Proyecciones Journal of Mathematics
Vol. 34, N ${ }^{o}$ 4, pp. 351-359, December 2015.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172015000400004

Hypo- k-Totally Magic Cordial Labeling of Graphs

P. Jeyanthi
Govindammal Aditanar College of Women, India
N. Angel Benseera
Sri Meenakshi Govt. Arts College for Women (Autonomous), India Gee-Choon Lau
Universiti Teknologi Mara Johor, Malaysia
Received: April 2015. Accepted : July 2015

Abstract

A graph G is said to be hypo- k-totally magic cordial if $G-\{v\}$ is k-totally magic cordial for each vertex v in $V(G)$. In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.

Keywords : k-totally magic cordial labeling, hypo- k-totally magic cordial labeling, hypo-k-totally magic cordial graph,complete graph, complete bipartite graph, wheel graph.

AMS Classification (2010) : 05C78.

1. Introduction

Let $G=(V(G), E(G))$ (or simply $G=(V, E)$) be a simple, finite and undirected graph of order $|V|=p$ and size $|E|=q$. For graph theoretic notations and terminology we refer [3]. The notion of cordial labeling was due to Cahit [1]. A binary vertex labeling $f: V(G) \rightarrow\{0,1\}$ induces an edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ defined by $f^{*}(u v)=|f(u)-f(v)|$. Such labeling is called cordial if the conditions $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{*}}(0)-e_{f^{*}}(1)\right| \leq 1$ are satisfied, where $v_{f}(i)$ and $e_{f^{*}}(i)(i=0,1)$ are the number of vertices and edges with label i respectively. A graph is called cordial if it admits cordial labeling. In [2] Cahit introduced totally magic cordial labeling (TMC) based on cordial labeling and generalized it into k-totally magic cordial labeling.

A graph G is said to have totally magic cordial (TMC or 2-TMC) labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow$ $\{0,1\}$ such that $f(a)+f(b)+f(a b) \equiv C(\bmod 2)$ for all $a b \in E(G)$ and $\left|n_{f}(0)-n_{f}(1)\right| \leq 1$, where $n_{f}(i)(i=0,1)$ is the sum of the number of vertices and edges with label i.

A graph G is said to have a k-totally magic cordial (k-TMC) labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \rightarrow Z_{k}$ such that $f(a)+f(b)+f(a b) \equiv C(\bmod \mathrm{k})$ for all $a b \in E(G)$ provided for $i \neq j,\left|n_{f}(i)-n_{f}(j)\right| \leq 1$, where $n_{f}(i)(i=0,1,2, \ldots, k-1)$ is the sum of the number of vertices and edges with label i. A graph is called k-totally magic cordial if it admits k-totally magic cordial labeling. Further results on totally magic cordial labelings and k-totally magic cordial labelings were discussed in [4]-[8].

Let G be a graph with vertex set V and edge set E. Let $v \in V$. The subgraph of G obtained by removing the vertex v and all the edges incident with v is called the subgraph obtained by the removal of the vertex v and is denoted by $G-\{v\}$.

Motivated by the concept of k-TMC labeling in [2], we define a new labeling called hypo- k-TMC labeling as follows : A graph G is said to be hypo- k-TMC if $G-\{v\}$ is k-TMC for each vertex v in $V(G)$. In this paper we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo- k-totally magic cordial labeling and some families of graphs do not admit hypo- k-totally magic cordial labeling.

We use the following theorems and definitions in the subsequent section:
Theorem 1.1. [8] Let G be an odd graph with $p+q \equiv 2(\bmod 4)$. Then G is not TMC.

Theorem 1.2. [8] The fan graph F_{n} is TMC for $n \geq 2$.
Theorem 1.3. [7] Let G be an odd graph with $p+q \equiv k(\bmod 2 k)$ and $k \equiv 2(\bmod 4)$. Then G is not k - TMC.

Theorem 1.4. [7] The complete graph $K_{n}(n \geq 3)$ is n-TMC.
Theorem 1.5. [7] The complete bipartite graph $K_{m, n}(m \geq n \geq 2)$ is both m-TMC and n-TMC.

Theorem 1.6. [7] The star graph S_{n} is $n-T M C$ for all $n \geq 1$.
Definition 1. The helm graph H_{n} is obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle.

Definition 2. The closed helm graph CH_{n} is obtained from a helm H_{n} by joining each pendant vertex to form a cycle.

Definition 3. The web graph $W b_{n}$ is obtained from a closed helm $C H_{n}$ by adding a pendant edge to each vertex of outer cycle.

