Proyecciones Journal of Mathematics Vol. 34, N^o 4, pp. 351-359, December 2015. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172015000400004

Hypo-k-Totally Magic Cordial Labeling of Graphs

P. Jeyanthi Govindammal Aditanar College of Women, India N. Angel Benseera Sri Meenakshi Govt. Arts College for Women (Autonomous), India Gee-Choon Lau Universiti Teknologi Mara Johor, Malaysia Received : April 2015. Accepted : July 2015

Abstract

A graph G is said to be hypo-k-totally magic cordial if $G - \{v\}$ is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.

Keywords : *k*-totally magic cordial labeling, hypo-*k*-totally magic cordial labeling, hypo-*k*-totally magic cordial graph, complete graph, complete bipartite graph, wheel graph.

AMS Classification (2010) : 05C78.

1. Introduction

Let G = (V(G), E(G)) (or simply G = (V, E)) be a simple, finite and undirected graph of order |V| = p and size |E| = q. For graph theoretic notations and terminology we refer [3]. The notion of cordial labeling was due to Cahit [1]. A binary vertex labeling $f : V(G) \to \{0,1\}$ induces an edge labeling $f^* : E(G) \to \{0,1\}$ defined by $f^*(uv) = |f(u) - f(v)|$. Such labeling is called cordial if the conditions $|v_f(0) - v_f(1)| \leq 1$ and $|e_{f^*}(0) - e_{f^*}(1)| \leq 1$ are satisfied, where $v_f(i)$ and $e_{f^*}(i)(i = 0, 1)$ are the number of vertices and edges with label *i* respectively. A graph is called cordial if it admits cordial labeling. In [2] Cahit introduced totally magic cordial labeling (TMC) based on cordial labeling and generalized it into *k*-totally magic cordial labeling.

A graph G is said to have totally magic cordial (TMC or 2-TMC) labeling with constant C if there exists a mapping $f : V(G) \cup E(G) \rightarrow$ $\{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all $ab \in E(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $n_f(i)(i = 0, 1)$ is the sum of the number of vertices and edges with label *i*.

A graph G is said to have a k-totally magic cordial (k-TMC) labeling with constant C if there exists a mapping $f : V(G) \cup E(G) \to Z_k$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{k}$ for all $ab \in E(G)$ provided for $i \neq j, |n_f(i) - n_f(j)| \leq 1$, where $n_f(i)$ (i = 0, 1, 2, ..., k - 1) is the sum of the number of vertices and edges with label *i*. A graph is called k-totally magic cordial if it admits k-totally magic cordial labeling. Further results on totally magic cordial labelings and k-totally magic cordial labelings were discussed in [4]-[8].

Let G be a graph with vertex set V and edge set E. Let $v \in V$. The subgraph of G obtained by removing the vertex v and all the edges incident with v is called the subgraph obtained by the removal of the vertex v and is denoted by $G - \{v\}$.

Motivated by the concept of k-TMC labeling in [2], we define a new labeling called hypo-k-TMC labeling as follows : A graph G is said to be hypo-k-TMC if $G - \{v\}$ is k-TMC for each vertex v in V(G). In this paper we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.

We use the following theorems and definitions in the subsequent section:

Theorem 1.1. [8] Let G be an odd graph with $p + q \equiv 2 \pmod{4}$. Then G is not TMC.

Theorem 1.2. [8] The fan graph F_n is TMC for $n \ge 2$.

Theorem 1.3. [7] Let G be an odd graph with $p + q \equiv k \pmod{2k}$ and $k \equiv 2 \pmod{4}$. Then G is not k- TMC.

Theorem 1.4. [7] The complete graph $K_n (n \ge 3)$ is *n*-TMC.

Theorem 1.5. [7] The complete bipartite graph $K_{m,n}$ $(m \ge n \ge 2)$ is both *m*-TMC and *n*-TMC.

Theorem 1.6. [7] The star graph S_n is *n*-TMC for all $n \ge 1$.

Definition 1. The helm graph H_n is obtained from a wheel by attaching a pendant edge at each vertex of the *n*-cycle.

Definition 2. The closed helm graph CH_n is obtained from a helm H_n by joining each pendant vertex to form a cycle.

