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Abstract

In this paper we investigated self-similar solutions for Magneto Hy-
drodynamic shock waves for the equation of state of Mie-Gruneisen
type. Solutions are obtained numerically and the effect of viscosity
(K) and the non-idealness parameter (d) on the self-similar solutions
are studied in detail. The findings confirmed that, the non-idealness
parameter and the viscosity parameter have major effect on the shock
strength and the flow variables. All discontinuities of the physical pa-
rameters are removed by the viscosity and complete flow field depends
upon the magnitude of the viscosity. The obtained results are in good
agreement with the results obtained by some of the researchers. All
the analysis is presented pictorially in this paper.
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1. Introduction

Shockwaves are very common phenomenon in the supersonic flow of any
fluid. Shock process occurs naturally that are related to hydrodynamics,
aerodynamics, astrophysics, nuclear engineering and space science. Shock
waves are mathematically treated as discontinuities. Shock wave is not a
true physical discontinuity, but a very narrow transition zone whose thick-
ness is of the order of a few molecular mean-free paths. In a shocked
medium, particles behind the shock front experience compressive as well as
shear forces thus the particles move away from their equilibrium position.
The similarity solutions of converging spherical and cylindrical shock wave
problems with different equation of states (EOS) were investigated by sev-
eral authors [1, 6, 7, 9, 12, 15, 19, 22, 24]. The existence and effects of
the viscous forces for the similarity solutions to shock wave problems were
studied by several researchers [10, 17, 21, 28]. Landau and Lifshitz [14]
and Zel’dovich and Raizer [27] have studied the entropy production in a
viscous medium and developed an analytical model for the shock process
based on Hugoniot curves considering the effects of viscosity and heat con-
duction. The role of viscosity in physics and mathematical investigation of
model problems suggest that the presence of viscosity implies the existence
of a continuous, differentiable solution. This mathematical theory does not
guarantee this in general. The actual formulation of artificial viscosity in-
troduced by Von Neumann and Richtmyer [25] involved adding a viscosity
term to the momentum equation, that augments the pressure in the in-
stance there is shock compression and is independent of shock strength.
The new system will satisfy the Rankine-Hugoniot jump conditions (Cara-
mana et al. [4]) in the shock region and has little effect outside the shock
layer. The resistance to variations in distribution of cohesive forces in flu-
ids experienced result in removing the inhomogeneities in velocities. These
types of resistances result in the phenomenon of viscosity in fluid motions
Blazek [3]. This viscosity effect was found to be one of the most important
effects in the equations of motion. The shock heating of solar corona dis-
cussed by Orta et al. [18] have shown that the shock thickness and profile
depend on viscosity and resistivity and as a consequence heating ultimately
occurs. Ballai et al. [2] in the study of dispersive shock waves concluded
that the effect of dispersion will alter the amplitude and propagation speed
of a shock wave and also discussed in detail the viscosity effect. The su-
personic flows exhibit an important property i.e., the coexistence of shock
waves with viscous effects for many fluid dynamic systems Korzhov et al.
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[13]. Also the viscous interactions of solar wind stream were studied by
Korzhov et al. [13]. The study of interplanetary shock waves are pro-
duced due to coronal mass ejection and solar winds and study of these is
very important for space weather purposes. The shock waves occur where
the solar wind changes from being supersonic to being subsonic. In the
supersonic regime of compressible gas flow the interaction of shock waves
with viscosity is a very important problem. Mathematically this can be ap-
proximated to a hydrodynamic case. Several astrophysical and geophysical
phenomena occur due to the Magnetohydrodynamic (MHD) shockwaves.
Detailed understanding of the evolution of disturbances in viscous flow and
its mechanisms in MHD is essential for the development of efficient methods
for controlling different types of flows encountered by the hypersonic flying
objects. Some of the applications by the application of external magnetic
field are drag reduction in duct flows, design of coolant blankets for fusion
reactors, control of turbulence of immersed jets during continuous casting
of steel, advanced flow control schemes for hypersonic vehicles and missiles.

