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Abstract

The present article investigates the existence of solutions of the
following nonlinear second order coupled system with nonlinear cou-
pled boundary conditions (CBCs)⎧⎪⎪⎨⎪⎪⎩

−u00(t) = f1(t, v(t)), t ∈ [0, 1],
−v00(t) = f2(t, u(t)), t ∈ [0, 1],
µ(u(0), v(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)) = (0, 0),

ν(u(0), v(0)) + (u(1), v(1)) = (0, 0),

where f1, f2 : [0, 1] × R → R, µ : R6 → R2 and ν : R2 → R2 are
continuous functions. The results presented in [7, 11] are extended in
our article. Coupled lower and upper solutions, Arzela-Ascoli theorem
and Schauder’s fixed point theorem play an important role in estab-
lishing the arguments. Some examples are taken to ensure the validity
of the theoretical results.

Keywords : Lower and upper solutions, Nonlinear coupled sys-
tem, Coupled nonlinear boundary conditions, Arzela-Ascoli theorem,
Schauder’s fixed point theorem.
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1. Introduction

The lower and upper solution methodology has been widely investigated in
studying boundary value problems (BVPs) of nonlinear differential equa-
tions. The idea was firmly established by the work of Perron [13] on the
Dirichlet problem for harmonic functions. In late 1960s, Jackson [12] es-
tablished the theory for treating BVPs of second order nonlinear ordinary
differential equations. Remarkable contributions were also made by Schmitt
in [14]. Zhang [15] discussed some notable applications to characterize the
existence of positive solutions to the Dirichlet problem of a type of sublinear
differential equations. In [16] Zhang established the existence results for the
second order nonlinear periodic BVPs and considered the forced pendulum
equations with curvature and Duffing type equations as applications.

CBCs appear while studying of Sturm-Liouville problems, reaction-
diffusion equations, mathematical biology, chemical systems, and engineer-
ing [17, 18, 21, 22, 23] and [19] chapter 13. In [20] Leung investigated the
applications of CBCs in mathematical biology by studying the following
reaction-diffusion system for prey-predator interaction:

ut (t, x) = σ1∆u+ u (a+ f(u, v)) , t ≥ 0, x ∈ Ω ⊂ Rn,

vt (t, x) = σ2∆v + v (r + g(u, v)) , t ≥ 0, x ∈ Ω ⊂ Rn,
(1.1)

subject to CBCs

∂u

∂η
= 0,

∂v

∂η
− p(u)− q(v) = 0 on ∂Ω,(1.2)

where f, g : R2 → R have Hölder continuous partial derivatives up to
second order in compact sets, η is a unit outward normal at ∂Ω and p and q
have Hölder continuous first derivatives in compact subsets of [0,∞). Also,
∆ =

nP
i=1

∂2

∂x2i
, a, r, σ1, σ2 are positive constants. The functions u(t, x) and

v(t, x) respectively represent the density of prey and predator at t ≥ 0 and
at position x = (x1, x2, ..., xn). In [18] the same kind of CBCs are studied
for biochemical system. Cardanobile and Mugnolo in [22] investigated the
following parabolic system with CBCs:
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∂u

∂t
(t, x) = Lu(t, x), t ≥ 0, x ∈ Ω ∈ Rn, f | ∂Ω ∈ Y, ∂f

∂v
∈ Y⊥,

(1.3)

where Y⊥ is closed subspace of L2(∂Ω;W ), the unknown function u takes
values in a separable Hilbert space W and L is an elliptic operator with
operator-valued symbol.

The study of ordinary differential systems (ODSs) with coupled and
non-coupled boundary conditions has also attracted many authors. The
reader can study [4, 5, 6, 7, 24, 25] and references therein. A second or-
der ordinary differential system (ODS) firstly appeared from the study of
chemical reactors [8]. The study of ODSs become more interesting when
the coupling is defined in the boundary conditions. Systems with CBCs can
be applied to Lokta-Volterra models, reaction diffusion phenomena and in-
teraction problems, see for example [9, 10, 20] and references therein. A
recent work in this line of research is the one by Asif et al. [7], who study
the nonlinear coupled system:

u
0
(t) = f(t, v(t)), t ∈ [0, 1],

v
0
(t) = g(t, u(t)), t ∈ [0, 1],(1.4)

subject to the nonlinear CBC

h(u(0), v(0), u(1), v(1)) = (0, 0).(1.5)

The authors investigated the existence of at least one solution applying
coupled lower and upper solution approach.

