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Abstract

A graph G(p, q) is said to be odd harmonious if there exists an in-
jection f : V (G)→ {0, 1, 2, · · · , 2q − 1} such that the induced function
f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a
bijection. A graph that admits odd harmonious labeling is called odd
harmonious graph. In this paper we prove that any two even cycles
sharing a common vertex and a common edge are odd harmonious
graphs.
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1. Introduction

Throughout this paper by a graph we mean a finite, simple and undi-
rected one. For standard terminology and notation we follow Harary [6].
A graph G = (V,E) with p vertices and q edges is called a (p, q) — graph.
The graph labeling is an assignment of integers to the set of vertices or
edges or both, subject to certain conditions. An extensive survey of var-
ious graph labeling problems is available in [3]. Labeled graphs serves as
useful mathematical models for many applications such as coding theory,
including the design of good radar type codes, synch-set codes, missile guid-
ance codes and convolution codes with optimal autocorrelation properties.
They facilitate the optimal nonstandard encoding of integers. Graham
and Sloane [4] introduced harmonious labeling during their study of mod-
ular versions of additive bases problems stemming from error correcting
codes. A graph G is said to be harmonious if there exists an injection
f : V (G) → Zq such that the induced function f∗ : E(G) → Zq defined
by f∗(uv) = (f(u) + f(v)) (mod q) is a bijection and f is called har-
monious labeling of G. The concept of odd harmonious labeling was due
to Liang and Bai [7]. A graph G is said to be odd harmonious if there
exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced
function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v)
is a bijection. A graph that admits odd harmonious labeling is called odd
harmonious graph. The odd harmoniousness of graph is useful for the so-
lution of undetermined equations. Several results have been published on
odd harmonious labeling see [1, 2, 5, 9, 10, 11]. Motivated by these results,
in [8] we proved that the shadow and splitting of the graphs K2,n, Cn for
n ≡ 0(mod 4), the graph Hn,n and double quadrilateral snakes DQ(n),
n ≥ 2 are odd harmonious. In this paper we prove that any two even cycles
sharing a common vertex and a common edge are odd harmonious graphs.
We use the following results and definitions in the subsequent section.

Lemma 1.1. [2] If G is an odd harmonious Eulerian graph with q edges,
then q ≡ 0(mod 4) .

Lemma 1.2. [2] Two copies of even cycles sharing a common edge is an
odd harmonious graph and two copies of even cycles sharing a common
vertex is also an odd harmonious graph, when n ≡ 0(mod 4) .

Lemma 1.3. [7] If G is an odd harmonious graph, then G is a bipartite
graph. Hence any graph that contains an odd cycle is not an odd harmo-
nious.
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Lemma 1.4. [7] If a (p, q)-graph G is odd harmonious, then 2
√
q ≤ p ≤

2q − 1.

Lemma 1.5. The graph Cn is strongly odd harmonious if and only if n ≡
0(mod 4).

Definition 1. A function f is said to be a strongly odd harmonious label-
ing of a graphG with q edges if f is an injection from the vertices ofG to the
integers from 0 to q such that the induced mapping f∗(uv) = f(u) + f(v)
from the edges of G to the odd integers between 1 to 2q − 1 is a bijection.

Definition 2. Let Cm and Cn be two even cycles where m and n are even
integers. Then the graph C(m ◦ n) is a bicyclic graph that share a common
vertex of Cm and Cn.

Definition 3. Let Cm and Cn be two even cycles with m and n are even
integers. Then the graph C(m@n) is a graph obtained by sharing a common
edge of Cm and Cn.

2. Main Results

Theorem 2.1. Let G1(p1, q1) be a strongly odd harmonious graph and
G2(p2, q2) be any odd harmonious graph. Let e = xy be an edge of G1 with
q1 and q1−1 are the vertex labels of x and y respectively and e1 = uv be an
edge of G2 with 0 and 1 are labels of u and v respectively. Then the graph
G obtained by identifying the edges e and e1 is a strongly odd harmonious
graph.

Proof. Add the number q1−1 to all the vertex labels of G2 (except for u
and v) and keep the vertex labels ofG1 fixed. Then the edge labels ofG1 are
remain fixed and the edge labels of G2 are increased by 2q1−2 . Hence the
edge labels of G2 are {2q1 − 1, 2q1 + 1, 2q1 + 3, · · · , 2q1 + 2q2 − 3}. Thus
the induced edge labels of a new graph G is
{1, 3, 5, · · · , 2q1 − 1, 2q1 + 1, 2q1 + 3, · · · , 2q1 + 2q2 − 3}. Therefore G is a
strongly odd harmonious graph. 2

In [2], it was proved that two copies of an even cycle Cn sharing a
common edge is an odd harmonious graph. Now we prove that any two
even cycles sharing a common edge is also an odd harmonious graph.