Definition 4. The friendship graph $T_{n}(n \geq 2)$ is the one-point union of n cycles of length 3 .

Definition 5. The graph $S_{m, n}$ denotes a star with m spokes in which each spoke is a path of length n.

Definition 6. The bistar graph $B_{m, n}$ is obtained from K_{2} by joining m pendant edges to one end of K_{2} and n pendant edges to the other end of K_{2}. The edge of K_{2} is called central edge of $B_{m, n}$ and the vertices of K_{2} are called central vertices of $B_{m, n}$.

Definition 7. The subdivision graph $S(G)$ is obtained from G by subdividing each edge of G.

Definition 8. Let $K_{1, n_{1}}, K_{1, n_{2}}, \ldots, K_{1, n_{k}}$ be a family of disjoint stars with the vertex-sets $V\left(K_{1, n_{i}}\right)=\left\{c_{i}, a_{i 1}, \ldots, a_{i n_{i}}\right\}$ and $\operatorname{deg}\left(c_{i}\right)=n_{i}, 1 \leq i \leq k$. A banana tree $B T\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is a tree obtained by adding a new vertex a and joining it to $a_{11}, a_{21}, \ldots, a_{k 1}$.

2. Main Results

Theorem 2.1. The cycle $C_{n}(n \geq 3)$ is hypo- $(n-1)$-TMC.

Proof. Suppose we remove any vertex from the cycle C_{n} we get a path of length $n-1$. Let $v_{1}, v_{2}, \ldots, v_{n-1}$ be the successive vertices of P_{n-1}.

Define $f: V\left(P_{n-1}\right) \cup E\left(P_{n-1}\right) \rightarrow Z_{n-1}$ as follows: when i is odd, $f\left(v_{i}\right)=\frac{i-1}{2}$,
and when i is even, $f\left(v_{i}\right)= \begin{cases}\frac{i+n-1}{2}-1 & \text { if } n \text { is odd, } \\ \frac{i+n}{2}-1 & \text { if } n \text { is even, }\end{cases}$
Also $f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{n-2 i+1}{2}(\bmod (n-1)) & \text { if } n \text { is odd, } \\ \frac{n-2 i}{2}(\bmod (n-1)) & \text { if } n \text { is even. }\end{cases}$
Clearly, $f(a)+f(b)+f(a b) \equiv 0 \quad(\bmod (n-1))$. Moreover, if n is even, $n_{f}(i)=\left\{\begin{array}{ll}1 & \text { if } i=\frac{n}{2}, \\ 2 & \text { if } i \neq \frac{n}{2},\end{array}\right.$ and if n is odd, $n_{f}(i)=\left\{\begin{array}{ll}1 & \text { if } i=\frac{n+1}{2}, \\ 2 & \text { if } i \neq \frac{n+1}{2} .\end{array}\right.$ Thus for $i \neq j$ and $0 \leq i, j \leq n-2,\left|n_{f}(i)-n_{f}(j)\right| \leq 1$. Hence P_{n-1} is $(n-1)$-TMC. Therefore, the cycle $C_{n}(n \geq 3)$ is hypo- $(n-1)$-TMC.

Theorem 2.2. The complete graph $K_{n}(n \geq 3)$ is hypo- $(n-1)$-TMC.

Proof. The subgraph K_{n-1} is obtained by removing any vertex from K_{n}. According to Theorem 1.4, K_{n-1} is $(n-1)$-TMC. Hence the complete graph $K_{n}(n \geq 3)$ is hypo- $(n-1)$-TMC.

Theorem 2.3. The wheel graph W_{n} is hypo- n-TMC for all odd $n \geq 3$.

Proof. Let v be the central vertex and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of degree 3 vertices. Assume that n is odd. Clearly, $W_{n}-\{v\}=C_{n}$. Define $f: V\left(C_{n}\right) \cup E\left(C_{n}\right) \rightarrow Z_{n}$ as follows: $f\left(v_{i}\right)=i-1$ and for $1 \leq i \leq$ $n-1, f\left(v_{i} v_{i+1}\right)=1-2 i \quad(\bmod n)$ and $f\left(v_{n} v_{1}\right)=1-2 n \quad(\bmod n)$. Thus, $f\left(v_{i}\right)+f\left(v_{i+1}\right)+f\left(v_{i} v_{i+1}\right) \equiv 0 \quad(\bmod n)$ and $n_{f}(i)=2$ for all $1 \leq i \leq n$. Therefore, C_{n} is n-TMC.

