Proyecciones Journal of Mathematics Vol. 34, N^o 4, pp. 391-399, December 2015. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172015000400007

The Banach-Steinhaus Theorem in Abstract Duality Pairs

Min-Hyung Cho Kum-Oh National Institute of Technology, Korea Li Ronglu Harbin Institute of Technology, P. R. C. and Charles Swartz

New Mexico State University, U. S. A. Received : October 2015. Accepted : November 2015

Abstract

Let E, F be sets and G a Hausdorff, abelian topological group with $b: E \times F \to G$; we refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E, F : G). Let $(E_i, F_i : G)$ be abstract triples for i = 1, 2. Let \mathcal{F}_i be a family of subsets of F_i and let $\tau_{\mathcal{F}_i}(E_i) = \tau_i$ be the topology on E_i of uniform convergence on the members of \mathcal{F}_i . Let Γ be a family of mappings from E_1 to E_2 . We consider conditions which guarantee that Γ is $\tau_1 - \tau_2$ equicontinuous. We then apply the results to obtain versions of the Banach-Steinhaus Theorem for both abstract triples and for linear operators between locally convex spaces. In [CLS] we established versions of the Orlicz-Pettis Theorem for subseries convergent series in abstract triples or abstract duality pairs based on results which were initiated at New Mexico State University during Professor Li Ronglu's tenure as a visiting scholar. In this note we present some further results on an equicontinuity version of the Banach-Steinhaus Theorem for abstract triples which were also the result of Professor Li's visit. After establishing our abstract version of the Banach-Steinhaus Theorem we present several applications to continuous linear operators between locally convex spaces and establish versions of the Banach-Steinhaus Theorem for arbitrary locally convex spaces.

We first recall the definition of abstract triples. Let E, F be sets and Ga Hausdorff, abelian topological group with $b: E \times F \to G$; if $x \in E$ and $y \in F$, we often write $b(x, y) = x \cdot y$ for convenience. We refer to E, F, G as an abstract duality pair with respect to G or an abstract triple and denote this by (E, F : G). Note that (F, E : G) is an abstract triple under the map $\overline{b}(y, x) = b(x, y)$. Examples of abstract triples are given in [CLS]; in particular a pair of vector spaces in duality is an example where G is the scalar field.

In what follows $(E_i, F_i : G)$ will denote abstract triples for i = 1, 2. Let \mathcal{F}_i be a family of subsets of F_i and let $\tau_{\mathcal{F}_i}(E_i) = \tau_i$ be the topology on E_i of uniform convergence on the members of \mathcal{F}_i so a net $\{x_\alpha\}$ converges to $x \in E_i$ iff $x_\alpha \cdot y \to x \cdot y$ uniformly for y belonging to a member of \mathcal{F}_i . Let Γ be a family of mappings $T : E_1 \to E_2$. We consider conditions which guarantee that Γ is $\tau_1 - \tau_2$ equicontinuous. We then establish several versions of the Banach-Steinhaus Theorem for abstract triples and give applications to continuous linear operators between locally convex spaces.

To motivate the condition which guarantees that Γ is $\tau_1 - \tau_2$ equicontinuous, we consider the case of continuous linear operators between locally convex spaces. Let $(E_1, F_1), (E_2, F_2)$ be dual pairs and let τ_i be the polar topology of uniform convergence on the members of \mathcal{F}_i and let Γ be a family of weakly continuous linear operators $T: E_1 \to E_2$. Suppose

(*) for every
$$B \in \mathcal{F}_2$$
 there exists $A \in \mathcal{F}_1$ such that
 $T'B = BT \subset A$ for every $T \in \Gamma$.

or, taking polars in E_1 ,

$$(**) (T'B)_0 = T^{-1}B_0 \supset A_0 \text{ for } T \in \Gamma.$$

Condition (**) implies that Γ is $\tau_1 - \tau_2$ equicontinuous.