1.1. Goal of present work

The main purpose of this paper is to describe complete mechanism of shock
wave problem, which include viscous terms and study the dissipation effects
on the propagation of shock waves including viscosity under the effect of
magnetic field. Also to study and confirm the effect of (i) the non-idealness
parameter and the viscosity parameters on the shock strength and the flow
variables respectively (ii) effect of discontinuities of the physical parameters
due to viscosity and (iii) complete flow field depending on the magnitude
of the viscosity. To define this type of shock process spherically symmet-
ric conservation equations are considered. The viscosity term (suggested
by Von Neumann and Richtmyer [25]) is included into the hydrodynamic
equations for spherically symmetric flow. The main advantage of artificial
viscosity approach is its simplicity thereby high computational efficiency
and oscillations in the flow profiles dampen and the smoothness in the
profiles increases.

2. Formulation of the Problem

The viscosity term suggested by is included into the hydrodynamic equa-
tions for spherically symmetric flow in magnetogasdynamics regime, can be
written in Eulerian form [8, 14, 20, 25, 26, 27] as



14 Narsimhulu Dunna, Addepalli Ramu and Dipak Kumar Satpathi
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+
4hu

r
= 0(2.4)

where r and t are independent space and time coordinates ρ, u, p, q and e
are density, velocity, pressure, artificial viscosity and internal energy per

unit mass respectively and h = µH2

2 is the magnetic pressure, H and µ
being magnetic field strength and the magnetic permeability respectively.
The shock position is given by Rs(t) and its velocity D = dRs(t)

dt . Originally
Von Neumann and Richtmyer [25] proposed the following expression for the
viscosity term:

q =

⎧⎨⎩ −ρK2(4x)2
³
∂u
∂x

´2
, if ∂u

∂x < 0 or ∂ρ
∂t > 0

0 otherwise

u is the fluid velocity, ρ is the density, 4x is spacial interval and K is a
constant parameter whose value is conveniently adjusted in every numerical
experiment. This parameter K controls the number of zones in which the
shock waves are spread. The form of q adopted for the present problem is
consistent with Richard Latter [21] requirements and is

q =
1

2
K2ρr2

∂u

∂r

µ
|∂u
∂r
|− ∂u

∂r

¶
(2.5)

The expression for q denotes a non-linear dissipative mechanism, which
is effective in the shock layer and negligible elsewhere.

2.1. Boundary conditions

The boundary conditions at shock front due to Rankine-Hugoniot jump
relations, under the strong shock limit can be written into the following
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form [23, 27]

ρ1 = ρ0β, u1 =

µ
1− 1

β

¶
D, p1 =

Ã
1− 1

β
− c0β

2

2

!
ρ0D

2, h1 =
c0β

2

2
ρ0D

2

(2.6)

The equation of state (EOS) is of Mie-Gruneisen type [19] of the fol-
lowing form

p = [Γ(ρ/ρ0)− 1]ρe−Π(ρ/ρ0)(2.7)

where Γ and Π are functions to be determined according to the EOS un-
der consideration and Each Γ and Π gives different EOS. Using the strong
shock relations (2.6) in equation (2.7) we get

2− c0β
3

β − 1 +
2β

β − 1Π(β) = (β − 1)(Γ(β)− 1)(2.8)

where β is the measure of shock strength.

2.2. Transformation of basic equations

We consider a set of suitable similarity transformations

ρ = ρ0ψ(ξ), u = Dφ(ξ), p = ρ0D
2f(ξ), h = ρ0D

2l(ξ), q = ρ0D
2g(ξ)

(2.9)

where ξ = r
R , ξ is the similarity variable and R = A(t)α (shock propagation

follows a power law), ψ, φ, f, l and g are dimensionless density, velocity,
pressure, magnetic pressure and viscosity term (which are functions of ξ)
respectively. In general these terms are termed as reduced functions. Along
with the reduced functions we consider a similar set of transformations for
convenience such as,