Motivated by the works in [7, 11], and a wide applications of CBCs, we
consider the existence of solution of the following nonlinear coupled system

−u00(t) = f1(t, v(t)), t ∈ [0, 1],
−v00(t) = f2(t, u(t)), t ∈ [0, 1],(1.6)

subject to nonlinear CBCs

µ
³
u(0), v(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)
´
= (0, 0),

ν (u(0), v(0)) + (u(1), v(1)) = (0, 0),(1.7)
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where f1, f2 : [0, 1]×R→ R, µ : R6 → R2 and ν : R2 → R2 are continuous
functions.

The results presented in our work are new and having a valuable addi-
tion in the existing literature of nonlinear CBCs. The research ideas dis-
cussed in [7, 11] are extended in our work. In [7] the existence results are
established for a first-order nonlinear coupled ODS but in our case the idea
is extended for a second-order nonlinear coupled ODS. In [11] the concept
of a coupled lower and an upper solution was defined for a single differential
equation. On the other hand, in our work that concept is extended for a
system of differential equations.

The other interesting aspect of our work is the choice of boundary
conditions (BCs) and Definition 2.1. That is (1.7) generalizes most of
the usual linear BCs. We mean to say that if µ(j, k, l,m, n, o) = (l −
n,m−o) and ν(j, k) = (−j,−k), then (1.7) implies the periodic BCs and if
µ(j, k, l,m, n, o) = (l+n,m+0) and ν(j, k) = (j, k), then (1.7) implies the
anti-periodic BCs. Definitely, in order to obtain a solution satisfying these
BCs and lying between a subsolution and a supersolution, some additional
conditions are required. For example, in the periodic case it suffices that

α
0
1(0) ≥ α

0
1(1), α

0
2(0) ≥ α

0
2(1), α1(1) = α1(0), α2(1) = α2(0),

β
0
1(0) ≤ β

0
1(1), β

0
2(0) ≤ β

0
2(1), β1(1) = β1(0), β2(1) = β2(0)),

(1.8)

and in the anti-periodic case it suffices that

α
0
1(0) ≥ −β

0
1(1), α

0
2(0) ≥ −β

0
2(1),−α1(0) = β1(1),−α2(0) = β2(1),

β
0
1(0) ≤ −α

0
1(1), β

0
2(0) ≤ −α

0
2(1), α1(1) = −β1(0), α2(1) = −β2(0)).

(1.9)

Now the question is that whether the Theorem 2.2 that is designed to
study the existence results for a nonlinear coupled differential system with
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nonlinear CBCs is also well equipped to study the existence criterion (1.8)-
(1.9)? So to tackle this question the concept of a coupled lower and an
upper solutions is defined in Definition 2.1 and the results in (1.8)-(1.9) are
easily verified by the use of the system of inequalities in (2.1).

Definition 1.1. We say that a function (α1, α2) ∈ C2[0, 1] × C2[0, 1] is a
subsolution of (1.6) if

−α001(t) ≤ f1 (t, α2(t)) , t ∈ [0, 1],
−α002(t) ≤ f2 (t, α1(t)) , t ∈ [0, 1].(1.10)

In the same way, a supersolution is a function (β1, β2) ∈ C2[0, 1] ×
C2[0, 1], that satisfies the same inequalities in reverse order.

For u, v ∈ C2[0, 1], we define the set

[u, v] =
n
w ∈ C2[0, 1] : u(t) ≤ w(t) ≤ v(t), t ∈ [0, 1]

o
.

The following lemma is very useful for our work:

Lemma 1.2. Let Â : C1[0, 1]×C1[0, 1]→ C0[0, 1]×C0[0, 1]×R2×R2 be
defined by

[Â(u, v)](t) =

Ã
u
0
(t)− u

0
(0)− ϕ

Z t

0
u(s) ds, v

0
(t)− v

0
(0)− ϕ

Z t

0
v(s) ds,

(au(0) + bu(1), cv(0) + dv(1)) ,
¡
a0u(0) + b0u(1), c0v(0) + d0v(1)

¢!
,

(1.11)

where ϕ, a, b, c, d, a0, b0, c0 and d0 are real constants with ϕ > 0 such that

(ad− bc)(a0d0 − b0c0)
³
e−
√
ϕ − e

√
ϕ
´
6= 0,

and here

C0[0, 1] =
n
x ∈ C2[0, 1] : x(0) = 0

o
.
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Then Â−1 exists and is continuous and defined by

