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Abstract
A bug Bugp,r1,r2 is a graph obtained from a complete graph Kp

by deleting an edge uv and attaching the paths Pr1 and Pr2 by one of
their end vertices at u and v, respectively. Let Q(G) be the signless
Laplacian matrix of a graph G and q1(G) be the spectral radius of
Q(G). It is known that the bug B0 = Bugn−d+2,b d2 c,d

d
2 e
maximizes

q1(G) among all graphs G of order n and diameter d. For a bug
B of order n and diameter d, n − d is an eigenvalue of Q(B) with
multiplicity n − d − 1. In this paper, we prove that remainder d +
1 eigenvalues of Q(B), among them q1(B), can be computed as the
eigenvalues of a symmetric tridiagonal matrix of order d+1. Finally,
we show that q1(B0) can be computed as the largest eigenvalue of a
symmetric tridiagonal matrix of order d

2 + 1 whenever d is even.
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1. Introduction

Let G = (V (G), E(G)) be a simple undirected graph of order n with vertex
set V (G) and edge set E(G). Let D(G) be the diagonal matrix of order
n whose (i, i)− entry is the degree of the i− th vertex of G and let A (G)
be the adjacency matrix of G. The matrices L(G) = D(G) − A(G) and
Q (G) = D (G) + A (G) are the Laplacian matrix and signless Laplacian
matrix of G, respectively. These matrices are both positive semidefinite
matrices and they have the same characteristic polynomial if and only if G
is a bipartite graph. The eigenvalues of A(G), L(G) and Q(G) are called
the eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues
of G, respectively. In particular, the spectral radius of Q(G) is called the
signless Laplacian index of G and it is usually denoted by q1(G). From the
Perron - Frobenius Theory for nonnegative matrices, it follows that if G is
a connected graph then q1(G) is a simple eigenvalue of Q(G).

Let Kn and Pn be a complete graph and a path on n vertices, respec-
tively. A bug Bugp,r1,r2 is a graph obtained from Kp by deleting an edge uv
and attaching the paths Pr1 and Pr2 by one of their end vertices at u and
v, respectively. Observe that Bugp,r1,r2 is a graph of order p+ r1 + r2 − 2
and diameter r1 + r2.

Example 1. For instance Bug6,3,4 is the graph

of 11 vertices and diameter 7.

Let Gn be the class of all connected graphs on n vertices and let Gn,d
be the subclass of graphs in Gn with diameter d. Since Gn,1= {Kn} and
Gn,n−1 = {Pn} , throughout this paper, we assume 2 ≤ d ≤ n− 2. Let

Bn,d = {Bugn−d+2,i,d−i : 1 ≤ i ≤ d− 1}.

Clearly Bn,d is a subclass of Gn,d.
Some results such that q1(G) is maximal among graphs with fixed in-

variants are known. For instance, in [4] the graph having the largest q1(G)
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among the graphs with fixed numbers of vertices and edges is found, in [6]
the graphs with the largest q1(G) and the largest adjacency index among
all graphs with a fixed vertex connectivity or a fixed edge connectivity are
characterized and in [7] the author characterizes the graphs having the
largest q1(G) among all the graphs on n vertices and a given matching
number. of trees in Tn,d are characterized.

For a bug B of order n and diameter d, n− d is an eigenvalue of Q(B)
with multiplicity n − d − 1. In this paper, we prove that remainder d + 1
eigenvalues of Q(B) can be computed as the eigenvalues of a symmetric
tridiagonal matrix of order d+ 1.

A conjecture proposed by Hansen and Lucas [5] states that, for a given
n ≥ 9, the bug Bbn

2
c+1,bD

2
c,dD

2
e, where D = dn+12 e, is the unique connected

graph of order n that maximizes the product q1(G)diam(G) over all con-
nected graphs G of order n. This conjecture was studied by H. Liu and M.
Lu [3]. They proved that the bug B0 = Bugn−d+2,b d

2
c,d d

2
e maximizes q1(G)

among all graphs G of order n and diameter d and that, for a given n,
the bug Bbn

2
c+2,bD

2
c,dD

2
e, where D = dn+12 e, is the unique connected graph

of order n that maximizes the product q1(G)diam(G) over all connected
graphs of order n.

Moreover, in this paper, we prove that q1(B0) can be computed as the
largest eigenvalue of a symmetric tridiagonal matrix of order d

2+1 whenever
d is even.

We recall the notion of the join operation of graphs. Given two vertex
disjoint graphs G1 and G2, the join of G1 and G2 is the graph G = G1 ∨
G2 such that V(G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪
{xy : x ∈ V (G1) , y ∈ V (G2)} .

