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Abstract

HIV infection of CD4+T cells is one of the causes of health prob-
lems and continues to be one of the significant health challenges. This
paper presents approximate analytical solutions to the model of HIV
infection of CD4+T cells of fractional order using the multi-step ho-
motopy analysis method (MHAM). The proposed scheme is only a
simple modification of the homotopy analysis method (HAM), in which
it is treated as an algorithm in a sequence of small intervals (i.e. time
step) for finding accurate approximate solutions to the correspond-
ing problems. The fractional derivatives are described in the Caputo
sense. A comparative study between the new algorithm and the clas-
sical Runge-Kutta method is presented in the case of integer-order
derivatives. The solutions obtained are also presented graphically.
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1. Introduction

HIV is a retrovirus that targets the CD4+T lymphocytes, which are the
most abundant white blood cells of the immune system. Although HIV
infects other cells also, it wreaks the most havoc on the CD4+T cells by
causing their decline and destruction, thus decreasing the resistance of the
immune system. A number of mathematical models have been proposed to
understand HIV dynamics, disease progression, anti-retroviral response etc
[11, 12, 13, 14].

In 1989, Perelson [12] developed a simple model for the primary infection
with HIV. Perelson et al. [13] extended Perelson’s model and proved math-
ematically some of the model’s behavior. They observed that the model
exhibits many of the symptoms of AIDS seen clinically: the long latency pe-
riod, low levels of free virus in the body, and the depletion of CD4+T cells.
They defined the model by considering four compartments: cells that are
uninfected, cells that are latently infected, cells that are actively infected
and free virus. They described the dynamics of these populations by a sys-
tem of four ordinary differential equations. This model has been important
in the field of mathematical modelling of HIV infection, and many other
models have been proposed, which take the model of Perelson, Kirschner
and De Boer as their inspiration. In the paper [3], Culshaw and Ruan
simplify the model of Perelson, Kirschner and De Boer into one consisting
of only three components: the healthy CD4+T cells, infected CD4+T cells,
and free virus, and introduce a discrete time delay to the model.

Nowadays several researchers work on the fractional order differential
equations because of best presentation of many phenomena. Fractional cal-
culus has been used to model physical and engineering processes, which are
found to be best described by fractional differential equations. It is worth
nothing that the standard mathematical models of integer-order deriva-
tives, including nonlinear models, do not work adequately in many cases.
In the recent years, fractional calculus has played a very important role in
various fields such as mechanics, electricity, chemistry, biology, economics,
notably control theory, and signal and image processing see for example
[4, 5, 7, 9]. In this paper, we investigate the applicability and effective-
ness of the homotopy analysis method when treated as an algorithm in a
sequence of intervals (i.e. time step) for finding accurate approximate solu-
tions to model for HIV infection of CD4+T cells. This modified method is
named as the multi-step homotopy analysis method. It can be found that
the corresponding numerical solutions obtained by using HAM are valid
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only for a short time. While the ones obtained by using MHAM are more
valid and accurate during a long time [1]. In this paper, we intend to obtain
the approximate solution of the fractional-order model for HIV infection of
CD4+T cells via the multi-step homotopy analysis method. Finally we
compare our numerical results with nonstandard numerical method and
fourth order Runge-Kutta method.

2. Model description

In this study we consider the model for HIV infection of CD4+T cells
taking by Merdan [8] and extend it to the new system of the following set
of fractional order differential equations of order α > 0:

DαT̀ (t) = s− δT̀ (t) + rT̀ (t)

Ã
1− T̀ (t) + I(t)

T̀m

!
− kV (t)T̀ (t),

DαI(t) = kV (t)T̀ (t)− βI(t),(2.1)

DαV (t) = NβI(t)− γV (t).

where T̀ (t) represents the concentration of healthy CD4+T cells at time t,
I(t) represents the concentration of infected CD4+ T cells, and V (t) the
concentration of free HIV at time t. Following, we note that s is the source
of CD4+T cells from precursors, δ is the natural death rate of CD4+T cells³
δT̀m > s

