− f (η (s− τ (s)))|

+|g (n,ϕ (n− τ (n)))− g (n, η (n− τ (n)))|

+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u) |g (s, ϕ (s− τ (s)))− g (s, η (s− τ (s)))| .

(2.10)

Let F (x) = x − f (x), then F (x) satisfies a Lipschitz condition with
constant K > 0 on an interval [−l, l]. If we multiply both sides of (2.10) by

n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K] ,

then the first term on the right-hand side of (2.10) becomes
n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

×Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u) |F (ϕ (s))− F (η (s))|

≤ K
Pn−1

s=n0
|h(s)|[1−|h(s)|][1−|h(s−τ(s))−a(s)|][1−E|h(s)|/K]
ρK[1+|h(s)|][1+|h(s−τ(s))−a(s)|][1+E|h(s)|/K]

×
s−1Y
u=n0

[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K] |ϕ (s)− η (s)|

×
n−1Y

u=s+1

H(u)[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K]

≤ K 1
ρK |ϕ− η|ρ

Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

[1− |h (u)|]

≤ 1
ρ |ϕ− η|ρ .
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Similarly, we have
n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

×Pn−1
s=n−τ(n) |h (s)| |f (ϕ (s))− f (η (s))|

≤ K
Pn−1

s=n0
|h(s)|[1−|h(s)|][1−|h(s−τ(s))−a(s)|][1−E|h(s)|/K]
ρK[1+|h(s)|][1+|h(s−τ(s))−a(s)|][1+E|h(s)|/K]

×
s−1Y
u=n0

[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K] |ϕ (s)− η (s)|

×
n−1Y

u=s+1

[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K]

≤ K 1
ρK |ϕ− η|ρ

Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

[1− |h (u)|]

≤ 1
ρ |ϕ− η|ρ ,

n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

×Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)| |f (ϕ (v))− f (η (v))|

≤ K
Pn−1

s=n0
|h(s)|[1−|h(s)|][1−|h(s−τ(s))−a(s)|][1−E|h(s)|/K]
ρK[1+|h(s)|][1+|h(s−τ(s))−a(s)|][1+E|h(s)|/K]

×
n−1Y

u=s+1

H(u)[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K]

×Ps−1
v=s−τ(s) |h (v)|

v−1Y
u=n0

[1−|h(v)|][1−|h(v−τ(v))−a(v)|][1−E|h(v)|/K]
ρK[1+|h(v)|][1+|h(v−τ(v))−a(v)|][1+E|h(v)|/K] |ϕ (v)− η (v)|

×
s−1Y
u=v

[1−|h(v)|][1−|h(v−τ(v))−a(v)|][1−E|h(v)|/K]
ρK[1+|h(v)|][1+|h(v−τ(v))−a(v)|][1+E|h(v)|/K]

≤ K 1
ρK |ϕ− η|ρ

Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

[1− |h (u)|]Ps−1
v=s−τ(s) |h (v)|

×
s−1Y
u=v

[1− |h (v)|]

≤ 1
ρ |ϕ− η|ρ ,
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n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

×Pn−1
s=n0

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)| |

×f (ϕ (s− τ (s)))− f (η (s− τ (s)))

≤ K
Pn−1

s=n0
|h(s−τ(s))−a(s)|[1−|h(s)|][1−|h(s−τ(s))−a(s)|][1−E|h(s)|/K]

ρK[1+|h(s)|][1+|h(s−τ(s))−a(s)|][1+E|h(s)|/K]

×
s−1Y
u=n0

[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K] |ϕ (s)− η (s)|

×
n−1Y

u=s+1

H(u)[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K]

≤ K 1
ρK |ϕ− η|ρ

Pn−1
s=n0 |h (s− τ (s))− a (s)|

×
n−1Y

u=s+1

[1− |h (u− τ (u))− a (u)|]

≤ 1
ρ |ϕ− η|ρ ,

n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

× |g (n, ϕ (n− τ (n)))− g (n, η (n− τ (n)))|

≤ E |ϕ− η|ρ ≤ 1
ρ |ϕ− η|ρ ,

and

n−1Y
u=n0

[1− |h (u)|] [1− |h (u− τ (u))− a (u)|] [1−E |h (u)| /K]
ρK [1 + |h (u)|] [1 + |h (u− τ (u))− a (u)|] [1 +E |h (u)| /K]

×Pn−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u) |g (s, ϕ (s− τ (s)))− g (s, η (s− τ (s)))|