ψ(ξ) = Ψ(ξ), φ(ξ) =
ξ

α
Φ(ξ), f(ξ) =

ξ2

α2
F (ξ), l(ξ) =

ξ2

α2
L(ξ), g(ξ) =

ξ2

α2
G(ξ)

(2.10)

where Ψ,Φ, F, L and G are new unknown reduced functions for the reduced
density, velocity, pressure, magnetic pressure and viscosity term functions
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respectively. Using the transformations (2.9) and (2.10), the equations
(2.1)−(2.5) can be written in the following non dimensional form:

(Φ− α)
d lnΨ

d ln ξ
+

dΦ

d ln ξ
+ 3Φ = 0(2.11)

1

Ψ

dF

d ln ξ
+ (Φ− α)

dΦ

d ln ξ
+
1

Ψ

dG

d ln ξ
+
1

Ψ

dL

d ln ξ
+
2

Ψ
(F +G+ L)

+Φ(Φ− 1) = 0(2.12)

dF

d ln ξ
+ Y (Ψ, F,G)

d lnΨ

d ln ξ
+ 2F

∙
1 +

α− 1
Φ− α

¸
= 0(2.13)

(Φ− α)
dL

d ln ξ
+ 2L

dΦ

d ln ξ
+ 2L(4Φ− 1) = 0(2.14)

G =
K2

2
Ψ(ξΦ)0[|(ξΦ)0|− (ξΦ)0](2.15)

where 0 denotes differentiation with respect to ξ and

Y (Ψ, F,G) =
α2

ξ2

∙
Π0Ψ−Π

µ
Γ0Ψ

Γ− 1 + 1
¶¸
− F

µ
Γ0Ψ

Γ− 1 + Γ
¶
− (Γ− 1)G

(2.16)

and the transformed boundary conditions are

Ψ(1) = β, Φ(1) =

µ
1− 1

β

¶
, F (1) =

Ã
1− 1

β
− c0β

2

2

!
,

L(1) =
c0β

2

2
and G(1) = 0(2.17)

The numerical solution of equations (2.11)−(2.15) will be obtained by
considering two cases. Firstly considering the regions where the viscosity
is absent and secondly when it is present. Thus the flow field defines two
regions based on the gradient of the term (ξΦ). The region (ξΦ)0 ≤ 0
means that the viscous effect is present in the flow field that comprises
of transition flow field between the undisturbed medium and shock front.
Thus the equation (2.15) may be rewritten as follows,

dΦ

dξ
=

−1

ξK
³
Ψ
G

´ 1
2

− Φ
ξ

(2.18)
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For the region (ξΦ)0 > 0, the viscosity term of equation (2.15) is zero
(i.e. G = 0) and the remaining equations defining the flow can be written
in matrix form for convenience as⎛⎜⎜⎜⎝
Φ− α 1 0 0
0 Φ− α 1

Ψ
1
Ψ

Z 0 1 0
0 2L 0 Φ− α

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

d lnΨ
d ln ξ
dΦ
d ln ξ
dF
d ln ξ
dL
d ln ξ

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
−3Φ
− 2

Ψ(F + L)− Φ(Φ− 1)
−2F

h
1 + α−1

Φ−α

i
−2L(4Φ− 1)

⎞⎟⎟⎟⎠
(2.19)
where

Z(Ψ, F ) =
α2

ξ2

∙
Π0Ψ−Π

µ
Γ0Ψ

Γ− 1 + 1
¶¸
− F

µ
Γ0Ψ

Γ− 1 + Γ
¶

(2.20)

The numerical solution procedure involves in writing equation (2.19) as
follows:

dΨ

dξ
=
Ψ41

ξ4 ,
dΦ

dξ
=
42

ξ4 ,
dF

dξ
=
43

ξ4 ,
dL

dξ
=
44

ξ4(2.21)

where

4 = (Φ− α)

∙
(Φ− α)2 +

1

Ψ
(Z − 2L)

¸
(2.22)