Definition 3. The web graph Wb_n is obtained from a closed helm CH_n by adding a pendant edge to each vertex of outer cycle.

Definition 4. The friendship graph $T_n (n \ge 2)$ is the one-point union of n cycles of length 3.

Definition 5. The graph $S_{m,n}$ denotes a star with m spokes in which each spoke is a path of length n.

Definition 6. The bistar graph $B_{m,n}$ is obtained from K_2 by joining m pendant edges to one end of K_2 and n pendant edges to the other end of K_2 . The edge of K_2 is called central edge of $B_{m,n}$ and the vertices of K_2 are called central vertices of $B_{m,n}$.

Definition 7. The subdivision graph S(G) is obtained from G by subdividing each edge of G.

Definition 8. Let $K_{1,n_1}, K_{1,n_2}, ..., K_{1,n_k}$ be a family of disjoint stars with the vertex-sets $V(K_{1,n_i}) = \{c_i, a_{i1}, ..., a_{in_i}\}$ and $deg(c_i) = n_i, 1 \le i \le k$. A banana tree $BT(n_1, n_2, ..., n_k)$ is a tree obtained by adding a new vertex a and joining it to $a_{11}, a_{21}, ..., a_{k1}$.

2. Main Results

Theorem 2.1. The cycle $C_n (n \ge 3)$ is hypo-(n-1)-TMC.

Proof. Suppose we remove any vertex from the cycle C_n we get a path of length n-1. Let $v_1, v_2, ..., v_{n-1}$ be the successive vertices of P_{n-1} .

Define $f: V(P_{n-1}) \cup E(P_{n-1}) \to Z_{n-1}$ as follows: when i is odd, $f(v_i) = \frac{i-1}{2}$,

and when i is even, $f(v_i) = \begin{cases} \frac{i+n-1}{2} - 1 & \text{if } n \text{ is odd }, \\ \frac{i+n}{2} - 1 & \text{if } n \text{ is even }, \end{cases}$ Also $f(v_i v_{i+1}) = \begin{cases} \frac{n-2i+1}{2} \pmod{(n-1)} & \text{if } n \text{ is odd }, \\ \frac{n-2i}{2} \pmod{(n-1)} & \text{if } n \text{ is even }. \end{cases}$ Clearly, $f(a) + f(b) + f(ab) \equiv 0 \pmod{(n-1)}$. Moreover, if n is even, $n_f(i) = \begin{cases} 1 & \text{if } i = \frac{n}{2}, \\ 2 & \text{if } i \neq \frac{n}{2}, \end{cases}$ and if n is odd, $n_f(i) = \begin{cases} 1 & \text{if } i = \frac{n+1}{2}, \\ 2 & \text{if } i \neq \frac{n}{2}, \end{cases}$ Thus for $i \neq j \text{ and } 0 \leq i, j \leq n-2, |n_f(i) - n_f(j)| \leq 1$. Hence P_{n-1} is (n-1)-TMC. Therefore, the cycle $C_n(n \geq 3)$ is hypo-(n-1)-TMC. \Box

Theorem 2.2. The complete graph $K_n (n \ge 3)$ is hypo-(n - 1)-TMC.

Proof. The subgraph K_{n-1} is obtained by removing any vertex from K_n . According to Theorem 1.4, K_{n-1} is (n-1)-TMC. Hence the complete graph $K_n (n \ge 3)$ is hypo-(n-1)-TMC. \Box

Theorem 2.3. The wheel graph W_n is hypo-*n*-TMC for all odd $n \ge 3$.

Proof. Let v be the central vertex and $\{v_1, v_2, ..., v_n\}$ be the set of degree 3 vertices. Assume that n is odd. Clearly, $W_n - \{v\} = C_n$. Define $f: V(C_n) \cup E(C_n) \to Z_n$ as follows: $f(v_i) = i - 1$ and for $1 \le i \le n - 1$, $f(v_i v_{i+1}) = 1 - 2i \pmod{n}$ and $f(v_n v_1) = 1 - 2n \pmod{n}$. Thus, $f(v_i) + f(v_{i+1}) + f(v_i v_{i+1}) \equiv 0 \pmod{n}$ and $n_f(i) = 2$ for all $1 \le i \le n$. Therefore, C_n is n-TMC.