[Â−1(y, z, γ, δ, ξ, ζ)] =

Ã
λ1e

√
ϕt + λ2e

−√ϕt +
1

2

Z t

0
e
√
ϕ(t−s)y(s) ds

− 1

2

Z t

0
e
√
ϕ(s−t)y(s) ds, λ3e

√
ϕt + λ4e

−√ϕt

+
1

2

Z t

0
e
√
ϕ(t−s)z(s) ds− 1

2

Z t

0
e
√
ϕ(s−t)z(s) ds

!
,

with

λ1 =
1

(ad− bc)
³
e
√
ϕ − e−

√
ϕ
´Ã2δ ³a+ be−

√
ϕ
´
− d

³
a+ be−

√
ϕ
´

Z 1

0
e
√
ϕ(1−s)y(s)ds+ d

³
a+ be−

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)y(s)ds

− 2γ
³
c+ de−

√
ϕ
´
+ b

³
c+ de−

√
ϕ
´ Z 1

0
e
√
ϕ(1−s)y(s)ds

− b
³
c+ de−

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)y(s)ds

!
,

λ2 =
1

(ad− bc)
³
e−
√
ϕ − e

√
ϕ
´Ã2δ ³a+ be

√
ϕ
´
− d

³
a+ be

√
ϕ
´

Z 1

0
e
√
ϕ(1−s)y(s)ds+ d

³
a+ be

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)y(s)ds

− 2γ
³
c+ de

√
ϕ
´
+ b

³
c+ de

√
ϕ
´ Z 1

0
e
√
ϕ(1−s)y(s)ds

− b
³
c+ de

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)y(s)ds

!
,

λ3 =
1

(a0d0 − b0c0)
³
e
√
ϕ − e−

√
ϕ
´Ã2ζ ³a0 + b0e−

√
ϕ
´
− d0

³
a0 + b0e−

√
ϕ
´

Z 1

0
e
√
ϕ(1−s)z(s)ds+ b0

³
a0 + b0e−

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

− 2ξ
³
c0 + d0e−

√
ϕ
´
+ b0

³
c0 + d0e−

√
ϕ
´ Z 1

0
e
√
ϕ(1−s)z(s)ds

− b0
³
c0 + d0e−

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

!
,
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and

λ4 =
1

(a0d0 − b0c0)
³
e−
√
ϕ − e

√
ϕ
´Ã2ζ ³a0 + b0e

√
ϕ
´
− d0

³
a0 + b0e

√
ϕ
´

Z 1

0
e
√
ϕ(1−s)z(s)ds+ b0

³
a0 + b0e

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

− 2ξ
³
c0 + d0e

√
ϕ
´
+ b0

³
c0 + d0e

√
ϕ
´ Z 1

0
e
√
ϕ(1−s)z(s)ds

− b0
³
c0 + d0e

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

!
.

Proof. Choose

y(t) = u
0
(t)− u

0
(0)− ϕ

Z t

0
u(s) ds,(1.12)

z(t) = v
0
(t)− v

0
(0)− ϕ

Z t

0
v(s) ds,(1.13)

γ = au(0) + bu(1),(1.14)

δ = cv(0) + dv(1),(1.15)

ξ = a0u(0) + b0u(1),(1.16)

ζ = c0v(0) + d0v(1).(1.17)

In the light of (1.12)-(1.17), (1.11) can also be written as

[Â (u, v)](t) = (y(t), z(t), (γ, δ) , (ξ, ζ)) .(1.18)
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Differentiating (1.12) with respect to t, we have

y0(t) = u00(t)− ϕu(t), ϕ > 0.(1.19)

The general solution of (1.19) can be easily determined using variation
of parameters technique alongwith integration by parts and taking limits
of integration from 0 to t, we have

u(t) = λ1e
√
ϕt + λ2e

−√ϕt +
1

2

Z t

0
e
√
ϕ(t−s)y(s)ds+

1

2

Z t

0
e
√
ϕ(s−t)y(s)ds.