41 = (Φ− α)

∙
Φ(Φ− 1)− 3Φ(Φ− α)− 2

Ψ
(L+ F )

α− 1
Φ− α

¸
(2.23)

42 = (Φ− α)
h
2
Ψ{F (α− 1)− L(Φ− α)}− Φ(Φ− 1)(Φ− α)+

2L
Ψ (4Φ− 1)−

3ΦZ
Ψ

i
(2.24)

43 = (Φ− α)
h
3ΦZ(Φ− α)−Φ(Φ− 1)− 2

Ψ(F + L) + 2LZ(Φ−1)
Ψ(Φ−α) +

2F
³
1 + α−1

Φ−α

´n
2L
Ψ − (Φ− α)2

oi
(2.25)

44 = 2L(Φ− α)
h
Φ(Φ− 1) + 2

Ψ{L− F α−1
Φ−α}−

Z(Φ−1)
Ψ(Φ−α)−

(Φ− α)(4Φ− 1)]

(2.26)
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3. Solution Procedure

The solution procedure involves the following.

(a) Evaluation of β the measure of stock strength for the considered non-
idealness parameters.

(b) Solutions of the transformed system of differential equations with and
without viscosity.

3.1. Evaluation of β

The two EOS of Mie-Grunesien type, Royce [19], van dar Waals [22] are
considered:

(a) putting Γ(Ψ) = Γ0+1− d(1− 1
Ψ) and Π(Ψ) = 0 in equation (2.7), the

Royce EOS can be written as,

p = ρe

∙
Γ0 −−d(1−

1

Ψ
)

¸
(3.1)

where d > 0 is an arbitrary constant and Γ0 is non-ideal parameter.
Again

(b) putting Γ(Ψ) = 1 + γ−1
1−bΨ and Π =

h
1− γ−1

1−bΨ

i
aΨ2 in equation (2.7)

the van der Waals EOS can be written as,

p =

µ
γ − 1
1−Bρ

¶
(ρe+Aρ2)−Aρ2(3.2)

where a = Aρ20, b = Bρ0, e denotes the specific internal energy, γ is
the ratio of specific heats (γ > 1), and the quantities A, B are the van
der Waals gas constants for molecular cohesive forces and finite size of
molecules (A ≥ 0and 0 ≤ B < 1

ρ) respectively. Substituting equations
(3.1) and (3.2) in equation (2.8), we obtain the following two biquadratic
equations in terms of β respectively.

M(β) ≡ c0β
4 + (Γ0 − d)β3 + (3d− 2− 2Γ0)β2 + (2− 3d+ Γ0)β + d = 0
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(3.3)

N(β) ≡ b(2a− c0)β4+{c0−a(4−2γ)}β3+(2b+γ−1)β2−2(γ+ b)β+

(γ + 1) = 0

(3.4)

Using MATLAB these equations are solved for β corresponding to the
constants (a, b, c0,
d, γ and Γ0). Descarte’s rule of signs suggest that the polynomial M(β)
has two negative and two positive roots whereas N(β) has one negative and
three positive roots. This can also be seen from the solution curves (Figs.
1 and 2). We observed from these figures that there is always one real root
(β = 1) irrespective of the constants considered. This corresponds to case
of no magnetic effect (c0 = 0). Neglecting the negative roots subsequent
computations are performed.

3.2. Solutions of the transformed equations

The solution of the non-linear system of ordinary differential equations is
obtained by considering the two cases, (i) without viscosity (K = 0) and
(ii) with viscosity (K 6= 0).

