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Abstract

In this paper, we establish some hyperstability results of the fol-
lowing Cauchy-Jensen functional equation
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1. Introduction and Preliminaries

The stability problem of functional equations was posed for the first time
by Ulam [27] in the year 1940. Ulam stated the problem as follows:

Let (G, .) be a group and let (H, ., d) be a metric group with the metric
d. Given δ > 0, does there exist � > 0 such that if a mapping h : G → H
satisfies the inequality

d(h(xy), h(x)h(y)) ≤ δ

for all x, y ∈ G, then there is a homomorphism a : G→ H with

d(h(x), a(x)) ≤ �

for all x ∈ G?

Ulam’s problem was partially solved by Hyers in 1941 in the context of
Banach spaces with � = δ as shown below [14].

Theorem 1.1. [D. H. Hyers (1941)] Let E be a normed vector space, F
a Banach space and suppose that the mapping f : E → F satisfies the
inequality

kf(x+ y)− f(x)− f(y)k ≤ �,

for all x, y ∈ E where � is a constant. Then the limit

T (x) = limn→∞2
−nf(2nx)

exists for each x ∈ E and T is the unique additive mapping satisfying

kf(x)− T (x)k ≤ �,

for all x ∈ E. Also, if for each x the function t → f(tx) from R to F is
continuous for each fixed x, then T is linear. If f is continuous at a single
point of E, then T is continuous in E.

Aoki [1], Z. Gajda [11] and Th. M. Rassias [23] provided a generalization
of the Hyers theorem for additive and linear mappings, respectively, by
allowing the Cauchy difference to be unbounded.

Theorem 1.2. Let f : E → F be a mapping from a real normed vector
space E into a Banach space F satisfying the inequality
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kf(x+ y)− f(x)− f(y)k ≤ θ(kxkp + kykp),(1.1)

for all x, y ∈ E\{0}, where θ and p are constants with θ > 0 and p 6= 1.
Then there exists a unique additive mapping T : E → F such that

kf(x)− T (x)k ≤ θ

|1− 2p−1| kxk
p ,(1.2)

for all x ∈ E\{0}.
Theorem 1.2 is due to Aoki [1] for 0 < p < 1 (see also [23]; Gajda [11]

for p > 1; Hyers [14] for p = 0 and Th. M. Rassias [24] for p < 0 (see [[25],
page 326] and [5]).

Beginning around the year 1980 the topic of approximate homomor-
phisms, or the stability of the equation of homomorphism, was studied by
a number of mathematicians (see 10, 16, 17, 18, 26, 12, 15, 20, 21).

Recently, interesting results concerning Cauchy-Jensen functional equa-
tion

f(
x+ y

2
+ z) + f(

x− y

2
+ z) = f(x) + 2f(z),(1.3)

have been obtained in [2] and [20].

Lemma 1.1. Let X and Y be vector spaces. If a mapping f : X → Y
satisfies (1.3), then the mapping f : X → Y is Cauchy additive and f is a
solution of the Jensen equation 2f(x+y2 ) = f(x) + f(y).

We say a functional equation D is hyperstable if any function f sat-
isfying the equation D approximately is a true solution of D. The term
hyperstability was used for first time probably in [19]. However, it seems
that the first hyperstability result was published in [4] and concerned the
ring homomorphisms. The hyperstability results for Cauchy equation were
investigated by Brzdek in [7, 8, 9]. Gselmann in [13] studied the hyperstabil-
ity of the parametric fundamental equation of information. In [3] Bahyrycz
and Piszczek provided the hyperstability of the Jensen functional equation.

In this paper, we present the hyperstability results for the Cauchy-
Jensen functional equation (1.3) in Banach spaces.

The method of the proof of the main results is motivated by an idea
used by Brzdek in [7, 8, 9] and further by Piszczek in [22]. It is based on
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a fixed point theorem for functional spaces obtained by Brzdek et al. (see
[[6], Theorem 1]).

Throughout the paper,N, R, R+ andNm0 denote the set of all positive
integers, the set of real numbers, the set of positive real numbers and the
set of all integers greater than or equal to m0, respectively.