´
, r is their growth rate, and T̀m is their carrying capacity. The

parameter k represents the rate of infection of T cells with free virus. β is
a blanket death term for infected cells, to reflect the assumption that we
do not initially know whether the cells die naturally or by bursting. Since
N viral particles are released by each lysing cell, this term is multiplied by
the parameter N to represent the source for free virus (assuming a one-
time initial infection). Finally, γ is the loss rate of virus. Throughout this
paper, we set the values of the system parameters as s = 0.1, δ = 0.02, β
= 0.3, r = 3, γ = 2.4, k = 0.0027, N = 10, T̀m = 1500, and initial densities
T̀ (0) = 0.001, I(0) = 0, V (0) = 0.001.

3. Fractional calculus

In this section, we give some basic definitions and properties of the frac-
tional calculus theory which are used further in this paper.
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Definition 3.1. A function f(x) (x > 0) is said to be in the space Cα

(α ∈ R) if it can be written as f(x) = xpf1(x) for some p > α where
f1(x) is continuous in [0,∞), and it is said to be in the space Cm

α if f (m) ∈
Cα, m ∈ N.

Definition 3.2. The Riemann—Liouville integral operator of order α with
a ≥ 0 is defined as

(Jαa f)(x) =
1

Γ(α)

xZ
a

(x− t)α−1 f(t) dt, x > a,(3.1)

(J0af)(x) = f(x).(3.2)

Properties of the operator can be found in [6, 9, 10, 15, 17]. For f ∈ Cα,
α, β > 0, a ≥ 0, c ∈ R, γ > −1, we have

(Jαa J
β
a f) (x) = (J

β
a J

α
a f) (x) = (J

α+β
a f) (x),(3.3)

Jαa xγ =
xγ+α

Γ(α)
0Bx−a

x
(α, γ + 1),(3.4)

where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ (α, γ + 1) =

Z τ

0
tα−1(1− t)γdt,(3.5)

Jαa e
cx = eac(x− a)α

∞X
k = 0

[c(x− a)]k

Γ(α+ k + 1)
.(3.6)

The Riemann—Liouville derivative has certain disadvantages when try-
ing to model real-world phenomena with fractional differential equations.
Therefore, we shall introduce a modified fractional differential operator Dα

a

proposed by Caputo in his work on the theory of viscoelasticity.

Definition 3.3. The Caputo fractional derivative of f(x) of order α > 0
with a ≥ 0 is defined as

(Dα
a f)(x) = (J

m−α
a f (m)) (x) =

1

Γ(m− α)

Z x

a

f (m)(t)

(x− t)α+1−m
dt,(3.7)
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for m− 1 < α ≤ m, m ∈N, x ≥ a, f ∈ Cm
−1.

The Caputo fractional derivative was investigated by many authors, for
m− 1 < α ≤ m, f(x) ∈ Cm

α , we have

(JαaD
α
a f) (x) = JmDmf(x) = f(x)−

m − 1X
k = 0

f (k)(a)
(x− a)k

k !
.(3.8)

For mathematical properties of fractional derivatives and integrals one
can consult the mentioned references.

4. Multi-step homotopy analysis method

The MHAM is used to provide approximate solutions for nonlinear problem
in terms of convergent series with easily computable components, it has
been shown that the approximated solution obtained are not valid for large
t for some systems. Therefore we use the MHAM, which is offers accurate
solution over a longer time frame compared to the HAM [1, 2, 16, 18, 19].
In this section we need to construct the MHAM of the general form of the
HIV infection of CD4+T cells model (2.1). For this purpose, we consider
the following fractional system of differential equations