Lemma 2.2. The graph C(m@n) is odd harmonious if m,n ≡ 0(mod 4) .
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Proof. By Lemma 1.5 and by Theorem 2.1, the graph C(m@n) is odd
harmonious. 2

Illustration 1. The odd harmonious labeling of the graph C(8@12) is
given in Figure 1.
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Figure 1: The odd harmonious labeling of C(8@12)

Lemma 2.3. The graph C(m@n) is odd harmonious if m,n ≡ 2(mod 4) .

Proof. Consider the cycles Cm and Cn with m,n ≡ 2(mod 4), and take
m = 4l+2 and n = 4k+2. Hence, the graph C(m@n) has 4l+4k+2 ver-
tices and 4l+4k+3 edges. Without loss of generality we assume thatm < n.

Define a labeling f : V (G)→ {0, 1, 2, · · · , 2(4l + 4k + 3)− 1} as follows:

f(vi) = i− 1 , 1 ≤ i ≤ (2k + 2).

For 2k + 3 ≤ i ≤ 2l + 2k, f(vi) =
(

i+ 1 if i is odd
i− 1 if i is even,

possible only

if l 6= 1.

For 2l + 2k + 1 ≤ i ≤ 4l + 4k + 2, f(vi) = i+ 1.

The induced edge labels are
f∗(vivi+1) = 2i− 1, 1 ≤ i ≤ (2k + 1),
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f∗(v1v4k+2) = 4k + 3,
f∗(vivi+1) = 2i+ 1, 2k + 2 ≤ i ≤ 2l + 2k,
f∗(v1v4l+4k+2) = 4k + 4l + 3,
f∗(vivi+1) = 2i+ 3, 2l + 2k + 1 ≤ i ≤ 4l + 4k + 1.

The induced edge labels are {1, 3, 5, · · · , 4k + 1, 4k + 3, · · · , 8k + 8l + 5}.
Hence the graph C(m@n) is odd harmonious if m,n ≡ 2(mod 4) . 2

Illustration 2. The odd harmonious labeling of the graph C(6@10) is
given in Figure 2.
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Figure 2: The odd harmonious labeling of C(6@10)

Lemma 2.4. The graph C(m@n) is odd harmonious ifm ≡ 0(mod 4), and
n ≡ 2(mod 4) .

Proof. Consider the graphs Cm and Cn with m ≡ 0(mod 4), and
n ≡ 2(mod 4), and take m = 4l and n = 4k + 2. Here, the graph C(m@n)
has 4l + 4k vertices and 4l + 4k + 1 edges.
We define a labeling f : V (G)→ {0, 1, 2, · · · , 2(4l + 4k + 1)− 1} by consid-
ering the following two cases:

Case (i): m < n.
f(vi) = i− 1 , 1 ≤ i ≤ (2k + 3).

For 2k + 4 ≤ i ≤ 2l + 2k + 1, f(vi) =
(

i− 1 if i is odd
i+ 1 if i is even,

possible only if l 6= 1.
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For 2l + 2k + 2 ≤ i ≤ 4l + 4k. f(vi) =
(

i− 1 if i is odd
i+ 3 if i is even.

The induced edge labels are
f∗(vivi+1) = 2i− 1 , 1 ≤ i ≤ (2k + 2),
f∗(v1v4k+2) = 4k + 5,
f∗(vivi+1) = 2i+ 1 , 2k + 3 ≤ i ≤ 2l + 2k,
f∗(v1v4l+4k) = 4k + 4l + 3,
f∗(vivi+1) = 2i+ 3 , 2l + 2k + 1 ≤ i ≤ 4l + 4k − 1.

Case (ii): m > n.

f(v1) = 0 and f(vi) = 4k + 4l + 3− i , 2 ≤ i ≤ (2l + 2k + 2).

For 2l + 2k + 3 ≤ i ≤ 2l + 4k

f(vi) =

(
4k + 4l + 1− i if i is odd
4k + 4l + 3− i if i is even,

possible only if k 6= 1.

For 2l + 4k + 1 ≤ i ≤ 4l + 4k., f(vi) = 4l + 4k + 1− i.

The induced edge labels are
f∗(v1v4k+4l) = 1,
f∗(vi−1vi) = 2(4k + 4l + 1− i) + 1 , 4k + 2l + 2 ≤ i ≤ 4k + 4l − 1,
f∗(v1v4k+2) = 4l + 1,
f∗(vivi−1) = 2(4k + 4l + 1− i) + 3 , 4k + 2l + 1 ≤ i ≤ 2l + 2k + 3,
f∗(v1v2) = 4k + 4l + 1,
f∗(vivi−1) = 2(4k + 4l + 3− i) + 1 , 2l + 2k + 2 ≤ i ≤ 2.