First, we take the following three hypotheses (all notations come from
[6]).

(H1) X is a nonempty set, Y is a Banach space, f1, ....fk : X → X and
L1, ....Lk : X → R+ are given.

(H2) T : Y X → Y X is an operator satisfying the inequality

kT ξ(x)− T µ(x)k ≤
kX
i=1

Li(x) kξ(fi(x))− µ(fi(x))k

for all ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : R+
X → R+

X is a linear operator defined by

Λδ(x) :=
kX
i=1

Li(x)δ(fi(x))

for all δ ∈ R+X , x ∈ X.

The mentioned fixed point theorem is stated as follows.

Theorem 1.3. Let hypotheses (H1)-(H3) be valid and functions ε : X →
R+ and let ϕ : X → Y fulfil the following two conditions:

kT ϕ(x)− ϕ(x)k ≤ ε(x), x ∈ X

ε∗(x) :=
∞X
n=0

Λnε(x) <∞, x ∈ X.
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Then, there exists a unique fixed point ψ of T with

kϕ(x)− ψ(x)k ≤ ε∗(x), x ∈ X.

Moreover
ψ(x) = lim

n→∞
T nϕ(x), x ∈ X.

2. Hyperstability Results of eq (1.3)

The following theorems are the main results in this paper and concern the
hyperstability of equation (1.3). Moreover the results that we will obtained
in these theorems corresponds the results obtained in [3, 9].

Theorem 2.1. Let X be a normed space, Y be a Banach space, c ≥ 0 and
p, q, r ∈ R such that p+ q + r < 0. If f : X → Y satisfies°°°°f µx+ y

2
+ z

¶
+ f

µ
x− y

2
+ z

¶
− 2f (z)− f (x)

°°°° ≤ c kxkp kykq kzkr

(2.1)

for all x, y, z ∈ X\ {0}, then f is a solution of (1.3) on X\ {0}.

Proof. It is sufficient to consider only the case p + q < 0. Replacing
(x, y, z) by (mx,mx,m), with m ∈ N1, in (2.1), we get

kf ((1 +m)x)− f (mx)− f (x)k ≤ cmp+q kxkp+q+r(2.2)

for all x ∈ X\ {0}. Further put

T ξ (x) := ξ ((1 +m)x)− ξ (mx) , x ∈ X\ {0} , ξ ∈ Y X\{0},

ε (x) := cmp+q kxkp+q+r , x ∈ X\ {0} .

Then the inequality (2.2) takes the form

kT f (x)− f (x)k ≤ ε (x) , x ∈ X\ {0} .
The operator

Λδ (x) := δ ((1 +m)x) + δ (mx) , x ∈ X\ {0} , δ ∈ RX\{0}
+

has the form described in (H3) with k = 2 and f1 (x) = (1 +m)x, f2 (x) =
mx, and L1 (x) = L2 (x) = 1 for x ∈ X\ {0}.
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Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X\ {0}, we obtain

kT ξ (x)− T µ (x)k = k(ξ − µ) (f1 (x))− (ξ − µ) (f2 (x))k
≤ k(ξ − µ) (f1 (x))k+ k(ξ − µ) (f2 (x))k

=
P2

i=1 Li (x) k(ξ − µ) (fi (x))k .

So, (H2) is valid. Next, we can find m0 ∈ N1 such that

(1 +m)p+q+r +mp+q+r < 1 for all m ≥ m0.

Therefore, we obtain that

ε∗ (x) :=
P∞

n=0 Λ
nε (x)

= cmp+q kxkp+q+rP∞
n=0

³
(1 +m)p+q+r +mp+q+r

´n
= cmp+qkxkp+q+r

1−(1+m)p+q+r−mp+q+r , x ∈ X\ {0} , m ≥ m0

Thus, according to Theorem 1.3, for each m ≥ m0 there exists a unique
solution Fm : X\{0}→ Y of the equation

Fm(x) = Fm((1 +m)x)− Fm(mx)

for all x ∈ X\{0}, such that

kf(x)− Fm(x)k ≤
cmp+q kxkp+q+r

1− (1 +m)p+q+r −mp+q+r
,

for all x ∈ X\{0}, m ≥ m0.