Dαxi(t) = Fi(t, x1(t), ..., xr(t)), t ≥ 0, 0 < α ≤ 1,(4.1)

subject to the initial conditions

xi(0) = di, i = 1, 2, ..., r,(4.2)

where (Fi(t, x1(t), ..., xr(t)), i = 1, 2, ..., r) are known analytical functions.
Let [0, T ] be the interval over which we want to find the solution of the initial
value problem (4.1) and (4.2). Assume that the interval [0, T ] is divided
into n-subintervals of equal length ∆t, [t0, t1], [t1, t2], [t2, t3], ..., [tn−1, tn]
with t0 = 0, tn = T. Let t∗ be the initial value for each subintervals and
let xi,j(t), i = 1, 2, ..., r, j = 1, 2, ..., n be approximate solutions in each
subinterval [tj−1, tj ], j = 1, 2, ..., n, with initial guesses

xi,1(t
∗) = di, xi,j(t

∗) = Xi,j(tj−1) = Xi,j−1(tj−1), i = 1, 2, ..., r, j = 2, 3, ..., n.
(4.3)

Now, we can construct the so-called zeroth-order deformation equations
of the system (4.1) by



312 Ali H. Handam, Asad A. Freihat and M. Zurigat

(1−q)L[φi,j(t; q)−xi,j(t∗)] = qh[Dα
t φi,j(t; q)−Fi(t, φ1,j(t; q), . . . , φr,j(t; q))],

i = 1, 2, . . . , r, j = 1, 2, ..., n,(4.4)

where q ∈ [0, 1] is an embedding parameter, L is an auxiliary linear opera-
tor, h 6= 0 is an auxiliary parameter and φi,j(t; q) are unknown functions.
Obviously, when q = 0

φi,1(t; 0) = di, φi,j(t; 0) = xi,j−1(tj−1), i = 1, 2, . . . , r, j = 2, 3, ..., n,

and when q = 1, we have

φi,j(t; 1) = xi,j(t), i = 1, 2, . . . , r, j = 1, 2, ..., n.

Expanding φi,j(t; q), i = 1, 2, ..., r, j = 1, 2, ..., n, in Taylor series with
respect to q, we get

φi,j(t; q) = xi,j(t
∗) +

∞X
m=1

xi,j,m(t)q
m, i = 1, 2, . . . , r, j = 1, 2, ..., n,

(4.5)

where

xi,j,m(t) =
1

m!

∂mφi,j(t; q)

∂qm
|q=0.(4.6)

If the initial guesses xi,j(t
∗), the auxiliary linear operator L and the

nonzero auxiliary parameter h are properly chosen so that the power series
(4.5) converges at q = 1, one has

xi,j(t) = φi,j(t; 1) = xi,j(t
∗) +

∞X
m=1

xi,j,m(t).(4.7)

Define the vector

−→x i,j,m(t) = {xi,j,0(t), xi,j,1(t), . . . , xi,j,m(t)}.
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Differentiating the zero-order deformation equation (4.4) m times with
respective to q, then setting q = 0 and dividing them by m!, finally using
(4.6), we have the so-called high-order deformation equations

L[xi,j,m(t)− χmxi,j,m−1(t)] = h <i,j,m(
−→x i,j,m−1(t)),(4.8)

subject to the initial conditions

xi,j,m(0) = 0, i = 1, 2, . . . , r, j = 1, 2, ..., n,

where

<i,j,m(
−→x i,j,m−1(t))

=
1

(m− 1)!
∂m−1

∂qm−1
[Dα

t φi,j(t; q)− Fi(t, φ1,j(t; q), . . . , φr,j(t; q))]|q=0,

= 1, 2, ..., r, j = 1, 2, . . . , n,(4.9)

and

χm =

(
0, m ≤ 1
1, m > 1

.(4.10)

Select the auxiliary linear operator L = Dα, then the mth order defor-
mation equations (4.8) can be written in the form

xi,j,m(t) = χmxi,j,m−1(t)+h Jα[<i,j,m(
−→x i,j,m−1(t))], i = 1, 2, ..., r, j = 1, 2, ..., n.