We consider abstracting condition (*) to abstract triples. For this regard the elements y of F_i as functions from $E_i \to G$ defined by $y(x) = x \cdot y$ for $x \in E_i$. We say that the pair $(\mathcal{F}_{\infty}, \mathcal{F}_{\in})$ satisfies the equicontinuity condition (E) if

(E) for every
$$B \in \mathcal{F}_2$$
 there exists $A \in \mathcal{F}_1$ such that
 $B\Gamma = \{y \circ T : y \in B, T \in \Gamma\} \subset A$

[note if $x \in E_1$, $(y \circ T)(x) = y(Tx) = y \cdot Tx$].

Theorem 1. If $(\mathcal{F}_1, \mathcal{F}_2)$ satisfies condition (E), the Γ is $\tau_1 - \tau_2$ equicontinuous.

Proof. Suppose the net $\{x_{\delta}\}$ in E_1 converges to $x \in E_1$ with respect to τ_1 so $x_{\delta} \cdot y \to x \cdot y$ uniformly when y belongs to a member of \mathcal{F}_1 . Let $B \in \mathcal{F}_2, z \in B$ and let A be as in condition (E). Then $z \circ T \in A$ for every $T \in \Gamma, z \in B$ so $z \cdot Tx_{\delta} \to z \cdot Tx$ uniformly for $T \in \Gamma, z \in B$ by the definition of convergence in τ_1 . Therefore, $Tx_{\delta} \to Tx$ in τ_2 uniformly for $T \in \Gamma$. \Box

The case of a single operator satisfying condition (E) is of interest.

Corollary 2. Suppose $T : E_1 \to E_2$ is such that for every $B \in \mathcal{F}_2$ there exists $A \in \mathcal{F}_1$ such that $BT \subset A$. Then T is $\tau_1 - \tau_2$ continuous.

Corollary 3. (Banach-Steinhaus) Suppose $\{T_{\alpha}\}$ is a net of maps from E_1 to E_2 such that $\tau_2 - \lim_{\alpha} T_{\alpha} x = Tx$ exists for every $x \in E_1$. If $\Gamma = \{T_{\alpha}\}$ satisfies condition (E), then T is $\tau_1 - \tau_2$ continuous.

Proof. Suppose the net $\{x_{\delta}\}$ is τ_1 convergent to $x \in E_1$. Then by hypothesis $\tau_2 - \lim_{\alpha} T_{\alpha} x_{\delta} = T x_{\delta}$ for each δ . Also, by Theorem 1, $\tau_2 - \lim_{\delta} T_{\alpha} x_{\delta} = T_{\alpha} x$ uniformly with respect to α . Therefore,

$$\lim_{\delta} Tx_{\delta} = \lim_{\delta} \lim_{\alpha} T_{\alpha}x_{\delta} = \lim_{\alpha} \lim_{\delta} T_{\alpha}x_{\delta} = \lim_{\alpha} T_{\alpha}x_{\delta}$$

([DS]I.7.6) and T is $\tau_1 - \tau_2$ continuous. \Box

We next consider conditions for which (E) holds and establish versions of the Banach-Steinhaus Theorem for topological vector spaces.

In what follows G will be a Hausdorff topological vector space.

We first give a motivation for the conditions which appear in a version of the Banach-Steinhaus Theorem for abstract triples. Suppose (E, F) is a dual pair and $\tau_{\mathcal{F}}$ is a polar topology on E of uniform convergence on the members of \mathcal{F} . Recall a subset $C \subset E$ is $\tau_{\mathcal{F}}$ bounded iff $BC = \{\langle y, x \rangle : y \in B, x \in C\}$ is bounded for every $B \in \mathcal{F}$. We abstract this condition to abstract triples.

Definition 4. A subset $C \subset E_2$ is \mathcal{F}_2 bounded if $C \cdot B = \{x \cdot y : y \in B, x \in C\}$ is bounded in G for every $B \in \mathcal{F}_2$.

We give an equicontinuity version of the Banach-Steinhaus Theorem for abstract triples.