3.3. Numerical solution without viscosity (K = 0)

To obtain the solution without viscosity with the known values of β,Γ0and γ
the system of equations (2.21) are solved numerically where α is unknown.
Substituting the boundary conditions (2.17) into the equations (2.21) and
using the method of shock fitting we obtain the following simplified equa-
tions

P1α
2 +Q1α+R1 = 0 (Royce EOS)(3.5)

P2α
2 +Q2α+R2 = 0 (van der Waals EOS)(3.6)

where αi s are roots of equations (3.5) and (3.6) and

P1 = 2[dβ3 + (Γ0 − d)β4]
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Q1 = 4[dβ2 + (Γ0 − 2d)β3 − (Γ0 − d)β4]

R1 = 2d2 + 2d(2Γ0 − 3d+ 1)β + 2[(Γ0 − 3d)(Γ0 − d+ 1) + (Γ0 − d)]β2

+[c0d
2 − 2(Γ0 − d)(Γ0 − d+ 1) + 2(3d− 2Γ0)]β3 + 2[(Γ0 − d)(1 + dc0)

−dc0]β4 + c0(Γ0 − d)(Γ0 − d+ 1)β5

P2 = 2β2 + [a(4− 2γ)− 4b]β3 + [ab(2γ − 8) + 2b2]β4 + 4ab2β5

Q2 = 4β − (8b+ 4)β2 + (4b2 + 8b)β3 − 4b2β4

R2 = 2(1 + γ)− 2(2 + γ)(1 + b)β + 2[1 + (4 + γ)b+ b2]β2 +

[(γ − 2)c0 − 4b− 4b2]β3 + [(4− γ)bc0 + 2b
2]β4 − 2c0b2β5

The roots of the biquadratic equations (3.3), (3.4) and the quadratic
equations (3.5), (3.6) for different non-ideal parameters are shown in Tables
1 and 2.

3.4. Numerical solution with Viscosity (K)

The presence of viscosity is expected to damp the amplitude of oscillations
near the discontinuities in the physical quantities and thereby the Rankine-
Hugoniot conditions do not show any special significance in the viscosity
formalism. The system of equations (2.11) - (2.14) and (2.18) are solved
numerically with the known values of β, Γ0, γ, α (obtained previously)
and viscosity K (= 0.003439, 0.0349 and 0.349) [21]. To integrate the set of
non-linear ordinary differential equations without and with viscosity we use
Runge-Kutta fourth order method with small step size. The integration is
carried out in the range, 1 ≤ ξ <∞ Starting the integration with a known
value of β and α (α is evaluated corresponding to every β iteratively),
shown in Tables 3.1 and 3.2, the whole solution procedure is repeated until
the shock conditions are satisfied within the desired accuracy.

4. Results and discussion

In this paper, the entire computational work has been carried out using
MATLAB. Numerical calculations are performed for the values of non-ideal
parameters d = 0.1, 0.3, 0.5, 0.7, 1.0; c0 = 0.02, 0.05; b = 0.0004, 0.001,
0.005, 0.01, 0.03, Γ0 = 1.78 and 2.12 and γ = 1.4, 1.6. The values of simi-
larity exponent α for different values of β in the case of Royce and van der
Waals EOS are listed in Tables 1 and 2 respectively. The variations of non-
dimensional density, shock velocity, pressure and magnetic pressure with ξ
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Γ0 = 1.78 Γ0 = 2.12
d c0 β α β α

0.1 0.02 2.0616 1.32738 1.89160 1.33130
0.05 1.9315 1.28273 1.78867 1.28039

0.3 0.02 2.1284 1.31746 1.93417 1.32320
0.05 1.9829 1.27537 1.82234 1.27433

0.5 0.02 2.2094 1.30624 1.98357 1.31420
0.05 2.0436 1.26708 1.86077 1.26760

0.7 0.02 2.3100 1.29336 2.04184 1.30411
0.05 2.1167 1.25770 1.90523 1.26008

1.0 0.02 2.5206 1.26985 2.15300 1.28631
0.05 2.2613 1.24099 1.98726 1.24694

Table 3.1: Similarity exponent α for Royce EOS when Γ0 = 1.78, 2.12
(Rounded to 5 digits)

a = 0.0025 a = 0.0075
γ = 1.4 γ = 1.6 γ = 1.4 γ = 1.6

b c0 β α β α β α β α

0.0004 0.02 4.76932 1.28941 3.75301 1.30083 5.10068 1.26749 3.85936 1.29204
0.05 3.74624 1.29955 3.16116 1.29411 3.89914 1.28819 3.22478 1.28893