(4.11)
The solutions of system (4.1) in each subinterval [tj−1, tj ], j = 1, 2, ..., n, has

the form

Xi,j(t) =
∞X

m=0

xi,j,m(t− tj−1), i = 1, 2, . . . , r, j = 1, 2, ..., n,(4.12)

and the solution of system (4.1) for [0, T ] is given by

xi(t) =
nX

j=1

χvXi,j(t), i = 1, 2, . . . , r,(4.13)

where χv =

(
1, t ∈ [tj−1, tj ]
0, t /∈ [tj−1, tj ]



314 Ali H. Handam, Asad A. Freihat and M. Zurigat

Theorem 4.1. If the series
∞X

m=0

xi,j,m(t), i = 1, 2, ..., r, j = 1, 2, ..., n, is

convergent, it must be a solution of system (4.1).

Proof. As we say the series
∞X

m=0

xi,j,m(t) is convergent, then

m −→∞limxi,j,m(t) = 0, for all i, j. Using the notation of χm, we have

kX
m=1

[xi,j,m(t)− χmxi,j,m−1(t)] = xi,j,k(t)

which gives us

∞X
m=1

[xi,j,m(t)− χmxi,j,m−1(t)] = k −→∞limxi,j,k(t) = 0.

Furthermore, using the above expression and the equation (4.8), we
have

∞X
m=1

L[xi,j,m(t)− χmxi,j,m−1(t)] = h
∞X

m=1

<i,j,m(
−→x i,j,m−1(t)) = 0

which gives, since h 6= 0 that
∞X

m=1

<i,j,m(
−→x i,j,m−1(t)) = 0,that is

∞X
m=1

1

(m− 1)!
∂m−1

∂qm−1
[Dα

t φi,j(t; q)− Fi(t, φ1,j(t; q), . . . , φr,j(t; q))]|q=0

=
∞X

m=0

1

m!

∂m

∂qm
[Dα

t φi,j(t; q)− Fi(t, φ1,j(t; q), . . . , φr,j(t; q))]|q=0 = 0.

(4.14)

In additional, φi,j(t; q) are not a solutions of (4.1) on an interval [tj−1, tj ]
when q 6= 0. Now define

λi,j(t, q) = Dα
t φi,j(t; q)− Fi(t, φ1,j(t; q), . . . , φr,j(t; q))

−(Dα
t xi,j(t)− Fi(t, x1,j , ..., xm,j))

= Dα
t φi,j(t; q)− Fi(t, φ1,j(t; q), . . . , φr,j(t; q))
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as a residual error of system (4.1), then the Maclaurin’s series of λi,j(t, q)
with respect to empedding parameter q is:

∞X
m=0

qm

m!

∂m

∂qm
λi,j(t, q)|q=0

=
∞X

m=0

qm

m!

∂m

∂qm
[Dα

t φi,j(t; q)− Fi(t, φ1,j(t; q), . . . , φr,j(t; q))]|q=0.

When q = 1, and upon using equation (4.14), the above expression leads
to

λi,j(t, 1) =
∞X

m=0

1

m!

∂m

∂qm
λi,j(t, q)|q=0 = 0,

which means that φi,j(t; 1) must be a solutions of system (4.1) in each
subinterval [tj−1, tj ], i.e.

xi,j(t) = φi,j(t; 1) = xi,j(t
∗) +

∞X
m=1

xi,j,m(t).

2

5. Numerical results

In this work, we carefully propose the MHAM, a reliable modification of the
HAM, that improves the convergence of the series solution. The method
provides immediate and visible symbolic terms of analytic solutions, as well
as numerical approximate solutions to both linear and nonlinear differential
equations. Now, if we select the auxiliary linear operator L = Dα, then the
mth order deformation equations (4.11) for the model of HIV infection of
CD4+T cells (2.1) can be written in the form

T̀j,m(t) = χmT̀j,m−1(t) + h Jα[<1j,m(
−→̀
T j,m−1(t))],

Ij,m(t) = χmIj,m−1(t) + h Jα[<1j,m(
−→
I j,m−1(t))],

Vj,m(t) = χmVj,m−1(t) + h Jα[<1j,m(
−→
V j,m−1(t))],(5.1)

where
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<1j,m(
−→̀
T j,m−1(t)) = DαT̀j,m−1(t) + δT̀j,m−1(t)− rT̀j,m−1(t)