(1.20)

λ1 and λ2 can be easily determined with the help of (1.14) and (1.15)
as

γ =
³
a+ be

√
ϕ
´
λ1+

³
a+ be−

√
ϕ
´
λ2+

b

2

µZ 1

0
e
√
ϕ(1−s)y(s)ds+ e

√
ϕ(s−1)y(s)ds

¶
,

δ =
³
c+ de

√
ϕ
´
λ1+

³
c+ de−

√
ϕ
´
λ2+

d
2

³R 1
0 e

√
ϕ(1−s)y(s)ds+ e

√
ϕ(s−1)y(s)ds

´
.

(1.21)

Solving the system of equations (1.21), we have

λ1 =
1

(ad− bc)
³
e
√
ϕ − e−

√
ϕ
´Ã2δ ³a+ be−

√
ϕ
´
− d

³
a+ be−

√
ϕ
´

R 1
0 e

√
ϕ(1−s)y(s)ds+ d

³
a+ be−

√
ϕ
´ R 1

0 e
√
ϕ(s−1)y(s)ds

-2γ
³
c+ de−

√
ϕ
´
+ b

³
c+ de−

√
ϕ
´ R 1

0 e
√
ϕ(1−s)y(s)ds

-b
³
c+ de−

√
ϕ
´ R 1

0 e
√
ϕ(s−1)y(s)ds

!
,

λ2 =
1

(ad−bc)(e−
√
ϕ−e

√
ϕ)

Ã
2δ
³
a+ be

√
ϕ
´
− d

³
a+ be

√
ϕ
´

R 1
0 e

√
ϕ(1−s)y(s)ds+ d

³
a+ be

√
ϕ
´ R 1

0 e
√
ϕ(s−1)y(s)ds
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-2γ
³
c+ de

√
ϕ
´
+ b

³
c+ de

√
ϕ
´ R 1

0 e
√
ϕ(1−s)y(s)ds

-b
³
c+ de

√
ϕ
´ R 1

0 e
√
ϕ(s−1)y(s)ds

!
.

(1.22)

Similarly on the same line, it can be easily shown that

v(t) = λ3e
√
ϕt + λ4e

−√ϕt +
1

2

Z t

0
e
√
ϕ(t−s)z(s)ds+

1

2

Z t

0
e
√
ϕ(s−t)z(s)ds,

(1.23)

with

λ3 =
1

(a0d0 − b0c0)
³
e
√
ϕ − e−

√
ϕ
´Ã2ζ ³a0 + b0e−

√
ϕ
´
− d0

³
a0 + b0e−

√
ϕ
´

Z 1

0
e
√
ϕ(1−s)z(s)ds+ b0

³
a0 + b0e−

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

− 2ξ
³
c0 + d0e−

√
ϕ
´
+ b0

³
c0 + d0e−

√
ϕ
´ Z 1

0
e
√
ϕ(1−s)z(s)ds

− b0
³
c0 + d0e−

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

!
,

(1.24)

and

λ4 =
1

(a0d0 − b0c0)
³
e−
√
ϕ − e

√
ϕ
´Ã2ζ ³a0 + b0e

√
ϕ
´
− d0

³
a0 + b0e

√
ϕ
´

Z 1

0
e
√
ϕ(1−s)z(s)ds+ b0

³
a0 + b0e

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds
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− 2ξ
³
c0 + d0e

√
ϕ
´
+ b0

³
c0 + d0e

√
ϕ
´ Z 1

0
e
√
ϕ(1−s)z(s)ds

− b0
³
c0 + d0e

√
ϕ
´ Z 1

0
e
√
ϕ(s−1)z(s)ds

!
.(1.25)

(1.18) can also be written as

(u(t), v(t)) = [Â−1 (y(t), z(t), (γ, δ) , (ξ, ζ))].(1.26)

Hence (1.20)-(1.26) prove the required result. 2

2. Coupled lower and upper solutions

The following definition is very useful to construct the statement of the main
result , and also it covers different possibilities for the nonlinear boundary
functions µ and ν.