Moreover
Fm(x) = lim

n→∞
T nf(x).

We show that°°°°T nf(
x+ y

2
+ z) + T nf(

x− y

2
+ z)− 2T nf(z)− T nf(x)

°°°° ≤
c
¡
(1 +m)p+q+r +mp+q+r¢n kxkp kykq kzkr(2.3)

for all x, y, z ∈ X\{0} and n ∈ N.
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Indeed, if n = 0, then (2.3) is simply (2.1). So, fix n ∈ N and suppose
that (2.3) holds for n. Then

°°°T n+1f
³
x+y
2 + z

´
+ T n+1f

³
x−y
2 + z

´
− 2T n+1f (z)− T n+1f (x)

°°° =°°°T nf
³
(1 +m)

³
x+y
2 + z

´´
− T nf

³
m
³
x+y
2 + z

´´
+T nf (1 +m)

³
x−y
2 + z

´
− T nf

³
m
³
x−y
2 + z

´´
−2T nf ((m+ 1) z) + 2T nf (mz)− T nf ((m+ 1)x) + T nf (mx)k
≤
°°°T nf

³
(m+ 1)

³
x+y
2 + z

´´
+ T nf

³
(m+ 1)

³
x−y
2 + z

´´
−2T nf ((1 +m) z)− T nf (1 +m)xk
+
°°°T nf

³
m
³
x+y
2 + z

´´
+ T nf

³
m
³
x−y
2 + z

´´
− 2T nf (mz)− T nf (mx)

°°°
≤ c

h
(m+ 1)p+q+r +mp+q+r

in
k(1 +m)xkp k(1 +m) ykq k(1 +m) zkr

+c
h
(1 +m)p+q+r +mp+q+r

in
kmxkp kmykq kmzkr

= c
³
(1 +m)p+q+r +mp+q+r

´n+1
kxkp kykq kzkr

for all x, y, z ∈ X\ {0}.

Thus, by induction, we have shown that (2.3) holds for all x, y, z ∈
X\{0} and for all n ∈ N. Letting n→∞ in (2.3), we obtain

Fm(
x+ y

2
+ z) + Fm(

x− y

2
+ z) = Fm(x) + 2Fm(z),

for all x, y, z ∈ X\{0}. So, we find a sequence (Fm)m≥m0 satisfies (1.3) on
X\{0} such that

kf(x)− Fm(x)k ≤
cmp+q kxkp+q+r

1− (1 +m)p+q+r −mp+q+r
, x ∈ X\{0}, m ≥ m0.

It follows, with m→∞, that f is a solution of (1.3) on X\{0}. 2
In a similar way we can prove the following three theorems.

Theorem 2.2. Let X be a normed space, Y be a Banach space, c ≥ 0 and
p, q, r ∈ R such that p+ q + r > 1. If f : X → Y satisfies (2.1) then f is a
solution of (1.3) on X\{0}.



366 Iz-iddine EL-Fassi and Samir Kabbaj

Proof. Since p + q + r > 1, one of p, r + q must be positive. It is
sufficient to consider only the case q+ r > 0 and p ∈ R. Replacing (x, y, z)
by (x, x

m , x
m), with m ∈ N1, in (2.1), we get

°°°°f(3 +m

2m
x) + f(

1 +m

2m
x)− 2f( x

m
)− f(x)

°°°° ≤ c

mq+r
kxkp+q+r(2.4)

for all x ∈ X\{0}. Define operators T : Y X\{0} → Y X\{0} and Λ :
R+

X\{0} → R+
X\{0} by

T ξ(x) := ξ(
3 +m

2m
x) + ξ(

1 +m

2m
x)− 2ξ( x

m
), x ∈ X\{0}, ξ ∈ Y X\{0},

Λδ(x) := δ(
3 +m

2m
x) + δ(

1 +m

2m
x) + 2δ(

x

m
), x ∈ X\{0}, δ ∈ R+X\{0}.