The join operation of two vertex disjoint graphs can be generalize as
follows [1, 2]. Let H be a graph of order k. Let V (H) = {1, . . . , k} be the
vertex set of H. Let {G1, G2, . . . , Gk} be a set of pairwise vertex disjoint
graphs. For 1 ≤ j ≤ k, the vertex j ∈ V (H) is assigned to the graph
Gj . Let G be the graph obtained from the graphs G1,G2, . . . , Gk and the
edges connecting each vertex of Gi with all the vertices of Gj if and only if
ij ∈ E (H) . That is, G is the graph with vertex set V(G)=

Sk
i=1 V (Gi) and

edge set E(G)=
³Sk

i=1E(Gi)
´
∪
³S

ij∈E(H) {uv : u ∈ V (Gi), v ∈ V (Gj)}
´
.

This graph is called the H−join of the graphs G1, . . . , Gk and it is denoted
by G=

W
H {Gj : 1 ≤ j ≤ k}.

We see that if ni is the order of Gi, i = 1, 2, . . . , k, then H − join of
G1, . . . , Gk is a graph of order n1 + n2 + . . .+ nk.
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Important examples of this graph operation are the bugs Bugn−d+2,i,d−i.
In fact, the bug Bugn−d+2,i,d−i is the Pd+1 − join of the regular graphs
G1 = . . . = Gi = K1, Gi+1 = Kn−d, Gi+2 = . . . = Gd+1 = K1.

Since Bugn−d+2,i,d−i and Bugn−d+2,d−i,i, are isomorphic graphs, we may
take 1 ≤ i ≤ bd2c.

Example 2. Below are the non-isomorphic bugs of order 11 and diameter
7.
Bug6,1,6 is the P8−join of G1 = K1, G2 = K4 and Gi = K1 for i = 3, . . . , 8:

Bug6,2,5 is the P8 − join of G1 = G2 = K1, G3 = K4 and Gi = K1 for
i = 4, . . . , 8:

Bug6,3,4 is the P8−join of G1 = G2 = G3 = K1, G4 = K4 and Gi = K1

for i = 5, . . . , 8:

MMartinez
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2. The signless Laplacian eigenvalues of bugs

In [1], Theorem 5, the spectrum of the adjacency matrix of the H- join
of regular graphs is obtained. The version of this result for the signless
Laplacian matrix is given below and its proof is similar.

Theorem 1. LetH be a graph with k vertices. LetG =
W
H {Gj : 1 ≤ j ≤ k}.

For j = 1, . . . , k, let Gj be a rj-regular graph of order nj . Then

σ (Q (G)) = ∪Gj 6=K1 {sj + λ : λ ∈ σ (Q (Gj)) \ {2rj}} ∪ σ (M(G))(2.1)

where M(G) is a matrix of order k × k given by

M(G) =

⎡⎢⎢⎢⎢⎢⎣
s1 + 2r1 δ12

√
n1n2 . . . δ1k

√
n1nk

δ12
√
n1n2 s2 + 2r2

. . .
...

...
. . .

. . . δ(k−1)k
√
nk−1nk

δ1k
√
n1nk . . . δ(k−1)k

√
nk−1nk sk + 2rk

⎤⎥⎥⎥⎥⎥⎦
(2.2)

with

δij =

(
1 if ij ∈ E (H)
0 otherwise

and, for j = 1, 2, . . . , k,

sj =
X

jl∈E(H)
nl.(2.3)

For brevity, let B(i) = Bugn−d+2,i,d−i. Remember that we may take
1 ≤ i ≤ bd2c.

We already observed B(i) = Bugn−d+2,i,d−i is the Pd+1 − join of the
regular graphs G1 = . . . = Gi = K1, Gi+1 = Kn−d, Gi+2 = . . . = Gd+1 =
K1. Hence Theorem 1 can be applied to determine its signless Laplacian
eigenvalues. For all the bugs B(i), the graph H in Theorem 1 is the path
Pd+1. Hence the matrixM(B(i)) in (2.2) becomes a symmetric tridiagonal
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matrix of order (d+ 1)× (d+ 1):

M(B(i)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 + 2r1
√
n1n2√

n1n2 s2 + 2r2
√
n2n3

√
n2n3 s3 + 2r3

. . .
. . .

. . .
. . .

. . . sd + 2rd
√
ndnd+1√

ndnd+1 sd+1 + 2rd+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.4)
For convenience, we define the matrices

Definition 1. Let

R (n− d) =

⎡⎢⎣ n− d+ 1
√
n− d 0√

n− d 2(n− d)
√
n− d

0
√
n− d n− d+ 1

⎤⎥⎦ ,
T1 = [1]

and, for s ≥ 2, let

Ts =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 2 1

1
. . .