The fan graph F_{n-1} is obtained by removing any vertex from the cycle C_{n}. Let $u_{1}, u_{2}, \ldots, u_{n-1}$ be the successive vertices of F_{n-1}. Define $g: V\left(F_{n-1}\right) \cup E\left(F_{n-1}\right) \rightarrow Z_{n}$ as follows:
$g(v)=0, g\left(u_{i}\right)=2 i \quad(\bmod n), g\left(v u_{i}\right)=n-i$ and for $1 \leq i \leq n-1$, $g\left(u_{i} u_{i+1}\right)=n-4 i-2 \quad(\bmod n)$. Clearly, $g\left(u_{i}\right)+g\left(u_{i+1}\right)+g\left(u_{i} u_{i+1}\right) \equiv 0$ $(\bmod n)$ and

$$
n_{g}(i)= \begin{cases}2 & \text { if } i=0,2, n-2, \\ 3 & \text { if } i=1,3, \ldots, n-3, n-1\end{cases}
$$

Thus F_{n-1} is n-TMC. Hence, the wheel graph W_{n} is hypo- n-TMC for all odd $n \geq 3$.

Theorem 2.4. If $n \equiv 2(\bmod 4)$, then the closed helm graph $C H_{n}$ is not hypo-n-TMC.

Proof. Assume that $n \equiv 2(\bmod 4)$. Let u be the central vertex of the closed helm $C H_{n}$. Let $G=C H_{n}-\{u\}$. Clearly, $|V(G)|+|E(G)|=5 n$. Thus by Theorem 1.3, G is not n-TMC. Hence, the closed helm graph $C H_{n}$ is not hypo- n-TMC.

Theorem 2.5. If $n \equiv 2(\bmod 4)$, then the web graph $W b_{n}$ is not hypo-n-TMC.

Proof. Let u be the central vertex of the web graph $W b_{n}$. Assume that $n \equiv 2(\bmod 4)$. Let $G=W b_{n}-\{u\}$. Clearly, $|V(G)|+|E(G)|=7 n$. Thus by Theorem 1.3, G is not n-TMC. Hence, the web graph $W b_{n}$ is not hypo- n-TMC.

Theorem 2.6. The friendship graph $T_{n}(n \geq 2)$ is hypo-2-TMC if and only if $n \not \equiv 2(\bmod 4)$.

Proof. Assume that $n \equiv 2(\bmod 4)$. Let $V=\left\{u, u_{i}^{1}, u_{i}^{2} \mid 1 \leq i \leq n\right\}$ be the vertex set and $E=\left\{u u_{i}^{1}, u_{i}^{1} u_{i}^{2}, u_{i}^{2} u \mid 1 \leq i \leq n\right\}$ be the edge set of T_{n}. The subgraph $n P_{2}$ obtained by removing the central vertex u from the graph T_{n} is an odd graph with $p+q=3 n$. Clearly, $3 n \equiv 2(\bmod 4)$ for $n \equiv 2 \quad(\bmod 4)$. Thus by Theorem 1.1, the graph $n P_{2}$ is not 2-TMC. Hence, the friendship graph $T_{n}(n \geq 2)$ is not hypo-2-TMC when $n \equiv 2$ $(\bmod 4)$.

Suppose $n \not \equiv 2 \quad(\bmod 4)$, label the vertices of $n-\left\lceil\frac{n}{4}\right\rceil$ copies of P_{n} with 0 and the edges with 1 and the vertices and the edges of the remaining $\left\lceil\frac{n}{4}\right\rceil$ copies of P_{n} with 1. Clearly, $C=1$ and the difference between the sum of the number of vertices and edges labeled with 0 and the sum of the number of vertices and edges labeled with 1 is atmost 1 . Thus $T_{n}-\{u\}=n P_{2}$ is 2-TMC. Again, let $T_{n}-\left\{u_{k}^{j}\right\}=G$. Choose k and j arbitrarily as $k=n$ and $j=2$. Define $g: V(G) \cup E(G) \rightarrow Z_{2}$ as follows: $g\left(u_{k}^{1}\right)=1, g\left(u u_{k}^{1}\right)=0$ and $g(u)=0, g\left(u_{i}^{1}\right)=g\left(u_{i}^{2}\right)=0, g\left(u u_{i}^{1}\right)=g\left(u u_{i}^{2}\right)=g\left(u_{i}^{1} u_{i}^{2}\right)=1$ for $1 \leq i \leq\left\lceil\frac{n-1}{2}\right\rceil$ and $g\left(u_{i}^{1}\right)=1, g\left(u_{i}^{2}\right)=0, g\left(u u_{i}^{1}\right)=0, g\left(u u_{i}^{2}\right)=1$ and $g\left(u_{i}^{1} u_{i}^{2}\right)=0$ for $\left\lceil\frac{n-1}{2}\right\rceil<i \leq n-1$. If n is even, $n_{f}(0)=n_{f}(1)$ and if n
is odd, $n_{f}(0)=n_{f}(1)+1$ with $C=1$. Thus G is 2 -TMC and hence the friendship graph $T_{n}(n \geq 2)$ is hypo-2-TMC.