Hence the graph C(m@n) is odd harmonious if m ≡ 0(mod 4) and n ≡
2(mod 4) . 2

Illustration 3. The odd harmonious labeling of the graphs C(8@10) and
C(12@6) are given in Figures 3 and 4.
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Figure 3: The odd harmonious labeling of C(8@10)
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Figure 4: The odd harmonious labeling of C(12@6)

Theorem 2.5. The graph C(m@n) is an odd harmonious graph if and
only if both m and n are even integers.

Proof. By Lemmas 2.2, 2.3 and 2.4 , the graph C(m@n) is an odd
harmonious graph if both m and n are even integers.
Conversely, if either m or n is an odd integer, then the graph C(m@n) has
an odd cycle. By Lemma 1.3, a graph which has an odd cycle is not odd
harmonious. 2

In [2], it was proved that two copies of an even cycle Cn sharing a
common vertex is an odd harmonious graph. Now we prove that any two
even cycles sharing a common vertex is also an odd harmonious graph.

Lemma 2.6. The graph C(m ◦ n) is odd harmonious if m,n ≡ 2(mod 4) .
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Proof. Consider the graphs Cm and Cn with m,n ≡ 2(mod 4) and
take m = 4k + 2 and n = 4l + 2. Here the graph C(m ◦ n) has 4l +
4k + 3 vertices and 4l + 4k + 4 edges. We define a labeling f : V (G) →
{0, 1, 2, · · · , 2(4l + 4k + 4)− 1} by considering the following two cases:

Case (i): k ≤ l ≤ 2k − 2.

f(vi) = i , 1 ≤ i ≤ 2l + 1.

For 2l + 2 ≤ i ≤ 2l + 2k, f(vi) =
(

i+ 2 if i is even,
i if i is odd.

Also f(vi) = i+ 2 , 2l + 2k + 1 ≤ i ≤ 4l + 1.

f(vi) = 0 , if i = 4l + 2 and f(vi) = 8l + 7 , if i = 4l + 3.

f(vi) = i , 4l + 4 ≤ i ≤ 6l + 5.

f(vi) =

(
i+ 2 if i is even,
i if i is odd.

, 6l + 6 ≤ i ≤ 4l + 4k + 3.

The induced edge labelings are

f∗(v4l+2v1) = 1,
f∗(vivi+1) = 2i+ 1, 1 ≤ i ≤ 2l,
f∗(vnvn−1) = 4l + 3,
f∗(vivi+1) = 2i+ 3 , 2l + 1 ≤ i ≤ 2l + 2k − 3,
f∗(vnv4k+4l+3) = 4k + 4l + 3,
f∗(vivi+1) = 2i+ 5, 2l + 2k ≤ i ≤ 4l,
f∗(vnvn+1) = 2n+ 3,
f∗(vivi+1) = 2i+ 1 , 4l + 4 ≤ i ≤ 3l + 3k + 7,
f∗(v4l+3v4l+4) = 8l + 4k + 15,
f∗(vivi+1) = 2i+ 3 , 3l + 3k + 8 ≤ i ≤ 4l + 4k + 2.

Case (ii):l ≥ 2k − 1.
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f(vi) = i− 1 , 1 ≤ i ≤ 2l + 2.

f(vi) =

(
i+ 1 if i is odd.
i− 1 if i is even.

, 2l + 3 ≤ i ≤ 3l + 2.

For 3l + 3 ≤ i ≤ 2k + 3l.

f(vi) = i + 1 , if l is odd and f(vi) =

(
i− 1 if i is even
i+ 3 if i is odd, if l is even,

possible only if k 6= 1 .

For 2k + 3l + 1 ≤ i ≤ 4k + 4l + 2.

f(vi) =

(
i+ 3 if i is odd
i+ 1 if i is even.

f(v4k+4l+2) = 2l + 2.

The induced edge labels are
f∗(vivi+1) = 2i− 1, 1 ≤ i ≤ 2l + 1,
f∗(v1v4l+2) = 4l + 3,
f∗(vivi+1) = 2i+ 1 , 2l + 2 ≤ i ≤ 3l + 1,

f∗(v4l+2v4k+4l+3) =

(
4l + 4k + 5 if l is even
4l + 4k + 3 if l is odd.

f∗(vivi+1) = 2i+ 3, 3l + 2k ≤ i ≤ 2k + 3l,
f∗(v4k+4l+2v4k+4l+3) = 4k + 6l + 5,
f∗(vivi+1) = 2i+ 5 , 2k + 3l + 1 ≤ i ≤ 4k + 4l + 1.
Hence the graph C(m ◦ n) is odd harmonious if m,n ≡ 2(mod 4) . 2

Illustration 4. The odd harmonious labeling of the graphs C(14 ◦ 18) and
C(10 ◦ 14) are given in Figures 5 and 6.
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Figure 5: The odd harmonious labeling of C(14@18)
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Figure 6: The odd harmonious labeling of C(10 ◦ 14)

Lemma 2.7. The graph C(m ◦ n) is odd harmonious if m,n ≡ 0(mod 4) .