. . .
. . . 2 1

1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .(2.5)

of order s× s.

Moreover, we introduce the following matrices: I is the identity matrix,
0 is the zero matrix, J is the exchange matrix (the matrix with ones in the
secondary diagonal and zeros elsewhere) and F is the matrix whose entries
are zeros except for the entry in the last row and first column which is equal
to 1. The orders of these matrices will be clear from the context in which
they are used.

Theorem 2. The eigenvalues of B(i) = Bugn−d+2,i,d−i are n − d with
multiplicity n−d−1 and the eigenvalues of the (d+ 1)×(d+ 1) symmetric
tridiagonal matrix

M(B(i)) =

"
Xi F
FT JTd−i−1J

#
(2.6)
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where

X1 =

⎡⎢⎣ n− d
√
n− d 0√

n− d 2(n− d)
√
n− d

0
√
n− d n− d+ 1

⎤⎥⎦(2.7)

whenever i = 1,

Xi =

"
Ti−1 F
FT R (n− d)

#
(2.8)

whenever 2 ≤ i ≤
j
d
2

k
and F is the matrix defined above.

Proof. We know that B(i) = Bugn−d+2,i,d−i is the Pd+1 − join of the
regular graphs G1 = . . . = Gi = K1, Gi+1 = Kn−d, Gi+2 = . . . = Gd+1 =
K1. Thus Gj = K1 for all j except for j = i + 1. For j = i + 1, we
have Gi+1 = Kn−d which is a (n − d − 1) - regular graph. From (2.3),
si+1 = ni + ni+2 = 1 + 1 = 2. Then, from (2.1), we have

σ(Q(B(i))) = {2 + λ : λ ∈ Q(Kn−d)\{2(n− d− 1)}} ∪ σ(M(B(i)).

(2.9)

At this point, we recall that the signless Laplacian eigenvalues of Kn−d
are 2(n− d− 1) and n− d− 2 with multiplicity n− d− 1. Using this fact
in (2.9), we obtain σ(Q(B(i))) = {(n− d)[n−d−1]} ∪ σ(M(B(i))
where (n−d)[n−d−1] means that n−d is an eigenvalue of multiplicity n−d−1.

We now search for the entries of M(B(i)) in (2.4). We begin with
M(B(1)). The bug B(1) is the Pd+1 − join of G1 = K1, G2 = Kn−d and
G3 = G4 = . . . = Gd+1 = K1. For this bug

n1 = 1 r1 = 0
n2 = n− d r2 = n− d− 1
n3 = 1 r3 = 0
...

...
nd = 1 rd = 0
nd+1 = 1 rd+1 = 0

Then s1 = n2 = n− d, s2 = n1 + n3 = 2, s3 = n2 + n4 = n− d+ 1, s4 =
n3 + n5 = 2, . . . , sd = nd−1 + nd+1 = 2, sd+1 = nd = 1. Replacing these
values in (2.4), we obtain
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M(B(1))=

"
X1 F
FT JTd−2J

#
with X1 =

⎡⎢⎣ n− d
√
n− d 0√

n− d 2(n− d)
√
n− d

0
√
n− d n− d+ 1

⎤⎥⎦
and Td−2 as in (2.5). The theorem has been proved for B(1). Let 2 ≤ i ≤
bd2c. The bug B(2) is the Pd+1 − join of the regular graphs G1 = G2 =
K1, G3 = Kn−d, G4 = . . . = Gd+1 = K1. For B(2), we have

n1 = 1 r1 = 0
n2 = 1 r2 = 0

n3 = n− d r3 = n− d− 1
n4 = 1 r4 = 0
...

...
nd = 1 rd = 0
nd+1 = 1 rd+1 = 0

Then s1 = n2 = 1, s2 = n1+n3 = n−d+1, s3 = n2+n4 = 2, s4 = n3+
n5 = n− d+ 1, s5 = n4 + n6 = 2, . . . , sd = nd−1 + nd+1 = 2, sd+1 = nd = 1.
Replacing these values in (2.4), we get

M(B(2))=

"
X2 F
F T JTd−3J

#
where

X2 =

⎡⎢⎢⎢⎣
1 1 0 0

1 n− d+ 1
√
n− d 0

0
√
n− d 2(n− d)

√
n− d

0 0
√
n− d n− d+ 1

⎤⎥⎥⎥⎦
and Td−3 as in (2.5). The bug B(3) is the Pd+1 − join of G1 = G2 = G3 =
K1, G4 = Kn−d, G5 = . . . = Gd+1 = K1. Similarly