Definition 2.1. We say that (α1, α2), (β1, β2) ∈ C2[0, 1] × C2[0, 1] are
coupled lower and upper solutions for the problem (1.6) and (1.7) if (α1, α2)
is a subsolution and (β1, β2) a supersolution for the system (1.6),(α1, α2) ¹
(β1, β2), if α1 ≤ β1 and α2 ≤ β2, and

µ(β1(0), β2(0), β
0
1(0), β

0
2(0), β

0
1(1), β

0
2(1)) ¹ (0, 0)

¹ µ(α1(0), α2(0), α
0
1(0), α

0
2(0), α

0
1(1), α

0
2(1)),

µ(β1(0), β2(0), β
0
1(0), β

0
2(0), α

0
1(1), α

0
2(1)) ¹ (0, 0)

¹ µ(α1(0), α2(0), α
0
1(0), α

0
2(0), β

0
1(1), β

0
2(1)),

(α1(1), α2(1)) + ν (β1(0), β2(0)) = (0, 0) ,

(β1(1), β2(1)) + ν (α1(0), α2(0)) = (0, 0) ,

(α1(1), α2(1)) + ν (α1(0), α2(0)) = (0, 0) ,

(β1(1), β2(1)) + ν (β1(0), β2(0)) = (0, 0) .

(2.1)
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Theorem 2.2. Assume that (α1, α2), (β1, β2) are coupled lower and upper
solutions for the problem (1.6)-(1.7). Suppose that µ is nondecreasing in
the third and fourth arguments. In addition suppose that the function ν
in [α1(0), β1(0)]× [α2(0), β2(0)] is monotone and the functions

µ(α1,α2)(x, y) := µ
³
α1(0), α2(0), α

0
1(0), α

0
2(0), x, y

´
,

µ(β1,β2)(x, y) := µ
³
β1(0), β2(0), β

0
1(0), β

0
2(0), x, y

´
,

have got the same kind of monotonocity as ν, then there exists at least one
solution (u, v) ∈ [α1, β1]× [α2, β2] of the problem (1.6)-(1.7).

Proof. Let ϕ > 0 and consider the modified system

−u00(t) + ϕu(t) = F ∗1 (t, u(t), v(t)) , t ∈ [0, 1],
−v00(t) + ϕv(t) = F ∗2 (t, u(t), v(t)) , t ∈ [0, 1],
µ∗
³
u(0), v(0), u(1), v(1), u

0
(0), v

0
(0)
´
= (u(0), v(0)) ,

(u(1), v(1)) + ν∗ (u(0), v(0)) = (0, 0) ,

2

(2.2)

with

F ∗1 (t, u(t), v(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 (t, β2(t)) + ϕβ1(t) if v(t) > β2(t), u(t) > β1(t),
f1 (t, v(t)) + ϕβ1(t) if α2(t) ≤ v(t) ≤ β2(t), u(t) > β1(t),
f1 (t, α2(t)) + ϕβ1(t) if v(t) < α2(t), u(t) > β1(t),
f1 (t, β2(t)) + ϕu(t) if v(t) > β2(t), α1(t) ≤ u(t) ≤ β1(t),
f1 (t, v(t)) + ϕu(t) if α2(t) ≤ v(t) ≤ β2(t),

α1(t) ≤ u(t) ≤ β1(t),
f1 (t, α2(t)) + ϕu(t) if v(t) < α2(t), α1(t) ≤ u(t) ≤ β1(t),
f1 (t, β2(t)) + ϕα1(t) if v(t) > β2(t), u(t) < α1(t),
f1 (t, v(t)) + ϕα1(t) if α2(t) ≤ v(t) ≤ β2(t), u(t) < α1(t),
f1 (t, α2(t)) + ϕα1(t) if v(t) < α2(t), u(t) < α1(t),

and
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F ∗2 (t, u(t), v(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2 (t, β1(t)) + ϕβ2(t) if v(t) > β2(t), u(t) > β1(t),
f2 (t, u(t)) + ϕβ2(t) if α1(t) ≤ u(t) ≤ β1(t), v(t) > β2(t),
f2 (t, α1(t)) + ϕβ2(t) if u(t) < α1(t), v(t) > β2(t),
f2 (t, β1(t)) + ϕv(t) if u(t) > β1(t), α2(t) ≤ v(t) ≤ β2(t),
f2 (t, u(t)) + ϕv(t) if α1(t) ≤ u(t) ≤ β1(t),

α2(t) ≤ v(t) ≤ β2(t),
f2 (t, α1(t)) + ϕv(t) if u(t) < α1(t), α2(t) ≤ v(t) ≤ β2(t),
f2 (t, β1(t)) + ϕα2(t) if u(t) > β1(t), v(t) < α2(t),
f2 (t, u(t)) + ϕα2(t) if α1(t) ≤ u(t) ≤ β1(t), v(t) < α2(t),
f2 (t, α1(t)) + ϕα2(t) if u(t) < α1(t), v(t) < α2(t),

µ∗ (j, k, l,m, n, o) = φ (0, (j, k) + µ (j, k, l,m, n, o)) ,

ν∗ (j, k) = ν (φ (0, (j, k))) ,

φ(t, (x, y)) =

⎧⎪⎨⎪⎩
(β1(t), β2(t)) if (x, y) 6¹ (β1, β2)
(x, y) if (α1, α2) ¹ (x, y) ¹ (β1, β2)
(α1(t), α2(t)) if (x, y) 6º (α1, α2),

Note that if (u, v) ∈ [α1, β1]× [α2, β2] is a solution of (2.2), then (u, v)
is a solution of (1.6)-(1.7).