Proof. Consider the graphs Cm and Cn with m,n ≡ 0(mod 4) and take
m = 4k and n = 4l. Here the graph C(m ◦ n) has 4l + 4k − 1 vertices and
4l + 4k edges.
We define a labeling f : V (G)→ {0, 1, 2, · · · , 2(4l + 4k)− 1} as follows.

f(vi) = i− 1 , 1 ≤ i ≤ 2l.
For 2l + 1 ≤ i ≤ 4l + 2k − 2.

f(vi) =

(
i+ 1 if i is odd.
i− 1 if i is even

For 4l + 2k − 1 ≤ i ≤ 4l + 4k − 1 , f(vi) = i+ 1.
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The induced edge labels are
f∗(vivi+1) = 2i− 1, 1 ≤ i ≤ 2l − 1,
f∗(v1vn) = n− 1,
f∗(vivi+1) = 2i+ 1 , 2l ≤ i ≤ 4l + 2k − 2,
f∗(vnv4k+4l−1) = 4k + 8l − 1,
f∗(vivi+1) = 2i+ 1 , 4l + 2k − 1 ≤ i ≤ 4l + 4k − 2.

Hence the graph C(m ◦ n) is odd harmonious if m,n ≡ 0(mod 4) . 2

Illustration 5. The odd harmonious labeling of the graph C(4 ◦ 8) is given
in Figure 7.
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Figure 7: The odd harmonious labeling of C(4 ◦ 8)

Lemma 2.8. If m ≡ 0(mod 4) and n ≡ 2(mod 4) or vice versa, then the
graph C(m ◦ n) is not an odd harmonious graph.

Proof. Without loss of generality we assume that m ≡ 0(mod 4)
and n ≡ 2(mod 4) . Take m = 4k and n = 4l + 2. Then the graph
C(m ◦ n) has 4k+ 4l+1 vertices and 4k+4l+2 edges. Let the vertex set
V = {u1, u2, · · · , u4l+1} ∪ {v1, v2, · · · , v4k−1} ∪ {u}.

2
4l+1P
i=1

f(ui) + 2
4k−1P
i=1

f(vj) + 4f(u) = q2 = (m + n)2 = (4l + 2 + 4k)2 =

4(2l + 2k + 1)2.

Hence 2
4l+1P
i=1

f(ui) + 2
4k−1P
i=1

f(vj) + 2f(u) = 2(2l + 2k + 1)
2.

2
4l+1P
i=1

f(ui) + 2
4k−1P
i=1

f(vj) = even.......(1).
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Case (i):f(u) is even.

In Cn there are 2l+ 1 even labels and 2l+ 1 odd labels. Hence 2
4l+1P
i=1

f(ui)

is the sum of 2l even integers and 2l+1 odd integers. Therefore 2
4l+1P
i=1

f(ui)

is odd.

Also 2
4k−1P
i=1

f(vj) is the sum of 2k − 1 even integers and 2k odd integers.

Therefore 2
4k−1P
i=1

f(vj) is even. Hence 2
4l+1P
i=1

f(ui)+2
4k−1P
i=1

f(vj) is odd, which

is a contradiction to (1).

Case (ii):f(u) is odd.

2
4l+1P
i=1

f(ui) is the sum of 2l odd integers and 2l+1 even integers. Therefore

2
4l+1P
i=1

f(ui) is even.

Also 2
4k−1P
i=1

f(vj) is the sum of 2k − 1 odd integers and 2k even integers.

Therefore 2
4k−1P
i=1

f(vj) is odd. Hence 2
4l+1P
i=1

f(ui)+2
4k−1P
i=1

f(vj) is odd, which

is a contradiction to (1).

Therefore the graph C(m ◦ n) is not an odd harmonious graph if m ≡
0(mod 4) and n ≡ 2(mod 4) . 2

Theorem 2.9. The graph C(m ◦ n) is an odd harmonious graph if and
only if either both m,n ≡ 0(mod 4) or both m,n ≡ 2(mod 4) .

Proof. By Lemmas 2.5 and 2.6 the graph C(m ◦ n) is an odd harmonious
graph if and only if either both m,n ≡ 0(mod 4) or both m,n ≡ 2(mod 4).
Conversely, by Lemma 2.7, ifm ≡ 0(mod 4) and n ≡ 2(mod 4) or vice versa,
then the graph C(m ◦ n) is not an odd harmonious graph. Therefore,C(m ◦ n)
is an odd harmonious graph if and only if either both m,n ≡ 0(mod 4) or
both m,n ≡ 2(mod 4). 2
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