Then it is easily seen that Λ has the form described in (H3) with k = 3
and

f1(x) =
3 +m

2m
x, f2(x) =

1 +m

2m
x, f3(x) =

x

m
, L1(x) = L2(x) = 1

and L3(x) = 2, x ∈ X\{0}.

Then the inequality (2.4) take the form

kT f(x)− f(x)k ≤ ε(x), x ∈ X\{0},

with
ε(x) :=

c

mq+r
kxkp+q+r .

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X\{0}, we have
kT ξ(x)− T µ(x)k = k(ξ − µ)(f1(x)) + (ξ − µ)(f2(x))− 2(ξ − µ)(f3(x))k

≤P3
i=1 Li(x) k(ξ − µ)(fi(x))k .

So, (H2) is valid. We observe that there exists m0 ∈ N1 such that∙
3 +m

2m

¸p+q+r
+

∙
1 +m

2m

¸p+q+r
+

2

mp+q+r
< 1 for all m ≥ m0.

We have
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ε∗(x) :
=
P∞

n=0 Λ
nε(x)

= c
mq+r kxkp+q+r

P∞
n=0

µh
3+m
2m

ip+q+r
+
h
1+m
2m

ip+q+r
+ 2

mp+q+r

¶n

= ckxkp+q+r

mq+r

³
1−[ 3+m2m ]

p+q+r−[ 1+m2m ]
p+q+r− 2

mp+q+r

´
for all x ∈ X\{0} and m ≥ m0.

Thus, according to Theorem 1.3, for each m ≥ m0 there exists a unique
solution Fm : X\{0}→ Y of the equation

Fm(x) = Fm(
3 +m

2m
x) + Fm(

1 +m

2m
x)− 2Fm(

x

m
),

for all x ∈ X\{0}, such that

kf(x)− Fm(x)k ≤
c kxkp+q+r

mq+r

µ
1−

h
3+m
2m

ip+q+r
−
h
1+m
2m

ip+q+r
− 2

mp+q+r

¶ ,
for all x ∈ X\{0} and m ≥ m0.

Moreover

Fm(x) = lim
n→∞

T nf(x), x ∈ X\{0}.

We show that°°°°T nf(
x+ y

2
+ z) + T nf(

x− y

2
+ z)− 2T nf(z)− T nf(x)

°°°° ≤
c

Ã∙
3 +m

2m

¸p+q+r
+

∙
1 +m

2m

¸p+q+r
+

2

mp+q+r

!n

kxkp kykq kzkr(2.5)

for all x, y, z ∈ X\{0} and n ∈ N.

Indeed, if n = 0, then (2.3) is simply (2.1). So, fix n ∈ N and suppose
that (2.3) holds for n. Then
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°°°T n+1f(x+y2 + z) + T n+1f(x−y2 + z)− 2T n+1f(z)− T n+1f(x)
°°° ≤

°°°T nf(3+m2m (x+y2 + z)) + T nf(3+m2m (x−y2 + z))− 2T nf(3+m2m z)− T nf(3+m2m x)
°°°

+
°°°T nf(1+m2m (x+y2 + z)) + T nf(1+m2m (x−y2 + z))− 2T nf(1+m2m z)− T nf(1+m2m x)

°°°
+
°°°2T nf( 1m(

x+y
2 + z)) + T nf( 1m(

x−y
2 + z))− 2T nf( zm)− T nf( xm)

°°°
≤ c[(3+m2m )p+q+r + (1+m2m )p+q+r + 2

mp+q+r ]
n
°°°3+m2m x

°°°p °°°3+m2m y
°°°q °°°3+m2m z

°°°r

+c[(3+m2m )p+q+r + (1+m2m )p+q+r + 2
mp+q+r ]

n
°°°1+m2m x

°°°p °°°1+m2m y
°°°q °°°1+m2m z

°°°r
+2c[(3+m2m )p+q+r + (1+m2m )p+q+r + 2

mp+q+r ]
n
°° x
m

°°p °° y
m

°°q °° z
m

°°r

= c
³
(3+m2m )p+q+r + (1+m2m )p+q+r + 2

mp+q+r

´n+1
kxkp kykq kzkr

for all x, y, z ∈ X\{0}.