Theorem 5. Suppose Γ is pointwise \mathcal{F}_2 bounded on E_1 (i.e., for every $x \in E_1$ the set Γx is \mathcal{F}_2 bounded in E_2). Let \mathcal{B} be the family of subsets of F_1 which are pointwise bounded on E_1 . Then the pair $(\mathcal{B}, \mathcal{F}_2)$ satisfies condition (E). Hence, Γ is $\tau_{\mathcal{B}} - \tau_2$ equicontinuous.

Proof. Let $B \in \mathcal{F}_2$. We claim $B\Gamma \in \mathcal{B}$. Let $x \in E_1$. Since Γx is \mathcal{F}_2 bounded, $B(\Gamma x)$ is bounded in G so $B\Gamma \in \mathcal{B}$. Therefore, $(\mathcal{B}, \mathcal{F}_2)$ satisfies condition (E) and the result follows from Theorem 1. \Box

From Corollary 3 we have another version of the Banach-Steinhaus Theorem.

Corollary 6. Let $\{T_{\alpha}\}$ be a net of maps from $E_1 \to E_2$ which is pointwise \mathcal{F}_2 bounded on E_1 . If $\tau_2 - \lim_{\alpha} T_{\alpha} x = Tx$ exists for every $x \in E_1$, then T is $\tau_{\mathcal{B}} - \tau_2$ continuous.

We also have the more familiar form of the Banach-Steinhaus Theorem for sequences.

Corollary 7. Let $T_k : E_1 \to E_2$ and suppose $\tau_2 - \lim_k T_k x = Tx$ exists for each $x \in E_1$. Then T is $\tau_{\mathcal{B}} - \tau_2$ continuous.

Proof. For each $x \in E_1$, $\{T_k x\}$ is \mathcal{F}_2 bounded so the corollary above applies. \Box

We can also give a generalization of Theorem 1. Let \mathcal{A}_1 be a family of subsets of E_1 and let \mathcal{B}_1 be a family of subsets of F_1 which is uniformly bounded on members of \mathcal{A}_1 (i.e., \mathcal{B}_1 is \mathcal{A}_1 bounded).

Theorem 8. Suppose ΓA is \mathcal{F}_2 bounded for every $A \in \mathcal{A}_1$. Then Γ is $\tau_{\mathcal{B}_1} - \tau_2$ equicontinuous.

Proof. As in the proof of Theorem 5 the pair $(\mathcal{B}_1, \mathcal{F}_2)$ satisfies condition (E). \Box

In the case of Theorem 5, the family \mathcal{A}_1 consists of singletons.

We now give applications of the results above for abstract triples to continuous linear operators between locally convex spaces and obtain versions of the Banach-Steinhaus Theorem for arbitrary locally convex spaces.

In what follows let (E_1, F_1) , (E_2, F_2) be dual pairs with polar topologies τ_i on E_i of uniform convergence on members of \mathcal{F}_i . Let Γ be a family of $\tau_1 - \tau_2$ continuous linear operators. Let $\beta(E_i, F_i)$ be the strong topology on E_i from the duality. From Theorem 5 we obtain an equicontinuity version of the Banach-Steinhaus Theorem.

Theorem 9. If Γ is pointwise bounded on E_1 , then Γ is $\beta(E_1, F_1) - \tau_2$ equicontinuous.

Proof. In Theorem 5 the family \mathcal{B} is the family of $\sigma(F_1, E_1)$ bounded sets so $\tau_{\mathcal{B}} = \beta(E_1, F_1)$ and the result follows from Theorem 5. \Box

Note that the family Γ may fail to be equicontinuous with respect to the original topology of E_1 but that the result above holds for arbitrary locally convex spaces with no assumptions on the domain space E_1 . If E_1 is a barrelled space, then the original topology of E_i is $\beta(E_1, F_1)$ so Theorem 7 gives one of the usual forms of the Banach-Steinhaus Theorem or the Uniform Boundedness Principle (see [Sw1] 24.11,[Wi1] 9.3.4). This result was established in [Sw2]. As noted in [LC] there are non-barrelled spaces which carry the strong topology so Theorem 9 gives a proper extension of the usual form of the Banach-Steinhaus Theorem for barrelled spaces.