The fan graph F_{n-1} is obtained by removing any vertex from the cycle C_n . Let $u_1, u_2, ..., u_{n-1}$ be the successive vertices of F_{n-1} . Define $g: V(F_{n-1}) \cup E(F_{n-1}) \to Z_n$ as follows:

 $g(v) = 0, g(u_i) = 2i \pmod{n}, g(vu_i) = n - i \text{ and for } 1 \le i \le n - 1, g(u_iu_{i+1}) = n - 4i - 2 \pmod{n}.$ Clearly, $g(u_i) + g(u_{i+1}) + g(u_iu_{i+1}) \equiv 0 \pmod{n}$ and

$$n_g(i) = \begin{cases} 2 & \text{if } i = 0, 2, n-2, \\ 3 & \text{if } i = 1, 3, ..., n-3, n-1 \end{cases}$$

Thus F_{n-1} is *n*-TMC. Hence, the wheel graph W_n is hypo-*n*-TMC for all odd $n \geq 3$. \Box

Theorem 2.4. If $n \equiv 2 \pmod{4}$, then the closed helm graph CH_n is not hypo-*n*-TMC.

Proof. Assume that $n \equiv 2 \pmod{4}$. Let u be the central vertex of the closed helm CH_n . Let $G = CH_n - \{u\}$. Clearly, |V(G)| + |E(G)| = 5n. Thus by Theorem 1.3, G is not n-TMC. Hence, the closed helm graph CH_n is not hypo-n-TMC. \Box

Theorem 2.5. If $n \equiv 2 \pmod{4}$, then the web graph Wb_n is not hypo*n*-TMC.

Proof. Let u be the central vertex of the web graph Wb_n . Assume that $n \equiv 2 \pmod{4}$. Let $G = Wb_n - \{u\}$. Clearly, |V(G)| + |E(G)| = 7n. Thus by Theorem 1.3, G is not n-TMC. Hence, the web graph Wb_n is not hypo-n-TMC. \Box

Theorem 2.6. The friendship graph $T_n (n \ge 2)$ is hypo-2-TMC if and only if $n \not\equiv 2 \pmod{4}$.

Proof. Assume that $n \equiv 2 \pmod{4}$. Let $V = \{u, u_i^1, u_i^2 | 1 \le i \le n\}$ be the vertex set and $E = \{uu_i^1, u_i^1 u_i^2, u_i^2 u | 1 \le i \le n\}$ be the edge set of T_n . The subgraph nP_2 obtained by removing the central vertex u from the graph T_n is an odd graph with p + q = 3n. Clearly, $3n \equiv 2 \pmod{4}$ for $n \equiv 2 \pmod{4}$. Thus by Theorem 1.1, the graph nP_2 is not 2-TMC. Hence, the friendship graph $T_n(n \ge 2)$ is not hypo-2-TMC when $n \equiv 2 \pmod{4}$.

Suppose $n \not\equiv 2 \pmod{4}$, label the vertices of $n - \left\lceil \frac{n}{4} \right\rceil$ copies of P_n with 0 and the edges with 1 and the vertices and the edges of the remaining $\left\lceil \frac{n}{4} \right\rceil$ copies of P_n with 1. Clearly, C = 1 and the difference between the sum of the number of vertices and edges labeled with 0 and the sum of the number of vertices and edges labeled with 1 is at most 1. Thus $T_n - \{u\} = nP_2$ is 2-TMC. Again, let $T_n - \left\{u_k^j\right\} = G$. Choose k and j arbitrarily as k = n and j = 2. Define $g: V(G) \cup E(G) \to Z_2$ as follows: $g(u_k^1) = 1, g(uu_k^1) = 0$ and $g(u) = 0, g(u_i^1) = g(u_i^2) = 0, g(uu_i^1) = g(uu_i^2) = g(u_i^1u_i^2) = 1$ for $1 \le i \le \left\lceil \frac{n-1}{2} \right\rceil$ and $g(u_i^1) = 1, g(u_i^2) = 0, g(uu_i^1) = 0, g(uu_i^2) = 1$ and $g(u_i^1u_i^2) = 0$ for $\left\lceil \frac{n-1}{2} \right\rceil < i \le n-1$. If n is even, $n_f(0) = n_f(1)$ and if n

is odd, $n_f(0) = n_f(1) + 1$ with C = 1. Thus G is 2-TMC and hence the friendship graph $T_n(n \ge 2)$ is hypo-2-TMC. \Box

Theorem 2.7. The complete bipartite graph $K_{m,n}$ is hypo-(m-1)-TMC as well as hypo-(n-1)-TMC.