0.001 0.02 4.76157 1.28987 3.74788 1.30124 5.08995 1.26821 3.85327 1.29259
0.05 3.74301 1.29974 3.15846 1.29433 3.89516 1.28848 3.22168 1.28922

0.005 0.02 4.71012 1.29296 3.71393 1.30404 5.01922 1.27301 3.81306 1.29624
0.05 3.72142 1.30106 3.14044 1.29578 3.86863 1.29045 3.20107 1.29113

0.01 0.02 4.64644 1.29694 3.67204 1.30758 4.93287 1.27906 3.76379 1.30084
0.05 3.69427 1.30279 3.11794 1.29765 3.83541 1.29301 3.17541 1.29357

0.03 0.02 4.39947 1.31396 3.51064 1.32218 4.60935 1.30386 3.57709 1.31937
0.05 3.58427 1.31055 3.02839 1.30565 3.70229 1.30415 3.07413 1.30382

Table 3.2: Similarity exponent α for van der Waals EOS, when γ = 1.4, 1.6
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for Royce and van der Waals EOS in the absence of viscosity (K = 0) and
with viscosity (K = 0.00349, 0.0349 and 0.349) are investigated in detail
and are shown in Figures (3) - (10). The results of the study in both EOSs
(Royce and van der Waals) are summarized as follows.

The increase in the non-idealness parameters d, a and b, has effect on the
measure of shock strength β. It is notable that increase in magnitude of β
in case of Royce EOS and decrease in the van der Waals EOS respectively
(see Tables 1 and 2 ).

In the absence of viscosity (K = 0), from Figures 3(a)-3(d) it is observed
that the density, velocity, pressure, and magnetic pressure distributions for
Royce EOS decreases with the increasing values of d (non-idealness pa-
rameter) and β (measure of shock strength). Whereas in the case of van
der Waals EOS, the flow variables density, velocity, and pressure increase
with an increasing values of non-idealness parameter (b), and for decrease
in measure of shock strength (β) as shown in Figures 7(a) - (d). In both
the EOS under consideration the flow variables developed sharp edge pro-
files. This can be attributed to the excitation of oscillations in molecules
through shock front. The change in magnetic pressure is negligible with
change of non-idealness parameter (b). This phenomenon is observed to be
more prominent in case of van der Waals EOS than Royce EOS. Similar
trend in the velocity and density profiles were reported by [11, 16] respec-
tively.

It is very important to observe that in the presence of viscosity formalism
(i.e,K 6= 0) the profiles of the flow field could lead to continuous shock
flow fields in which the sharp edged continuous profiles at the shock wave
reduce and change to smooth curves. Flow variables (physical parameters)
changed rapidly, but smoothly for both EOS. It is to be noted that the ef-
fect on flow variables (physical parameters) in the medium of van der Waals
EOS is appreciable for small values of non-idealness parameter (b), while
for large values of non-idealness parameter (b), it is very small. Similar
trend in the pressure profiles were reported by [5] and density profiles by
[5, 16].

It is observed that in the presence of non-idealness parameters d and b
along with the introduction of artificial viscosity (K = 0.00349) during the
numerical integration process the nature of the profiles of both the EOS
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change from being sharp edged to smooth curves (Figures 4(a) - (d) and
8(a) - (d)). The smoothness in the flow parameters further improved by
increasing the value of viscosity i.e., K = 0.0349 to 0.349 in both the EOS
(Figures 4, 5 (a) - (d) and Figures 9, 10 (a) - (d)). With the non-idealness
parameter d(= 0.1, 0.3, 0.5) and K = 0.0349, from Figures 5(a) - (d) for
Royce EOS the density, velocity, pressure and magnetic profiles gradu-
ally increase with increase in ξ and decrease slowly and become constant.
This behavior continues to remain the same with sharp edges becoming
smoother with increase in the value of K(= 0.349) (Figures 6(a) - (d)).
Thus we conclude that along with the non-idealness parameters and with
the introduction of artificial viscosity (K = 0.00349, 0.0349 and 0.349) the
excitation of oscillations in the molecules dampen and the smoothness in the
profiles increases. With the non-idealness parameter b(= 0.001, 0.005, 0.01)
and K = 0.0349, from Figures 9(a) - (d) for van der Waals EOS the density,
velocity, pressure and magnetic profiles gradually increase with increase in
ξ and slowly and become constant. This behavior remains unaltered with
the value of K > 0.349 (Figures 10(a) - (d)).