Thus, by induction, we have shown that (2.5) holds for all x, y, z ∈
X\{0} and for all n ∈ N. Letting n→∞ in (2.5), we obtain

Fm(
x+ y

2
+ z) + Fm(

x− y

2
+ z) = Fm(x) + 2Fm(z),

for all x, y, z ∈ X\{0}. So, we have a sequence (Fm)m≥m0 satisfies (1.3) on
X\{0} such that

kf(x)− Fm(x)k ≤
c kxkp+q+r

mr+q

µ
1−

h
3+m
2m

ip+q+r
−
h
1+m
2m

ip+q+r
− 2

mp+q+r

¶
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for all x ∈ X\{0} and m ≥ m0. It follows, with m → ∞, that f is a
solution of (1.3) on X\{0}. 2

Theorem 2.3. Let X be a normed space, Y be a Banach space, c ≥ 0 and
p, q, r ∈ R such that 0 < p+ q + r < 1. If f : X → Y satisfies (2.1) then f
is a solution of (1.3) on X\{0}.

Proof. Since p + q + r > 0, one of p, r + q must be positive, it is
sufficient to consider only the case p > 0. Replacing (x, y, z) by (2xm , 2x, x),
with m ∈ N1, in (2.1), we get

°°°°12f(1 + 2mm
x) +

1

2
f(

x

m
)− 1

2
f(
2x

m
)− f(x)

°°°° ≤ c2p+q−1

mp
kxkp+q+r(2.6)

for all x ∈ X\{0}. Define operators T : Y X\{0} → Y X\{0} and Λ :
R+

X\{0} → R+
X\{0} by

T ξ(x) := 1

2
ξ(
1 + 2m

m
x) +

1

2
ξ(

x

m
)− 1

2
ξ(
2x

m
), x ∈ X\{0}, ξ ∈ Y X\{0},

Λδ(x) :=
1

2
δ(
1 + 2m

m
x) +

1

2
δ(

x

m
) +

1

2
δ(
2x

m
), x ∈ X\{0}, δ ∈ R+X\{0}.

Then it is easily seen that Λ has the form described in (H3) with k = 3
and

f1(x) =
1 + 2m

m
x, f2(x) =

x

m
, f3(x) =

2x

m
, and

L1(x) = L2(x) = L3(x) =
1

2
, x ∈ X\{0}.

Then the inequality (2.6) take the form

kT f(x)− f(x)k ≤ ε(x), x ∈ X\{0},

with

ε(x) :=
c2p+q−1

mp
kxkp+q+r .

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X\{0}, we have

kT ξ(x)− T µ(x)k
= 1

2 k(ξ − µ)(f1(x)) + (ξ − µ)(f2(x))− (ξ − µ)(f3(x))k

≤P3
i=1 Li(x) k(ξ − µ)(fi(x))k .
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So, (H2) is valid. We observe that there exists m0 ∈ N1 such that

1

2

∙
1 + 2m

m

¸p+q+r
+
1

2

∙
1

m

¸p+q+r
+
1

2
(
2

m
)p+q+r < 1 for all m ≥ m0.

We have

ε∗(x) :=
P∞

n=0Λ
nε(x)

= c2p+q−1

mp kxkp+q+rP∞
n=0

µ
1
2

h
1+2m
m

ip+q+r
+ 1

2

h
1
m

ip+q+r
+ 1

2(
2
m)

p+q+r

¶n

= c2p+q−1kxkp+q+r

mp

³
1− 1

2 [
1+2m
m ]

p+q+r−1
2 [

1
m ]

p+q+r− 1
2
( 2
m
)p+q+r

´
for all x ∈ X\{0} and m ≥ m0.