From Corollary 7 and Theorem 9 we also obtain the sequential version of the Banach-Steinhaus Theorem.

Theorem 10. Let $T_k : E_1 \to E_2$ be a sequence of $\tau_1 - \tau_2$ continuous linear operators such that $\tau_2 - \lim_k T_k x = Tx$ exists for every $x \in E_1$. Then T is $\beta(E_1, F_1) - \tau_2$ continuous and $\{T_k\}$ is $\beta(E_1, F_1) - \tau_2$ equicontinuous.

Again note that T may fail to be continuous with respect to the original topology of E_1 . This result was established in [LC].

We can obtain an improvement of Theorem 9 for Banach-Mackey spaces. Recall a locally convex space E_1 is a Banach-Mackey space if the bounded subsets of E_1 are strongly bounded ([Wi1]10.4.3). For example, any sequentially complete locally convex space is a Banach-Mackey space ([Wi1] 10.4.8). We denote the topology on E_1 of uniform convergence on the $\beta(F_1, E_1)$ bounded subsets of F_1 by $\beta^*(E_1, F_1)$ (see [Sw1]20,[Wi1]10.1). **Theorem 11.** Suppose E_1 is a Banach-Mackey space. If Γ is pointwise bounded on E_1 , then Γ is $\beta^*(E_1, F_1) - \tau_2$ equicontinuous.

Proof. By the Banach-Mackey property the family \mathcal{B} of Theorem 5 is the family of all $\beta(F_1, E_1)$ bounded subsets of F_1 so $\tau_{\mathcal{B}} = \beta^*(E_1, F_1)$ and the result follows from Theorem 5

Note $\beta^*(E_1, F_1) \subset \beta(E_1, F_1)$ so Theorem 11 improves the conclusion of Theorem 9 for Banach-Mackey spaces. We can also obtain an improvement of Theorem 10 for Banach-Mackey spaces. \Box

Theorem 12. Suppose E_1 is a Banach-Mackey space. Let $T_k : E_1 \to E_2$ be a sequence of $\tau_1 - \tau_2$ continuous linear operators such that $\lim_k T_k x = Tx$ exists for every $x \in E_1$. Then T is $\beta^*(E_1, F_1) - \tau_2$ continuous and $\{T_k\}$ is $\beta^*(E_1, F_1) - \tau_2$ equicontinuous.

We can also obtain a corollary of Theorem 8.

Corollary 13. Let \mathcal{A}_1 be the family of all $\sigma(E_1, F_1)$ bounded subsets of E_1 and \mathcal{B}_1 be the family of all $\beta(F_1, E_1)$ bounded subsets of F_1 . If Γ is uniformly bounded on members of \mathcal{A}_1 , then Γ is $\beta^*(E_1, F_1) - \tau_2$ equicontinuous.

Proof. $\tau_{\mathcal{B}_1} = \beta^*(E_1, F_1)$ so the result follows from Theorem 8. \Box

Corollary 13 about a single mapping also has an interesting application to linear operators.

Corollary 14. Suppose $T : E_1 \to E_2$ is a bounded linear operator. Then T is $\beta^*(E_1, F_1) - \tau_2$ continuous.

Note that T may not be continuous with respect to the original topology of E_1 . Consider the identity operator on an infinite dimensional normed space when the domain has the weak topology and the range the norm topology.

The result in Corollary 2 also has an application to a Hellinger-Toeplitz result for linear operators. Let X, Y be locally convex spaces with duals X', Y'. A property \mathcal{P} of subsets B of a dual space Y' is said to be linearly invariant if for every continuous linear operator $T : X \to Y$ there exists $A \subset X'$ with property \mathcal{P} such that $BT = T'B \subset A$. For example, the family of subsets with finite cardinal, the weak^{*} compact sets, the weak^{*} convex compact sets, the weak^{*} bounded sets, etc. If \mathcal{P} is a linearly invariant property, let P(X, X') be the locally convex topology of uniform convergence on the members of X' with property \mathcal{P} . From Corollary 2 we have a Hellinger-Toeplitz result in the spirit of Wilansky ([Wi1]11.2.6).