For the sake of simplicity we divide the proof in three steps:

Step 1:
We define the mappings

Â, B̂ : C1[0, 1]× C1[0, 1]→ C0[0, 1]×C0[0, 1]×R2 ×R2,

by

[Â(u, v)](t) =

Ã
u
0
(t)− u

0
(0)− ϕ

Z t

0
u(s) ds, v

0
(t)− v

0
(0)− ϕ

Z t

0
v(s) ds,

(u(0), v(0)) , (u(1), v(1))

!
,

and

[B̂(u, v)](t) =

ÃZ t

0
F ∗1 (s, u(s), v(s))ds,

Z t

0
F ∗2 (s, u(s), v(s))ds,
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µ∗(u(0), v(0), u(1), v(1), u
0
(0), v

0
(0)),

−ν∗(u(0), v(0))
!
.

Clearly B̂ is continuous and compact by the direct application of Arzela-
Ascoli theorem. Also from Lemma 1.2 with a = 1, b = 0, c = 1, d = 0 and
a0 = 0, b0 = 1, c0 = 0, d0 = 1, Â−1, exists and is continuous.

On the other hand, solving (2.2) is equivalent to find a fixed point of

Â−1B̂ : C1[0, 1]×C1[0, 1]→ C1[0, 1]×C1[0, 1].

Now, Schauder’s fixed point theorem guarantees the existence of at least
a fixed point since Â−1B̂ is continuous and compact.

Step 2: If (u, v) is a solution of (2.2), then (u, v) ∈ [α1, β1] × [α2, β2]. By
definition of µ∗, we see that (u(0), v(0)) ∈ [α1(0), β1(0)] × [α2(0), β2(0)].
Thus, if ν is nondecreasing, we have by condition (2.1)

(α1(1), α2(1)) = −ν (β1(0), β2(0)) ¹ −ν (u(0), v(0))
= (u(1), v(1)) ¹ −ν (α1(0), α2(0))

(α1(1), α2(1)) ¹ (u(1), v(1)) ¹ (β1(1), β2(1)) ,(2.3)

similarly, if ν is nonincreasing, then (2.3) holds. Hence (u(1), v(1)) ∈
[α1(1), β1(1)]×[α2(1), β2(1)]. Now, it remains to show that (u, v) ∈ [α1, β1]×
[α2, β2] for t ∈ (0, 1).

We claim (u, v) ¹ (β1, β2). If (u, v) 6¹ (β1, β2), then u 6¹ β1 and/or v 6¹
β2. If u 6¹ β1, then there exist some t0 ∈ [0, 1] such that u(t0)− β1(t0) > 0.
So, u−β1 attains a positive maximum at t0 ∈ [0, 1]. Thus (u−β1)

0
(t0) = 0

and (u− β1)
00
(t0) < 0. But

u− β1)
00
(t0) > −F ∗1 (t0, u(t0), v(t0)) + ϕu(t0) + f1 (t0, β2(t0))

= −f1 (t0, β2(t0))− ϕβ1(t0) + ϕu(t0) + f1 (t0, β2(t0))

= ϕ (u(t0)− β1(t0)) > 0,

a contradiction. Similarly one can show that (α1, α2) ¹ (u, v). Hence
(u, v) ∈ [α1, β1]× [α2, β2].

Step 3: If (u, v) is a solution of (2.2) then (u, v) satisfies (1.7).
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We claim

(α1(0), α2(0)) ¹ (u(0), v(0)) + µ
³
u(0), v(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)
´

¹ (β1(0), β2(0)) .
(2.4)

If (α1(0), α2(0)) 6¹ (u(0), v(0)) + µ
³
u(0), v(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)
´
,

then

(u(0), v(0)) = µ∗
³
u(0), v(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)
´

=φ(0, (u(0), v(0)) + µ(u(0), v(0), u
0
(0), v

0
(0), u

0
(1), v

0
(1)))

=(α1(0), α2(0)) .