≤ E
Pn−1

s=n0
|h(s)|[1−|h(s)|][1−|h(s−τ(s))−a(s)|][1−E|h(s)|/K]
ρK[1+|h(s)|][1+|h(s−τ(s))−a(s)|][1+E|h(s)|/K]

×
s−1Y
u=n0

[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K] |ϕ (s)− η (s)|

×
n−1Y

u=s+1

H(u)[1−|h(u)|][1−|h(u−τ(u))−a(u)|][1−E|h(u)|/K]
ρK[1+|h(u)|][1+|h(u−τ(u))−a(u)|][1+E|h(u)|/K]
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≤ K 1
ρK |ϕ− η|ρ

Pn−1
s=n0 E |h (s)| /K

n−1Y
u=s+1

[1−E |h (u)| /K]

≤ 1
ρ |ϕ− η|ρ .

Hence, |Pϕ− Pη|ρ ≤
6

ρ
|ϕ− η|ρ, since ρ > 6, we have that P is a

contraction mapping on Sl
ψ. 2

Theorem 2.4. Assume that the hypotheses of Theorem 2.3 hold. Then
the zero solution of (1.1) is stable.

Proof. Let P be defined as in Theorem 2.3. By the contraction mapping
principle ([26], p. 2), P has a unique fixed point in Sl

ψ, which is a solution
of (1.1) with x = ψ on [m (n0) , n0] ∩ Z.

To prove stability at n = n0, let > 0 be given, then we choose m > 0
so that m < min {l, }. By considering Sm

ψ , we obtain there is a δ > 0
such that kψk < δ implies that the unique solution of (1.1) with x = ψ on
[m (n0) , n0] ∩ Z satisfies |x (n)| ≤ m < for all n ∈ [m (n0) ,∞) ∩ Z. This
proves that the zero solution of (1.1) is stable. 2

Definition 2.5. The zero solution of (1.1) is asymptotically stable if it is
Lyapunov stable and if for any integer n0 ≥ 0 there exists a δ > 0 such
that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0]∩Z implies x (n, n0, ψ)→ 0 as n→∞.

Theorem 2.6. Assume that the hypotheses of Theorem 2.3 hold. Also
assume that

n−1Y
u=n0

H (u)→ 0 as n→∞,(2.11)

where H (u) = 1− h (u). Then the zero solution of (1.1) is asymptotically
stable.
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Proof. From Theorem 2.4, the zero solution of (1.1) is stable. For a
given > 0 let ψ ∈ D (n0) such that |ψ (n)| ≤ δ for n ∈ [m (n0) , n0] ∩ Z
where δ > 0 and define

Sψ= {ϕ ∈ C, ϕ (n) = ψ (n) for n ∈ [m (n0) , n0] ∩ Z, kϕk ≤ and

ϕ (n)→ 0 as n→∞.

Then Sψ is a complete metric space with respect to the metric (2.9).
Define P : Sψ → Sψ by (2.9). From the proof of Theorem 2.3, the mapping
P is a contraction and for every ϕ ∈ Sψ, kPϕk ≤ .

We next show that (Pϕ) (n)→ 0 as n→∞. There are seven terms on
the right hand side in (2.7). Denote them, respectively, by Ik, k = 1, 2, ..., 7.
It is obvious that the first term I1 tends to zero as t → ∞, by condition
(2.11). Therefore, the second term I2 in (2.7) satisfies

|I2| =

¯̄̄̄
¯̄Pn−1

s=n0 h (s)
n−1Y

u=s+1

H (u) [ϕ (s)− f (ϕ (s))]

¯̄̄̄
¯̄

≤ K
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u) |ϕ (s)|

≤ Kα < K.

Thus, I2 → 0 as n → ∞. Also, due to the conditions (1.2) and (1.3)
and the facts that ϕ (n) → 0 and n − τ (n) → ∞ as n → ∞, the terms I3
and I6 tend to zero, as n→∞.

Now, for a given 1 ∈ (0, ), there exists a N1 > n0 such that s ≥ N1
implies |ϕ (s− τj (s))| < 1. Thus, for n ≥ N1, the term I4 in (2.7) satisfies

|I4| =

¯̄̄̄
¯̄Pn−1

s=n0 h (s)
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) h (v) f (ϕ (v))

¯̄̄̄
¯̄

≤PN1−1
s=n0 |h (s)|

n−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)| |f (ϕ (v))|

+
Pn−1

s=N1
|h (s)|

n−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)| |f (ϕ (v))|

≤ supσ≥m(n0) |ϕ (σ)|K
PN1−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)|

+ 1K
Pn−1

s=N1
|h (s)|

n−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)| .

