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Abstract

Let E,F be sets and G a Hausdorff, abelian topological group with
b : E × F → G; we refer to E,F,G as an abstract duality pair with
respect to G or an abstract triple and denote this by (E,F : G). Let
(Ei, Fi : G) be abstract triples for i = 1, 2. Let Fi be a family of
subsets of Fi and let τFi(Ei) = τi be the topology on Ei of uniform
convergence on the members of Fi. Let Γ be a family of mappings
from E1 to E2. We consider conditions which guarantee that Γ is
τ1 − τ2 equicontinuous. We then apply the results to obtain versions
of the Banach-Steinhaus Theorem for both abstract triples and for
linear operators between locally convex spaces.
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In [CLS] we established versions of the Orlicz-Pettis Theorem for sub-
series convergent series in abstract triples or abstract duality pairs based
on results which were initiated at New Mexico State University during Pro-
fessor Li Ronglu’s tenure as a visiting scholar. In this note we present some
further results on an equicontinuity version of the Banach-Steinhaus The-
orem for abstract triples which were also the result of Professor Li’s visit.
After establishing our abstract version of the Banach-Steinhaus Theorem
we present several applications to continuous linear operators between lo-
cally convex spaces and establish versions of the Banach-Steinhaus Theorem
for arbitrary locally convex spaces.

We first recall the definition of abstract triples. Let E,F be sets and G
a Hausdorff, abelian topological group with b : E × F → G; if x ∈ E and
y ∈ F , we often write b(x, y) = x · y for convenience. We refer to E,F,G as
an abstract duality pair with respect to G or an abstract triple and denote
this by (E,F : G). Note that (F,E : G) is an abstract triple under the
map b(y, x) = b(x, y). Examples of abstract triples are given in [CLS]; in
particular a pair of vector spaces in duality is an example where G is the
scalar field.

In what follows (Ei, Fi : G) will denote abstract triples for i = 1, 2. Let
Fi be a family of subsets of Fi and let τFi(Ei) = τi be the topology on
Ei of uniform convergence on the members of Fi so a net {xα} converges
to x ∈ Ei iff xα · y → x · y uniformly for y belonging to a member of
Fi. Let Γ be a family of mappings T : E1 → E2. We consider conditions
which guarantee that Γ is τ1−τ2 equicontinuous. We then establish several
versions of the Banach-Steinhaus Theorem for abstract triples and give
applications to continuous linear operators between locally convex spaces.

To motivate the condition which guarantees that Γ is τ1 − τ2 equicon-
tinuous, we consider the case of continuous linear operators between locally
convex spaces. Let (E1, F1), (E2, F2) be dual pairs and let τi be the polar
topology of uniform convergence on the members of Fi and let Γ be a family
of weakly continuous linear operators T : E1 → E2. Suppose

(∗) for every B ∈ F2 there exists A ∈ F1 such that

T 0B = BT ⊂ A for every T ∈ Γ.

or, taking polars in E1,

(∗∗) (T 0B)0 = T−1B0 ⊃ A0 for T ∈ Γ.

Condition (**) implies that Γ is τ1 − τ2 equicontinuous.
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We consider abstracting condition (*) to abstract triples. For this regard
the elements y of Fi as functions from Ei → G defined by y(x) = x · y
for x ∈ Ei. We say that the pair (F∞,F∈) satisfies the equicontinuity
condition (E) if

(E) for every B ∈ F2 thereexists A ∈ F1 such that

BΓ = {y ◦ T : y ∈ B,T ∈ Γ} ⊂ A

[note if x ∈ E1, (y ◦ T )(x) = y(Tx) = y · Tx].

Theorem 1. If (F1,F2) satisfies condition (E), the Γ is τ1 − τ2 equicon-
tinuous.

Proof. Suppose the net {xδ} in E1 converges to x ∈ E1 with respect
to τ1 so xδ · y → x · y uniformly when y belongs to a member of F1. Let
B ∈ F2, z ∈ B and let A be as in condition (E). Then z ◦ T ∈ A for every
T ∈ Γ, z ∈ B so z ·Txδ → z ·Tx uniformly for T ∈ Γ, z ∈ B by the definition
of convergence in τ1. Therefore, Txδ → Tx in τ2 uniformly for T ∈ Γ. 2

The case of a single operator satisfying condition (E) is of interest.

Corollary 2. Suppose T : E1 → E2 is such that for every B ∈ F2 there
exists A ∈ F1 such that BT ⊂ A. Then T is τ1 − τ2 continuous.

Corollary 3. (Banach-Steinhaus) Suppose {Tα} is a net of maps from E1
to E2 such that τ2 − limα Tαx = Tx exists for every x ∈ E1. If Γ = {Tα}
satisfies condition (E), then T is τ1 − τ2 continuous.