The rest of the proof is similar to the proof of Theorem 2.2. 2

Remark 1. Let X be a normed space, Y be a Banach space, c ≥ 0 and
p, q, r > 0 such that p+ q + r 6= 1. If f : X → Y satisfies (2.1) on X, then
f is a solution of (1.3) on X.

Theorem 2.4. Let X be a normed space, Y be a Banach space, c ≥ 0 and
p < 0. If f : X → Y satisfies

°°°°f(x+ y

2
+ z) + f(

x− y

2
+ z)− f(x)− 2f(z)

°°°° ≤ c(kxkp + kykp + kzkp)

(2.7)

for all x, y, z ∈ X\{0}, then f is a solution of (1.3) on X\{0}.

Proof. Replacing (x, y, z) by (mx,mx, (1 − m)x), where m ∈ N1, in
(2.7), we get

kf((1−m)x) + f(mx)− f(x)k ≤ c(2mp + (m− 1)p) kxkp(2.8)

for all x ∈ X\{0}. Further put
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T ξ(x) = ξ((1−m)x) + ξ(mx), x ∈ X\{0}, ξ ∈ Y X\{0},

ε(x) := (2mp + (m− 1)p) kxkp .

Inequality (2.8) takes the following form

kT f(x)− f(x)k ≤ ε(x), x ∈ X\{0}.

The operator

Λδ(x) = δ((1−m)x) + δ(mx), x ∈ X\{0}, δ ∈ R+X\{0}

has the form described in (H3) with k = 2 and

f1(x) = (1−m)x, f2(x) = mx, and L1(x) = L2(x) = 1, x ∈ X\{0}

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X\{0}, we have

kT ξ(x)− T µ(x)k
= k(ξ − µ)((1−m)x)− (ξ − µ)(mx)k

≤P2
i=1 Li(x) k(ξ − µ)(fi(x))k .

So, (H2) is valid. Now, we can find m0 ∈ N1 such that

(m− 1)p +mp < 1 for all m ≥ m0.

Therefore, we obtain that

ε∗(x) :=
P∞

n=0Λ
nε(x)

= c(2mp+(m−1)p)kxkp
1−(m−1)p−mp

for all x ∈ X\{0} and m ≥ m0. The rest of the proof is similar to the proof
of Theorem 2.1. 2

Corollary 2.4.1. Let X be a normed space and Y be a Banach space.
Let H : X3 → Y be a mapping such that H(x0, y0, z0) 6= 0 for some
x0, y0, z0 ∈ X and

kH(x, y, z)k ≤ c kxkp kykq kzkr ,(2.9)

or
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kH(x, y, z)k ≤ c(kxkp + kykp + kzkp),(2.10)

for all x, y, z ∈ X\{0}, where c ≥ 0 and p, q, r ∈ R. Assume that the
numbers p, q, r satisfy one of the following conditions:

(i) p+ q + r < 0 (ii) 0 < p+ q + r < 1 (iii) p+ q + r > 1

in the case (2.9) and

(iv) p < 0 in the case (2.10)

Then the functional equation

h(
x+ y

2
+ z) + h(

x− y

2
+ z) = H(x, y, z) + h(x) + 2h(z), x, y, z ∈ X\{0}

(2.11)

has no solution in the class of functions h : X → Y.

Proof. Suppose that h : X → Y is a solution to (2.11). Then (2.1) or
(2.7) holds, and consequently, according to the above theorems, h is Jensen
on X\{0}, which means that H(x0, y0, z0) = 0. This is a contradiction. 2

Remark 2. Let X be a normed space and Y be a Banach space. Let H :
X3 → Y be a mapping such that H(x0, y0, z0) 6= 0 for some x0, y0, z0 ∈ X
and

kH(x, y, z)k ≤ c kxkp kykq kzkr ,

for all x, y, z ∈ X, where c ≥ 0 and p, q, r > 0 with p+ q + r 6= 1.
Then the functional equation

h(
x+ y

2
+ z) + h(

x− y

2
+ z) = H(x, y, z) + h(x) + 2h(z), x, y, z ∈ X

has no solution in the class of functions h : X → Y.
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