By (2.11), we can find N2 > N1 such that n ≥ N2 implies
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supσ≥m(n0) |ϕ (σ)|K
PN1−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)|

= supσ≥m(n0) |ϕ (σ)|K
n−1Y
u=N2

H (u)
PN1−1

s=n0 |h (s)|
N2−1Y
u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)|

< 1K.
Now, apply condition (iv) to have |I4| < 1K + 1Kα < 2 1K. Thus,

I4 → 0 as n → ∞. Similarly, by using (2.11), then, if n ≥ N2 then terms
I5 and in I7 (2.7) satisfy

|I5| =

¯̄̄̄
¯̄Pn−1

s=n0

n−1Y
u=s+1

H (u) {h (s− τ (s))− a (s)} f (ϕ (s− τ (s)))

¯̄̄̄
¯̄

≤ supσ≥m(n0) |ϕ (σ)|K
n−1Y
u=N2

H (u)
PN1−1

s=n0

N2−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)|

+ 1K
Pn−1

s=N1

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)|

≤ 1K + 1Kα < 2 1K,
and

|I7| =

¯̄̄̄
¯̄Pn−1

s=n0 h (s)
n−1Y

u=s+1

H (u) g (s, ϕ (s− τ (s)))

¯̄̄̄
¯̄

≤ supσ≥m(n0) |ϕ (σ)|E
n−1Y
u=N2

H (u)
PN1−1

s=n0 |h (s)|

×
N2−1Y
u=s+1

H (u) + 1E
Pn−1

s=N1
|h (s)|

n−1Y
u=s+1

H (u)

≤ 1 + 1α
f(l)
l <

³
1 + f(l)

l

´
1.

Thus, I5, I7 → 0 as n→∞. In conclusion (Pϕ) (n)→ 0 as n→∞, as
required. Hence P maps Sψ into Sψ.

By the contraction mapping principle, P has a unique fixed point x ∈ Sψ
which solves (1.1). Therefore, the zero solution of (1.1) is asymptotically
stable. 2

Letting g (n, x) = 0, we have

Corollary 2.7. Let h : [m (n0) ,∞) ∩ Z → R be an arbitrary sequence.
Suppose that the following conditions are satisfied,
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(i) the function f is odd, increasing on [0, l],
(ii) f (x) and x−f (x) satisfy a Lipschitz condition with constant K on

an interval [−l, l], and x− f (x) is nondecreasing on [0, l],
(iii) |h (n)| < 1 for n ∈ [m (n0) ,∞) ∩ Z and |h (n− τ (n))− a (n)| < 1

for n ∈ [n0,∞) ∩ Z,
(iv) there exist constants α ∈ (0, 1) for all n ∈ [n0,∞) ∩ Z such thatPn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u) +
Pn−1

s=n−τ(n) |h (s)|

+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

H (u)
Ps−1

v=s−τ(s) |h (v)|

+
Pn−1

s=n0

n−1Y
u=s+1

H (u) |h (s− τ (s))− a (s)|

≤ α.

Then the zero solution of (1.7) is asymptotically stable if

n−1Y
u=n0

H (u)→ 0 as n→∞.

Remark 2.8. When τ (s) = r and h (s) = a (s+ r), Corollary 2.7 improves
Theorem C. When h (s) = a (g (s)), where g (s) is the inverse function of
s−τ (s), Corollary 2.7 reduces to Theorem D. Thus Theorem 2.6 generalizes
and improves Theorems C and D.

For the special case g (n, x) = 0 and f (x) = x, we can get

Corollary 2.9. Suppose that H (n) 6= 0 for all n ∈ [n0,∞) ∩ Z and there
exists a constant α ∈ (0, 1) such that for n ∈ [n0,∞) ∩ ZPn−1

s=n−τ(n) |h (s)|+
Pn−1

s=n0 |h (s)|
n−1Y

u=s+1

|H (u)|Ps−1
v=s−τ(s) |h (v)|

+
Pn−1

s=n0

n−1Y
u=s+1

|H (u)| |h (s− τ (s))− a (s)|

≤ α.

Then the zero solution of (1.4) is asymptotically stable if

n−1Y
u=n0

H (u)→ 0 as n→∞.
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Remark 2.10. When τ (s) = r and h (s) = a (s+ r), Corollary 2.9 reduces
to Theorem A. When h (s) = a (g (s)), where g (s) is the inverse function of
s− τ (s), Corollary 2.9 reduces to Theorem B. Thus Theorem 2.6 improves
Theorems A and B.
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