M(B(3))=

"
X3 F
FT JTd−4J

#
where

X3 =

⎡⎢⎢⎢⎢⎢⎣
1 1 0 0 0
1 2 1 0 0

0 1 n− d+ 1
√
n− d 0

0 0
√
n− d 2(n− d)

√
n− d

0 0 0
√
n− d n− d+ 1

⎤⎥⎥⎥⎥⎥⎦
and Td−4 as in (2.5). We continue in this fashion obtaining that the result
also holds for i = 4, . . . , bd2c. 2
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3. Computing the largest signless Laplacian index of graphs
of prescribed order and diameter

We already mentioned that H. Liu and M. Lu, Theorem 3.2 in [3] charac-
terized the largest signless Laplacian index among the graphs in Gn,d.
Theorem 3. Among all the graphsG on n vertices and diameter d, 2 ≤ d ≤
n−2, the largest q1(G) is attained by the bug B(bd2c) = Bugn−d+2,bd2c,d d2e.

Theorem 3 tell us that the largest signless Laplacian index among the
graph in Gn,d is q1(B(bd2c). From Theorem 2, q1(B(bd2c) can be computed
as the largest eigenvalues of the symmetric tridiagonal matrix M(B(bd2c))
of order d+ 1. More precisely

Theorem 4. Let G ∈ Gn,d.

(a) If d = 3 then the largest q1 (G) can be computed as the largest eigen-
value of the symmetric tridiagonal matrixM(B(1)) of order 4 with diagonal
entries

n− 3, 2(n− 3), n− 2, 1

and codiagonal entries

√
n− 3,

√
n− 3, 1

(b) If d ≥ 4 then the largest q1 (G) can be computed as the largest eigenvalue
of the symmetric tridiagonal matrixM(B(bd2c)) of order d+1 with diagonal
entries

1,

b d2c−2z }| {
1, 2, ..., 2, n− d+ 1, 2 (n− d) , n− d+ 1,

dd2e−2z }| {
2, ..., 2, 1

codiagonal entries

b d2c−1z }| {
1, ..., 1,

√
n− d,

√
n− d,

d d2e−1z }| {
1, ..., 1 .

We now prove that q1(B(bd2c) can be computed as the largest eigenvalue
of a symmetric tridiagonal matrix of order d

2 + 1 whenever d is an even
integer.
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Theorem 5. If d ≥ 4 is an even integer then among the graphs G on n
vertices and diameter d, the largest q1 (G) can be computed as the largest
eigenvalue of a symmetric tridiagonal matrix of order d

2 + 1 with diagonal
entries

1, 2, . . . , 2, n− d+ 1, 2(n− d)

and codiagonal entries

1, . . . , 1,
q
2(n− d).

Proof. Let d be an even integer and α = n − d. From Theorem 4,
q1(M(B(

d
2)) can be computed as the largest eigenvalue of

M(B(
d

2
)) =

⎡⎢⎣ U b 0
bT 2α bTJ
0 Jb JUJ

⎤⎥⎦
of order d+ 1 where

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 2
. . .

. . .
. . . 1
1 2 1

1 α+ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
of order d

2 , b
T =

h
0 · · · · · · 0

√
α
i
, J is the reverse matrix and

0 is the zero matrix, all of them of the appropriate sizes. Consider the
orthogonal matrix

Q =
1√
2

⎡⎢⎣ I 0 J

0T
√
2 0T

−J 0 I

⎤⎥⎦ .

An easy calculation shows that

QM(B(
d

2
))QT =

⎡⎢⎣ U
√
2b 0√

2bT 2α 0T

0 0 JUJ

⎤⎥⎦ .
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Then the eigenvalues of M(B(d2)) are the eigenvalues of"
U

√
2b√

2bT 2α

#
and the eigenvalues of U. Since the eigenvalues of U

strictly interlace the eigenvalues of

"
U

√
2b√

2bT 2α

#
, the proof is complete.

2

References

[1] D. M. Cardoso, M. A. A. de Freitas, E. Martins., M. Robbiano, Spectra
of graphs obtained by a generalization of the join graph operation,
Discrete Mathematics 313, pp. 733-741, (2013).

[2] D. M. Cardoso, E. Martins., M. Robbiano, O. Rojo, Eigenvalues of a
H-generalized operation constrained by vertex subsets, Linear Algebra
Appl. 438, pp. 3278-3290, (2013).

[3] H. Liu, M. Lu, A conjecture on the diameter and signless Laplacian
index of graphs, Linear Algebra Appl. 450, pp. 158-174, (2014).
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