(2.5)

If ν is nondecreasing, we have

(u(1), v(1)) = −ν (u(0), v(0)) = −ν (α1(0), α2(0)) = (β1(1), β2(1)) .

(2.6)

Using (2.5), (2.6) and Step 2, we have
³
u
0
(0), v

0
(0)
´
º
³
α
0
1(0), α

0
2(0)

´
and

³
u
0
(1), v

0
(1)
´
º
³
β
0
1(1), β

0
2(1)

´
. But

(u(0), v(0)) + µ
³
u(0), v(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)
´

= (α1(0), α2(0)) + µ
³
α1(0), α2(0), u

0
(0), v

0
(0), u

0
(1), v

0
(1)
´

º (α1(0), α2(0)) + µ
³
α1(0), α2(0), α

0
1(0), α

0
2(0), u

0
(1), v

0
(1)
´

= (α1(0), α2(0)) + µ(α1,α2)
³
u
0
(1), v

0
(1)
´

º (α1(0), α2(0)) + µ
³
α1(0), α2(0), α

0
1(0), α

0
2(0), β

0
1(1), β

0
2(1)

´
º (α1(0), α2(0)) ,(2.7)
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a contradiction. Similarly if ν is nonincreasing we get same contradiction.
Consequently, 2.4 holds. By definition of ν∗ and Step 2, the second bound-
ary condition is obvious. Consequently (u, v) satisfies (1.7). Hence the
system of BVPs (1.6)-(1.7) has a solution (u, v) ∈ [α1, β1]× [α2, β2] . 2

3. Examples

Example 3.1. Consider the nonlinear coupled boundary value system

− u
00
(t) = v5(t) − 20

q
sin(t), t ∈ [0, 1],

-v
00
(t) = u5(t)− 16

p
cos(t− 1), t ∈ [0, 1],

(3.1)

with the following nonlinear CBCs¡
u(0)u0(0)− v(0)v0(0), u(0)u0(1)− v0(0)v0(1)

¢
= (0, 0) ,³p

tan(u(0))u(1) + tan(v(0))v(1),
p
tan(u(0)) + tan(v(0))v(1)

´
= (0, 0) .

(3.2)

Let α1(t) = − t5

4 , α2(t) = −
t7

5 and β1(t) =
t5

4 , β2(t) =
t7

5 . It is easy
to show that (α1, α2), (β1, β2) are a subsolution and a supersolution of the
system (3.1), respectively. Further, (α1, α2) and (β1, β2) satisfy the system
(2.1). Hence by Theorem 2.2, the system of BVPs (3.1)-(3.2) has at least
one solution (u, v) ∈ [α1, β1]× [α2, β2].

Example 3.2. Consider the nonlinear coupled boundary value system

− u
00
(t) = t2 + sin(v(t)), t ∈ [0, 1],

-v
00
(t) = 5t2 + cos(u(t) + 4) + sin(u(t)− 4), t ∈ [0, 1],

(3.3)

with the following nonlinear CBCs¡
u(0)u0(1)− v0(0)v0(1), u0(0)u0(1)− v0(1)

¢
= (0, 0) ,
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(sin(u(0)) + u(0)v(1), sin(v(0)) + v(0)u(1)) = (0, 0) .
(3.4)

Let α1(t) = t2, α2(t) = t3 and β1(t) = t, β2(t) = t. It is easy to show
that (α1, α2), (β1, β2) are a subsolution and a supersolution of the system
(3.3), respectively. Further, (α1, α2) and (β1, β2) satisfy the system (2.1).
Hence by Theorem 2.2, the system of BVPs (3.3)-(3.4) has at least one
solution (u, v) ∈ [α1, β1]× [α2, β2].

4. Conclusion

In this article, coupled lower and upper solution methodology is used to
investigate the existence of solution of second-order nonlinear coupled sys-
tem with nonlinear CBCs. The ideas presented in [7, 11] are extended in
our article. Also it is worth mentioning that the BCs (1.7) generalize most
of the BCs like periodic and anti-periodic BCs. Moreover to verify the clas-
sical results (1.8)-(1.9), the concept of coupled lower and upper solutions
is defined in Section 2. Some examples are taken to ensure the validity of
the theoretical results.
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