Theorem 2.7. The complete bipartite graph $K_{m, n}$ is hypo- $(m-1)$-TMC as well as hypo- $(n-1)-T M C$.

Proof. Proof follows from Theorem 1.5.
Theorem 2.8. The graph $S_{2 n, 2}$ is hypo-2-TMC if and only if n is even.
Proof. Let $V=\left\{u, u_{j}^{1}, u_{j}^{2} \mid 1 \leq j \leq 2 n\right\}$ and $E=\left\{u u_{j}^{1}, u_{j}^{1} u_{j}^{2} \mid 1 \leq j \leq 2 n\right\}$ be the vertex set and the edge set of the graph $S_{2 n, 2}$ respectively. Assume that n is odd. The subgraph $2 n P_{2}$ obtained by removing the apex u from the graph $S_{2 n, 2}$ is an odd graph with $p+q=6 n$. We can easily verify that $6 n \equiv 2(\bmod 4)$. Thus by Theorem 1.1, the graph $2 n P_{2}$ is not $2-\mathrm{TMC}$. Hence, the graph $S_{2 n, 2}$ is not hypo-2-TMC when n is odd.

Assume that n is even. Define

$$
\begin{aligned}
& f: 2 n P_{2} \rightarrow\{0,1\} \text { by } f\left(u_{j}^{1}\right)=f\left(u_{j}^{2}\right)= \\
& \qquad\left\{\begin{array}{lll}
0 & \text { if } & j \not \equiv 0(\bmod 4), \\
1 & \text { if } & j \equiv 0(\bmod 4)
\end{array}\right.
\end{aligned}
$$

and $f\left(u_{j}^{1} u_{j}^{2}\right)=1$ for all $i \leq j \leq 2 n$. Clearly, $n_{f}(0)=n_{f}(1)$ and $C=1$. Thus $S_{2 n, 2}-\{u\}$ is 2-TMC. Again for any $j=k, S_{2 n, 2}-\left\{u_{k}^{1}\right\}=S_{2 n-1,2} \cup\left\{u_{k}^{2}\right\}$. We label the vertices of $S_{2 n-1,2}$ with 0 and the edges with 1 and also label the vertex u_{k}^{2} with 1 . We find that $n_{f}(0)=n_{f}(1)$ and $C=1$. Thus $S_{2 n, 2}-\left\{u_{k}^{1}\right\}$ is also 2-TMC. Also, label the vertices and the edges of $S_{2 n, 2}-\left\{u_{k}^{2}\right\}$ with 0 and 1 respectively, we find that $n_{f}(0)=n_{f}(1)+1$ and $C=1$. Thus $S_{2 n, 2}-\left\{u_{k}^{2}\right\}$ is also 2-TMC. Hence, the graph $S_{2 n, 2}$ is hypo-2-TMC.

Theorem 2.9. If m and n are odd, then the graph $\left\langle B_{m, n}: u\right\rangle$ obtained by the subdivision of the central edge of $B_{m, n}$ with a vertex u, is not hypo-2TMC.

Proof. Let $G=\left\langle B_{m, n}: u\right\rangle$. Assume that m and n are odd. Clearly, $G-\{u\}=K_{1, m} \cup K_{1, n}$ with $p+q=2 m+2 n+2$. We can easily verify that $p+q \equiv 2(\bmod 4)$. Thus by Theorem 1.3, $G-\{u\}$ is not 2-TMC. Hence, the graph $\left\langle B_{m, n}: u\right\rangle$ is not hypo-2-TMC.

Corollary 2.10. If m and n are even, then the graph $\left\langle B_{m, n}: u\right\rangle$ obtained by the subdivision of the central edge of $B_{m, n}$ by three vertices, is not hypo-2-TMC.

Theorem 2.11. If $k \equiv 2(\bmod 4)$, and n_{i} is odd for $1 \leq i \leq k$ such that $n_{1}+n_{2}+\cdots+n_{k} \equiv 0(\bmod k)$, then the banana tree $B T\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is not hypo-k-TMC.