Proof. Suppose the net {xδ} is τ1 convergent to x ∈ E1. Then by
hypothesis τ2 − limα Tαxδ = Txδ for each δ. Also, by Theorem 1, τ2 −
limδ Tαxδ = Tαx uniformly with respect to α. Therefore,

lim
δ
Txδ = lim

δ
lim
α

Tαxδ = lim
α
lim
δ
Tαxδ = lim

α
Tαx

([DS]I.7.6) and T is τ1 − τ2 continuous. 2
We next consider conditions for which (E) holds and establish versions

of the Banach-Steinhaus Theorem for topological vector spaces.
In what follows G will be a Hausdorff topological vector space.
We first give a motivation for the conditions which appear in a version

of the Banach-Steinhaus Theorem for abstract triples.
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Suppose (E,F ) is a dual pair and τF is a polar topology on E of uniform
convergence on the members of F . Recall a subset C ⊂ E is τF bounded
iff BC = {hy, xi : y ∈ B,x ∈ C} is bounded for every B ∈ F . We abstract
this condition to abstract triples.

Definition 4. A subset C ⊂ E2 is F2 bounded if C ·B = {x ·y : y ∈ B, x ∈
C} is bounded in G for every B ∈ F2.

We give an equicontinuity version of the Banach-Steinhaus Theorem for
abstract triples.

Theorem 5. Suppose Γ is pointwise F2 bounded on E1 (i.e., for every
x ∈ E1 the set Γx is F2 bounded in E2). Let B be the family of subsets
of F1 which are pointwise bounded on E1. Then the pair (B,F2) satisfies
condition (E). Hence, Γ is τB − τ2 equicontinuous.

Proof. Let B ∈ F2. We claim BΓ ∈ B. Let x ∈ E1. Since Γx is F2
bounded, B(Γx) is bounded in G so BΓ ∈ B. Therefore, (B, F2) satisfies
condition (E) and the result follows from Theorem 1. 2

From Corollary 3 we have another version of the Banach-Steinhaus The-
orem.

Corollary 6. Let {Tα} be a net of maps from E1 → E2 which is pointwise
F2 bounded on E1. If τ2 − limα Tαx = Tx exists for every x ∈ E1, then T
is τB − τ2 continuous.

We also have the more familiar form of the Banach-Steinhaus Theorem
for sequences.

Corollary 7. Let Tk : E1 → E2 and suppose τ2− limk Tkx = Tx exists for
each x ∈ E1. Then T is τB − τ2 continuous.

Proof. For each x ∈ E1, {Tkx} is F2 bounded so the corollary above
applies. 2

We can also give a generalization of Theorem 1. Let A1 be a family of
subsets of E1 and let B1 be a family of subsets of F1 which is uniformly
bounded on members of A1 (i.e., B1 is A1 bounded).

Theorem 8. Suppose ΓA is F2 bounded for every A ∈ A1. Then Γ is
τB1 − τ2 equicontinuous.
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Proof. As in the proof of Theorem 5 the pair (B1,F2) satisfies condition
(E). 2

In the case of Theorem 5, the family A1 consists of singletons.
We now give applications of the results above for abstract triples to con-

tinuous linear operators between locally convex spaces and obtain versions
of the Banach-Steinhaus Theorem for arbitrary locally convex spaces.

In what follows let (E1, F1), (E2, F2) be dual pairs with polar topologies
τi on Ei of uniform convergence on members of Fi . Let Γ be a family of
τ1−τ2 continuous linear operators. Let β(Ei, Fi) be the strong topology on
Ei from the duality. From Theorem 5 we obtain an equicontinuity version
of the Banach-Steinhaus Theorem.

Theorem 9. If Γ is pointwise bounded on E1, then Γ is β(E1, F1) − τ2
equicontinuous.

Proof. In Theorem 5 the family B is the family of σ(F1, E1) bounded
sets so τB = β(E1, F1) and the result follows from Theorem 5. 2

Note that the family Γ may fail to be equicontinuous with respect to
the original topology of E1 but that the result above holds for arbitrary
locally convex spaces with no assumptions on the domain space E1. If E1 is
a barrelled space, then the original topology of Ei is β(E1, F1) so Theorem
7 gives one of the usual forms of the Banach-Steinhaus Theorem or the
Uniform Boundedness Principle (see [Sw1] 24.11,[Wi1] 9.3.4). This result
was established in [Sw2]. As noted in [LC] there are non-barrelled spaces
which carry the strong topology so Theorem 9 gives a proper extension of
the usual form of the Banach-Steinhaus Theorem for barrelled spaces.

From Corollary 7 and Theorem 9 we also obtain the sequential version
of the Banach-Steinhaus Theorem.

Theorem 10. Let Tk : E1 → E2 be a sequence of τ1−τ2 continuous linear
operators such that τ2−limkTkx = Tx exists for every x ∈ E1. Then T is
β(E1, F1)− τ2 continuous and {Tk} is β(E1, F1)− τ2 equicontinuous.

Again note that T may fail to be continuous with respect to the original
topology of E1. This result was established in [LC].