It is observed that spread of flow variables increases with increase in the
range of the non-idealness parameter (b) and fixed values of viscosity param-
eter (K). Thus, the thickness of MHD shock front increases with increase
in the value of non-idealness parameter (b). The thickness of MHD shock
wave depends only on its strength and is constant with increase in reduced
distance (ξ) . However, the increase in the thickness of shock front with in-
crease in the non-idealness parameter (b) is more notable for certain range
of values of viscosity parameter (K) for both EOS of Royce and van der
Waals.

Numerical computations revealed that the change in the flow variables with
the non-idealness parameters (d), and (b) is constant and independent of
large values of viscosity parameter (K) for Royce and van der Waals EOS
respectively. Thus artificial viscosity has no effect along a wave front of
constant phase. This is because the velocity component tangential to a
shock front is continuous in the limit of arbitrary grid refinement in this
direction. This type of behavior is called wave front invariance.

In particular, we observed that for smaller values of magnitude of viscosity
parameter (K) the effect on flow variables velocity, pressure are constant
initially with the increase in ξ and decreases more rapidly with increas-
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ing values of non-idealness parameter (b) and fixed values of non-idealness
parameter (a) in the EOS of van der Waals. Also it is observed that the
thickness of MHD shock front is maximum for small values of non-idealness
parameter (b), which increases more with increasing values of non-idealness
(a) and fixed values of non-idealness parameter (b).

We concluded that artificial viscosity could distinguish between shock-wave
and adiabatic compression. It vanishes for uniform compression and rigid
rotation and also vanishes along a surface of constant phase. Along such a
surface the velocity field has a constant magnitude, and is also continuous,
but may vary in direction. Moreover, artificial viscosity produce forces that
go to zero continuously as compression goes to zero for expansion, so that
latter is a reversible process.

4.1. Conclusions

In this work MATLAB is used for the entire computational work and the
values of the non-ideal parameters d = 0.1, 0.3, 0.5, 0.7, 1.0, c0 = 0.02, 0.05;
Γ0 = 1.78, 2.12, γ = 1.4, 1.6;K = 0.00349, 0.0349, 0.349 and b = 0.0004,
0.001, 0.005, 0.01, 0.03 are used. The values of similarity exponent α for
different values of β for Royce EOS and van der Waals EOS are evaluated.
The conclusions of the study are summarized as follows.

(1) It is noted that the increase in the non-idealness parameters d, a and
b, have effect on the measure of shock strength β i.e., increase in
magnitude of β in case of Royce EOS and decrease in the van der
Waals EOS respectively.

(2) In the presence of non-idealness parameters and in the absence of vis-
cosity (K = 0), the density, velocity, pressure, and magnetic pressure
distributions for Royce EOS observed to decrease with the increasing
values of non-idealness parameter (d), and for increasing values of
measure of shock strength (β).

(3) In the case of van der Waals EOS, the flow variables density, veloc-
ity, and pressure increase with an increasing values of non-idealness
parameter (b), and for decrease in measure of shock strength (β).

(4) In both the EOS under consideration it is observed that the flow
variables have sharp edge profiles. The change in magnetic pressure
is negligible in case of van der Waals EOS than Royce EOS.
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(5) It is notable that in the presence of non-idealness parameters d and
b and with the introduction of artificial viscosity
(K = 0.00349, 0.0349, 0, 349) during the numerical integration process
the nature of the profiles of both the EOS change from being sharp
edged to smooth curves.