Proof. Let $k \equiv 2(\bmod 4)$. Assume that n_{i} is odd for $1 \leq i \leq k$. Let $G=B T\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. Now, $G-\{a\}=K_{1, n_{1}} \cup K_{1, n_{2}} \cup \ldots \cup K_{1, n_{k}}$ with $p+q=2\left(n_{1}+n_{2}+\ldots+n_{k}\right)+k$. Since $n_{1}, n_{2}, \ldots, n_{k}$ are odd and $n_{1}+n_{2}+\cdots+n_{k} \equiv 0(\bmod k)$, degree of the vertices of $G-\{a\}$ are odd. We can easily verify that $p+q \equiv k(\bmod 2 k)$. Thus, $G-\{a\}$ is not k-TMC. Hence, the banana graph $B T\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is not hypo- k-TMC.

Theorem 2.12. The graph $S_{n}+K_{1}$ is hypo-n-TMC for all $n \geq 1$.
Proof. Let $V\left(S_{n}\right)=\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}, E\left(S_{n}\right)=\left\{v v_{i} \mid 1 \leq i \leq n\right\}$ and u be the vertex of K_{1}. We remove the vertex u or v from $S_{n}+K_{1}$, then the resultant graph is the star graph S_{n}. By Theorem 1.6, S_{n} is n-TMC for all $n \geq 1$. Let $G=S_{n}+K_{1}-\left\{v_{i}\right\}$ for any $i, 1 \leq i \leq n$. Let $u_{1}, u_{2}, \ldots, u_{n-1}$ be the successive vertices v_{i} of G. Define $g: V(G) \cup E(G) \rightarrow Z_{n-1}$ as follows: $g(u)=1, g(v)=0, g\left(u_{i}\right)=i-1, g\left(v u_{i}\right)=n-i+1(\bmod n)$, $g\left(u_{i} u\right)=n-i \quad(\bmod n)$ and $g(u v)=n-1$. Clearly, $n_{g}(i)=n_{g}(j)=3$ for all $i \neq j$ and $0 \leq i, j \leq n-1$. Thus, G is n-TMC. Hence, the graph $S_{n}+K_{1}$ is hypo- n-TMC for all $n \geq 1$.

Theorem 2.13. If a graph G is not k-TMC then the graph $G+K_{1}$ is not hypo-k-TMC.

Proof. Suppose $G+K_{1}$ is hypo- k-TMC. Then G must be k-TMC, which is a contradiction to G is not k-TMC. Hence, the graph $G+K_{1}$ is not hypo- k-TMC.

Proposition 1. If G is a hypo- k-TMC graph such that $n_{f}(i)$ is constant for all $i=0,1,2, \cdots, k-1$ and $e \in E(G)$, then $G-\{e\}$ is also hypo- k-TMC.

Proposition 2. If $G_{1}\left(p_{1}, q_{1}\right)$ and $G_{2}\left(p_{2}, q_{2}\right)$ are two hypo- k-TMC graphs with $n(i)$ is a constant in k-TMC labeling of $G_{1}-\{u\}$ or of $G_{2}-\{v\}$ then $G_{1} \cup G_{2}$ is also hypo-k-TMC.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23, pp. 201-207, (1987).
[2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22, pp. 247-258, (2002).
[3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., (1969).
[4] P. Jeyanthi, N. Angel Benseera and M. Immaculate Mary, On totally magic cordial labeling, SUT Journal of Mathematics, 49, pp. 13-18, (2013).
[5] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of n copies of a graph, Opuscula Mathematica, 34 (1), pp. 115-122, (2014).
[6] P. Jeyanthi and N. Angel Benseera, Totally magic cordial deficiency of some graphs, Utilitas Mathematica, (to appear).
[7] P. Jeyanthi, N. Angel Benseera and Gee-Choon Lau, On k-Totally magic cordial labeling of graphs, Discrete Mathematics, Algorithms and Applications, Vol. 7, No. 3, 1550024, 7 pages, (2015), DOI: 10.1142/S179383091550024X.
[8] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of some graphs, Journal of Algorithms and Computation, 46 (1), pp. 1-8, 2015.

P. Jeyanthi

Research Centre,
Department of Mathematics,
Govindammal Aditanar College for Women,
Tiruchendur - 628 215,
Tamil Nadu, India
e-mail: jeyajeyanthi@rediffmail.com

N. Angel Benseera
Department of Mathematics
Sri Meenakshi Government Arts College for Women (Autonomous), Madurai - 625 002,
Tamil Nadu,
India
e-mail: angelbenseera@yahoo.com
and
\section*{Gee-Choon Lau}
Faculty of Computer \& Mathematical Sciences
Universiti Teknologi MARA Johor
85009, Segamat,
Malaysia
e-mail: geeclau@yahoo.com