Corollary 15. If $T : X \to Y$ is a continuous linear operator, then T is P(X, X') - P(Y, Y') continuous.

In particular, T is continuous with respect to the Mackey topologies and strong topologies ([Wi1]11.2.6).

Finally we indicate an application concerning automatic continuity of matrix transformations between sequence spaces. Let λ_1, λ_2 be scalar sequence spaces containing c_{00} , the space of sequences with finite range and if $a = \{a_j\} \in \lambda_1^{\beta}$, the β -dual of $\lambda_1, t = \{t_j\} \in \lambda_1$, we write $a \cdot t = \sum_{j=1}^{\infty} a_j t_j$. Assume that λ_i has a locally convex polar topology τ_i from the duality pair $\lambda_i, \lambda_i^{\beta}$ and that $A = [a_{ij}]$ is an infinite matrix which maps λ_1 into λ_2 . Under assumptions on the sequence spaces, we use Theorem 10 to show that A is continuous with respect to appropriate topologies. First, we assume that the β -dual of λ_1 is contained in the topological dual λ'_1 and then we assume that λ_2 is an AK-space under its topology (i.e., the canonical unit vectors $\{e^i\}$ form a Schauder basis for λ_2 ([Wi2] 4.2.13,[Sw3] B.2). Now let a^i be the i^{th} row of the matrix A so $a^i \in \lambda_1^\beta \subset \lambda_1'$ and define $A_k : \lambda_1 \to \lambda_2$ by $A_k t = \sum_{i=1}^k (a^i \cdot t)e^i$. Then A_k is $\tau_1 - \tau_2$ continuous and $\tau_2 - \lim_k A_k t = \sum_{i=1}^\infty (a^i \cdot t)e^i = At$ by the AK assumption. By the Banch-Steinhaus Theorem 10, $\{A_k\}$ is $\beta(\lambda_1, \lambda_1) - \tau_2$ equicontinuous and A is $\beta(\lambda_1, \lambda_1^{\beta}) - \tau_2$ continuous, an automatic continuity result. In particular, if $\lambda_1 = \lambda_2 = l^2$, then this result implies that any matrix mapping l^2 into itself is continuous; this is the classic theorem of Hellinger and Toeplitz ([K2] 34.7). Further automatic continuity theorems for matrix mappings can be found in [K2] 34.7 and [Sw4] 12.6.

This paper was supported by Research Fund, Kumoh National Institute of Technology

References

[CLS] M. Cho, R. Li and C. Swartz, Subseries convergence in abstract duality pairs, Proy. J. Math., 33, pp. 447-470, (2014).

- [DS] N. Dunford and J. Schwartz, Linear Operators, Interscience, N. Y., (1958).
- [K2] G. Köthe, Topological Vector Spaces II, Springer-Verlag, Berlin, (1979).
- [LC] R. Li and M. Cho, A Banach-Steinhaus Type Theorem Which is Valid for every Locally Convex Space, Applied Functional Anal., 1, pp. 146-147, (1993).
- [Sw1] C. Swartz, An Introduction to Functional Analysis, Marcel Dekker, N. Y., (1992).
- [Sw2] C. Swartz, The Uniform Boundedness Principle for Arbitrary Locally Convex Spaces, Proy. J. Math., 26, pp. 245-251, (2007).
- [Sw3] C. Swartz, Multiplier Convergent Series, World Sci. Publishing, Singapore, (2009).
- [Sw4] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publishing, Singapore, (1996).
- [Wi1] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).
- [Wi2] A. Wilansky, Summability through Functional Analysis, North Holland, Amsterdam, (1984).

Min-Hyung Cho

Department of Applied Mathematics Kum-Oh National Institute of Technology Kumi, Korea e-mail : mignon@kumoh.ac.kr Li Ronglu (he is deceased) Department of Mathematics Harbin Institute of Technology Harbin, P. R. C.

and

Charles Swartz

Department of Mathematical Sciences New Mexico State University Las Cruces, NM, 88003, U. S. A. e-mail : cswartz@nmsu.edu