(6) It is observed that the large value of artificial viscosity has no effect
along a wave front of constant phase because the velocity component
tangential to a shock front is continuous in the limit of arbitrary grid
refinement in this direction.

(7) With the non-idealness parameter b(= 0.001, 0.005, 0.01) and
K = 0.0349, for van der Waals EOS the density, velocity, pressure and
magnetic profiles gradually increases with increase in ξ and slowly and
become constant. This behaviour remains unaltered with the value
of K > 0.349.

(8) We conclude that with the non-idealness parameters and with the
introduction of artificial viscosity (K = 0.00349, 0.0349 and 0.349) the
excitation of oscillations in the molecules dampen and the smoothness
in the profiles increases.

(9) It is observed that spread of flow variables increases with increase
in the range of the non-idealness parameter (b) and fixed values of
viscosity parameter (K).

(10) The thickness of MHD shock front increases with increase in the value
of non-idealness parameter (b). It is observed that the thickness of
MHD shock wave depends only on its strength and is constant with
increase in reduced distance (ξ).

(11) It is observed that for smaller values of viscosity parameter (K) the
effect on flow variables is constant initially with the increase in ξ
and decreases more rapidly with increasing values of non-idealness
parameter (b) and fixed values of non-idealness parameter (a) in the
EOS of van der Waals. Also it is observed that the thickness of MHD
shock front is maximum for small values of non-idealness parameter
(b), which increases more with an increasing values of non-idealness
parameter (a) and fixed values of non-idealness parameter (b).

(12) We conclude that artificial viscosity distinguishes between shock-wave
and adiabatic compression. It vanishes for uniform compression and
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rigid rotation and also vanishes along a surface of constant phase.
Along such a surface the velocity field has a constant magnitude, and
is also continuous, but may vary in direction.
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Figure 1: Graphical approach of 𝑀 𝛽  for Roye’s EOS when Γ0 = 1.78 and various values of 𝑑 

0 1 2 3 4 5 6
-2

-1

0

1

2

3

4

5

     


    

 N

(i) C
0
 = 0.02 and a = 0.0025

 

 

0 1 2 3 4 5 6
-2

0

2

4

6

8

10

12

     


    

 N

(ii) C
0
 = 0.05 and a = 0.0025

 

 

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

     


    

 N

(iii) C
0
 = 0.02 and a = 0.0075

 

 

0 1 2 3 4 5 6
-2

0

2

4

6

8

10

     


    

 N
(iv) C

0
 = 0.05 and a = 0.0075

 

 

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

b = 0.0004

b = 0.001

b = 0.005

b = 0.01

b = 0.03

Figure 2: Graphical approach of 𝑁 𝛽  for van der Wall’s EOS when 𝛾 = 1.4 and various values of 𝑏 
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Figure 3. Profiles for Roye’s EOS when 𝑘 = 0 
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Figure 4: Profiles for Roye’s EOS when 𝑘 = 0.00349 
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Figure 5: Profiles for Roye’s EOS when 𝑘 = 0.0349 

1 2 3 4 5 6 7
2

3

4

5

6

 


 

(a) Density

 

 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

 


 

(b) Velocity

 

 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

 


 F

(c) Pressure

 

 

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

 


 L

(d) Magnetic pressure

 

 

d = 0.1

d = 0.3

d = 0.5

d = 0.1

d = 0.3

d = 0.5

d = 0.1

d = 0.3

d = 0.5

d = 0.1

d = 0.3

d = 0.5

Figure 6: Profiles for Roye’s EOS when 𝑘 = 0.349 
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Figure 8. Profiles for van der Wall’s EOS when 𝑘 = 0.00349 
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Figure 9.  Profiles for van der Wall’s EOS when 𝑘 = 0.0349 
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Figure 10. Profiles for van der Wall’s EOS when 𝑘 = 0.349 