Proof. Proof follows from Theorem 1.5. \Box

Theorem 2.8. The graph $S_{2n,2}$ is hypo-2-TMC if and only if n is even.

Proof. Let $V = \left\{u, u_j^1, u_j^2 | 1 \le j \le 2n\right\}$ and $E = \left\{uu_j^1, u_j^1u_j^2 | 1 \le j \le 2n\right\}$ be the vertex set and the edge set of the graph $S_{2n,2}$ respectively. Assume that n is odd. The subgraph $2nP_2$ obtained by removing the apex u from the graph $S_{2n,2}$ is an odd graph with p + q = 6n. We can easily verify that $6n \equiv 2 \pmod{4}$. Thus by Theorem 1.1, the graph $2nP_2$ is not 2-TMC. Hence, the graph $S_{2n,2}$ is not hypo-2-TMC when n is odd.

Assume that n is even. Define

$$f: 2nP_2 \to \{0, 1\} \text{ by } f(u_j^1) = f(u_j^2) = \begin{cases} 0 & \text{if } j \neq 0 \pmod{1} \\ 1 & \text{if } j \equiv 0 \pmod{2} \end{cases}$$

and $f(u_j^1 u_j^2) = 1$ for all $i \leq j \leq 2n$. Clearly, $n_f(0) = n_f(1)$ and C = 1. Thus $S_{2n,2} - \{u\}$ is 2-TMC. Again for any j = k, $S_{2n,2} - \{u_k^1\} = S_{2n-1,2} \cup \{u_k^2\}$. We label the vertices of $S_{2n-1,2}$ with 0 and the edges with 1 and also label the vertex u_k^2 with 1. We find that $n_f(0) = n_f(1)$ and C = 1. Thus $S_{2n,2} - \{u_k^1\}$ is also 2-TMC. Also, label the vertices and the edges of $S_{2n,2} - \{u_k^2\}$ with 0 and 1 respectively, we find that $n_f(0) = n_f(1) + 1$ and C = 1. Thus $S_{2n,2} - \{u_k^2\}$ with $S_{2n,2} - \{u_k^2\}$ is also 2-TMC. Hence, the graph $S_{2n,2}$ is hypo-2-TMC. \Box

4), 4)

Theorem 2.9. If m and n are odd, then the graph $\langle B_{m,n} : u \rangle$ obtained by the subdivision of the central edge of $B_{m,n}$ with a vertex u, is not hypo-2-*TMC*.

Proof. Let $G = \langle B_{m,n} : u \rangle$. Assume that m and n are odd. Clearly, $G - \{u\} = K_{1,m} \cup K_{1,n}$ with p + q = 2m + 2n + 2. We can easily verify that $p + q \equiv 2 \pmod{4}$. Thus by Theorem 1.3, $G - \{u\}$ is not 2-TMC. Hence, the graph $\langle B_{m,n} : u \rangle$ is not hypo-2-TMC. \Box

Corollary 2.10. If m and n are even, then the graph $\langle B_{m,n} : u \rangle$ obtained by the subdivision of the central edge of $B_{m,n}$ by three vertices, is not hypo-2-TMC.

Theorem 2.11. If $k \equiv 2 \pmod{4}$, and n_i is odd for $1 \leq i \leq k$ such that $n_1 + n_2 + \cdots + n_k \equiv 0 \pmod{k}$, then the banana tree $BT(n_1, n_2, \dots, n_k)$ is not hypo-k-TMC.