We can obtain an improvement of Theorem 9 for Banach-Mackey spaces.
Recall a locally convex space E1 is a Banach-Mackey space if the bounded
subsets of E1 are strongly bounded ([Wi1]10.4.3). For example, any se-
quentially complete locally convex space is a Banach-Mackey space ([Wi1]
10.4.8). We denote the topology on E1 of uniform convergence on the
β(F1, E1) bounded subsets of F1 by β

∗(E1, F1) (see [Sw1]20,[Wi1]10.1).
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Theorem 11. Suppose E1 is a Banach-Mackey space. If Γ is pointwise
bounded on E1, then Γ is β

∗(E1, F1)− τ2 equicontinuous.

Proof. By the Banach-Mackey property the family B of Theorem 5 is
the family of all β(F1, E1) bounded subsets of F1 so τB = β∗(E1, F1) and
the result follows from Theorem 5

Note β∗(E1, F1) ⊂ β(E1, F1) so Theorem 11 improves the conclusion of
Theorem 9 for Banach-Mackey spaces. We can also obtain an improvement
of Theorem 10 for Banach-Mackey spaces. 2

Theorem 12. Suppose E1 is a Banach-Mackey space. Let Tk : E1 → E2
be a sequence of τ1−τ2 continuous linear operators such that limkTkx = Tx
exists for every x ∈ E1. Then T is β∗(E1, F1)− τ2 continuous and {Tk} is
β∗(E1, F1)− τ2 equicontinuous.

We can also obtain a corollary of Theorem 8.

Corollary 13. Let A1 be the family of all σ(E1, F1) bounded subsets of
E1 and B1 be the family of all β(F1, E1) bounded subsets of F1. If Γ is
uniformly bounded on members of A1, then Γ is β∗(E1, F1) − τ2 equicon-
tinuous.

Proof. τB1 = β∗(E1, F1) so the result follows from Theorem 8. 2
Corollary 13 about a single mapping also has an interesting application

to linear operators.

Corollary 14. Suppose T : E1 → E2 is a bounded linear operator. Then
T is β∗(E1, F1)− τ2 continuous.

Note that T may not be continuous with respect to the original topology
of E1. Consider the identity operator on an infinite dimensional normed
space when the domain has the weak topology and the range the norm
topology.

The result in Corollary 2 also has an application to a Hellinger-Toeplitz
result for linear operators. Let X,Y be locally convex spaces with duals
X 0, Y 0. A property P of subsets B of a dual space Y 0 is said to be linearly
invariant if for every continuous linear operator T : X → Y there exists
A ⊂ X 0 with property P such that BT = T 0B ⊂ A. For example, the
family of subsets with finite cardinal, the weak∗ compact sets, the weak∗

convex compact sets, the weak∗ bounded sets, etc.
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If P is a linearly invariant property, let P (X,X 0) be the locally con-
vex topology of uniform convergence on the members of X 0 with property
P. From Corollary 2 we have a Hellinger-Toeplitz result in the spirit of
Wilansky ([Wi1]11.2.6).

Corollary 15. If T : X → Y is a continuous linear operator, then T is
P (X,X 0)− P (Y, Y 0) continuous.

In particular, T is continuous with respect to the Mackey topologies
and strong topologies ([Wi1]11.2.6).

Finally we indicate an application concerning automatic continuity of
matrix transformations between sequence spaces. Let λ1, λ2 be scalar se-
quence spaces containing c00, the space of sequences with finite range and
if a = {aj} ∈ λβ1 , the β-dual of λ1, t = {tj} ∈ λ1, we write a · t =

P∞
j=1 ajtj .

Assume that λi has a locally convex polar topology τi from the duality
pair λi, λ

β
i and that A = [aij ] is an infinite matrix which maps λ1 into λ2.

Under assumptions on the sequence spaces, we use Theorem 10 to show
that A is continuous with respect to appropriate topologies. First, we as-
sume that the β-dual of λ1 is contained in the topological dual λ

0
1 and then

we assume that λ2 is an AK-space under its topology (i.e., the canonical
unit vectors {ei} form a Schauder basis for λ2 ([Wi2] 4.2.13,[Sw3] B.2).

Now let ai be the ith row of the matrix A so ai ∈ λβ1 ⊂ λ01 and define
Ak : λ1 → λ2 by Akt =

Pk
i=1(a

i · t)ei. Then Ak is τ1 − τ2 continuous
and τ2 − limk Akt =

P∞
i=1(a

i · t)ei = At by the AK assumption. By the
Banch-Steinhaus Theorem 10, {Ak} is β(λ1, λ1)− τ2 equicontinuous and A

is β(λ1, λ
β
1 )− τ2 continuous, an automatic continuity result. In particular,

if λ1 = λ2 = l2, then this result implies that any matrix mapping l2 into
itself is continuous; this is the classic theorem of Hellinger and Toeplitz
([K2] 34.7). Further automatic continuity theorems for matrix mappings
can be found in [K2] 34.7 and [Sw4] 12.6.

This paper was supported by Research Fund, Kumoh National Institute
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