+
r

T̀m
(
m−1X
i=0

T̀j,i(t)T̀j,m−i−1(t) +
m−1X
i=0

T̀j,i(t)Ij,m−i−1(t))

+ k
m−1X
i=0

T̀j,i(t)Vj,m−i−1(t)− s(1− χm),(5.2)

<2j,m(
−→
I j,m−1(t)) = DαIj,m−1(t)−k

m−1X
i=0

T̀j,i(t)Vj,m−i−1(t))+βIj,m−1(t),

j=1,2,. . . ,n,

<3j,m(
−→
V j,m−1(t)) = DαVj,m−1(t)−NβIj,m−1(t) + γVj,m−1(t).

So in this case we have to satisfy the initial condition at each of the
subintervals. Accordingly, the initial values will be changed for each subin-
terval, i.e.

T̀1(t
∗) = 0.001, T̀j(t

∗) = t̀j(tj−1) = t̀j−1(tj−1),

I1(t
∗) = 0, Ij(t

∗) = ij(tj−1) = ij−1(tj−1)(5.3)

V1(t
∗) = 0.001, Vj(t

∗) = vj(tj−1) = vj−1(tj−1), j = 2, 3, ..., n.

Where t∗ is the initial value for each subintervals. The solutions of
system (2.1) in each subinterval [tj−1, tj ], j = 1, 2, ..., n, has the form

t̀j(t) =
∞X

m=0

T̀j,m(t− tj−1),

ij(t) =
∞X

m=0

Ij,m(t− tj−1), j = 1, 2, ..., n,

vj(t) =
∞X

m=0

Vj,m(t− tj−1),(5.4)

and the solution of system (2.1) for [0, T ] is given by

T̀ (t) =
nX

j=1

χv t̀j(t),
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I(t) =
nX

j=1

χvij(t),

V (t) =
nX

j=1

χvvj(t).(5.5)

To demonstrate the effectiveness of the proposed algorithm as an ap-
proximate tool for solving the model of HIV infection of CD4+T cells of
fractional order (2.1) for larger t, we apply the proposed algorithm on the
interval [0, 60]. We choose to divide the interval [0, 60] into subintervals
with time step ∆t = 0.1. and we get the HAM solution at each subinter-
val. Figs 1 and 2 show the phase portrait for the classical model for HIV
infection of CD4+T cells using the MHAM and the fourth-order Runge—
Kutta method (RK4). From the graphical results in Figs. 1 and 2, it can
be seen the results obtained using the MHAM match the results of the
RK4 very well, which implies that the MHAM can predict the behavior of
these variables accurately for the region under consideration. Figs. 3 and 4
show the phase portrait for the fractional-order model for HIV infection of
CD4+T cells using the MHAM. From the numerical results in Figs. 3 and
4, it is clear that the approximate solutions depend continuously on the
time-fractional derivative α.The effective dimension

P
of the system (5.1)

is defined as the sum of orders 3α =
P

. Also we can see that the chaos
exists in the fractional-order model for HIV infection of CD4+T cells with
order as low as 2.1.

6. Conclusions

The analytical approximations to the solutions of the model of HIV infec-
tion of CD4+T cells are reliable and confirm the power and ability of the
MHAM as an easy device for computing the solution of nonlinear problems.
In this paper, a fractional differential model of HIV is studied and its ap-
proximate solution is presented using a MHAM. The approximate solutions
obtained by MHAM are highly accurate and valid for a long time. The reli-
ability of the method and the reduction in the size of computational domain
give this method a wider applicability. Finally, the recent appearance of
nonlinear fractional differential equations as models in some fields such as
models in science and engineering makes it is necessary to investigate the
method of solutions for such equations and we hope that this work is a step
in this direction.
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