Proof. Let $k \equiv 2 \pmod{4}$. Assume that n_i is odd for $1 \leq i \leq k$. Let $G = BT(n_1, n_2, ..., n_k)$. Now, $G - \{a\} = K_{1,n_1} \cup K_{1,n_2} \cup ... \cup K_{1,n_k}$ with $p + q = 2(n_1 + n_2 + ... + n_k) + k$. Since $n_1, n_2, ..., n_k$ are odd and $n_1 + n_2 + \cdots + n_k \equiv 0 \pmod{k}$, degree of the vertices of $G - \{a\}$ are odd. We can easily verify that $p + q \equiv k \pmod{2k}$. Thus, $G - \{a\}$ is not k-TMC. Hence, the banana graph $BT(n_1, n_2, ..., n_k)$ is not hypo-k-TMC. \Box

Theorem 2.12. The graph $S_n + K_1$ is hypo-*n*-TMC for all $n \ge 1$.

Proof. Let $V(S_n) = \{v, v_1, v_2, ..., v_n\}$, $E(S_n) = \{vv_i | 1 \le i \le n\}$ and u be the vertex of K_1 . We remove the vertex u or v from $S_n + K_1$, then the resultant graph is the star graph S_n . By Theorem 1.6, S_n is n-TMC for all $n \ge 1$. Let $G = S_n + K_1 - \{v_i\}$ for any $i, 1 \le i \le n$. Let $u_1, u_2, ..., u_{n-1}$ be the successive vertices v_i of G. Define $g : V(G) \cup E(G) \to Z_{n-1}$ as follows: $g(u) = 1, g(v) = 0, g(u_i) = i - 1, g(vu_i) = n - i + 1 \pmod{n}, g(u_iu) = n - i \pmod{n}$ and g(uv) = n - 1. Clearly, $n_g(i) = n_g(j) = 3$ for all $i \ne j$ and $0 \le i, j \le n - 1$. Thus, G is n-TMC. Hence, the graph $S_n + K_1$ is hypo-n-TMC for all $n \ge 1$. \Box

Theorem 2.13. If a graph G is not k-TMC then the graph $G + K_1$ is not hypo-k-TMC.

Proof. Suppose $G + K_1$ is hypo-k-TMC. Then G must be k-TMC, which is a contradiction to G is not k-TMC. Hence, the graph $G + K_1$ is not hypo-k-TMC. \Box

Proposition 1. If G is a hypo-k-TMC graph such that $n_f(i)$ is constant for all $i = 0, 1, 2, \dots, k-1$ and $e \in E(G)$, then $G - \{e\}$ is also hypo-k-TMC.

Proposition 2. If $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$ are two hypo-k-TMC graphs with n(i) is a constant in k-TMC labeling of $G_1 - \{u\}$ or of $G_2 - \{v\}$ then $G_1 \cup G_2$ is also hypo-k-TMC.

References

- I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23, pp. 201–207, (1987).
- [2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22, pp. 247–258, (2002).
- [3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., (1969).
- [4] P. Jeyanthi, N. Angel Benseera and M. Immaculate Mary, On totally magic cordial labeling, SUT Journal of Mathematics, 49, pp. 13–18, (2013).
- [5] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of n copies of a graph, Opuscula Mathematica, 34 (1), pp. 115–122, (2014).
- [6] P. Jeyanthi and N. Angel Benseera, Totally magic cordial deficiency of some graphs, *Utilitas Mathematica*, (to appear).
- [7] P. Jeyanthi, N. Angel Benseera and Gee-Choon Lau, On k-Totally magic cordial labeling of graphs, *Discrete Mathematics, Algorithms* and Applications, Vol. 7, No. 3, 1550024, 7 pages, (2015), DOI: 10.1142/S179383091550024X.
- [8] P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of some graphs, *Journal of Algorithms and Computation*, 46 (1), pp. 1-8, 2015.

P. Jeyanthi

358

Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur - 628 215, Tamil Nadu, India e-mail: jeyajeyanthi@rediffmail.com

N. Angel Benseera

Department of Mathematics Sri Meenakshi Government Arts College for Women (Autonomous), Madurai - 625 002, Tamil Nadu, India e-mail: angelbenseera@yahoo.com

and

Gee-Choon Lau

Faculty of Computer & Mathematical Sciences Universiti Teknologi MARA Johor 85009, Segamat, Malaysia e-mail: geeclau@yahoo.com