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Abstract

In this paper, we study isometrically immersed hypersurfaces of

the Euclidean space En+1 satisfying the condition Lr
−→
H r+1 = λ

−→
H r+1

for an integer r ( 0 ≤ r ≤ n − 1), where −→H r+1 is the (r + 1)th
mean curvature vector field on the hypersurface, Lr is the linearized
operator of the first variation of the (r + 1)th mean curvature of hy-
persurface arising from its normal variations. Having assumed that

on a hypersurface x : Mn → En+1, the vector field
−→
H r+1 be an

eigenvector of the operator Lr with a constant real eigenvalue λ, we
show that, Mn has to be an Lr-biharmonic, Lr-1-type, or Lr-null-2-
type hypersurface. Furthermore, we study the above condition on a
well-known family of hypersurfaces, named the weakly convex hyper-
surfaces (i.e. on which principal curvatures are nonnegative). We
prove that, any weakly convex Euclidean hypersurface satisfying the

condition Lr
−→
H r+1 = λ

−→
H r+1 for an integer r ( 0 ≤ r ≤ n − 1), has

constant mean curvature of order (r + 1). As an interesting result,
we have that, the Lr-biharmonicity condition on the weakly convex
Euclidean hypersurfaces implies the r-minimality.
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1. Introduction

The biharmonic functions as the solution of some well-known partial dif-
ferential equations frequently appear in mathematical physics. Especially,
when it becomes very difficult to find harmonic maps, sometimes the bi-
harmonic ones are helpful. From geometric points of view, the role of
biharmonic surfaces in elasticity and fluid mechanics can be considered as
a physical motivation for the theory of biharmonicity. From the differential
geometric points of view, B.Y. Chen (in the eighties) has started to inves-
tigate the properties of biharmonic submanifolds in the Euclidean spaces
(whose position vector filed x :Mn → En+k satisfies the condition∆2x = 0,
where ∆ is the Laplace operator). He introduced some open problems and
conjectures in [5], among them, a longstanding conjecture says that a bi-
harmonic submanifold in a Euclidean space is a minimal one. Chen himself
has proved the conjecture for surfaces in E3. Later on, I. Dimitrić has
verified Chen’s conjecture in several different cases such as special curves,
submanifolds of constant mean curvature and also, hypersurfaces of the
Euclidean spaces with at most two distinct principal curvatures. T. Hasa-
nis and T. Vlachos in [10] proved the conjecture for hypersurfaces in E4.
Having assumed the completeness, Akutagawa and Maeta ([1]) gave an af-
firmative answer to the global version of Chen’s conjecture for biharmonic
submanifolds in Euclidean spaces. Recently, in [8], it is proved that only
biharmonic hypersurfaces in space forms with three distinct principal cur-
vatures are minimal ones. An equivalent condition for the biharmonicity of

an Euclidean hypersurfaces can be expressed as ∆
−→
H = 0, where

−→
H is the

mean curvature vector field on the hypersurface. In 1988, Chen has started

the study of a natural extension of this condition by assuming
−→
H to be an

eigenvector of ∆ associated to an arbitrary constant real eigenvalue. In [6],
Defever has proved that the hypersurfaces of E4 satisfying the condition

∆
−→
H = λ

−→
H have constant mean curvature.

On the other hand, the Laplacian operator∆ can be seen as the first one
of a sequence of n operators L0 = ∆, L1, . . . , Ln−1, where Lr stands for the
linearized operator of the first variation of the (r+1)th mean curvature aris-
ing from normal variations of the hypersurface (see, for instance, [2]). These
operators are given by Lr(f) = tr(Pr ◦∇2f) for any f ∈ C∞(M), where Pr
denotes the rth Newton transformation associated to the second fundamen-
tal from of the hypersurface and ∇2f is the hessian of f . In this paper we
consider the Euclidean hypersurfaces satisfying Lr

−→
Hr+1 = λ

−→
Hr+1, where
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−→
Hr+1 is the (r + 1)th mean curvature vector field the Euclidean hyper-
surface M . From this point of view, as an extension of finite type theory,
S.M.B. Kashani ([11]) has introduced the notion of Lr-finite type hyper-
surface in the Euclidean space, which can be found in the second edition of
Chen’s book [4]. Furthermore, In [3], it is proved that every Lr-biharmonic
hypersurface in Em (for arbitrary integer m > 2) with at most two distinct
principal curvatures is r-minimal, 0 < r < m.

In this paper, we try to classify the Euclidean hypersurfaces satisfying

Lr
−→
Hr+1 = λ

−→
Hr+1. Also, we study this condition together with the weak

convexity. Here are our main results:

Theorem 1.1. If x : Mn → En+1 is an isometric immersion of a hyper-
surface into Euclidean space, then the (r+1)th mean curvature vector field
−→
Hr+1 is an eigenvector of Lr if and only if it satisfies one of the following
families:
(a) Lr-biharmonic hypersurfaces,
(b) Lr-1-type hypersurfaces,
(c) Lr-null-2-type hypersurfaces.

Theorem 1.2. Let x : Mn → En+1 be an isometrically immersed Eu-

clidean hypersurface satisfying Ln−1
−→
Hn = λ

−→
Hn, then Hn is constant.

Moreover, if λ = 0 then Mn is n-minimal or ordinary minimal.

Theorem 1.3. Let x :Mn → En+1 be a weakly convex hypersurface sat-

isfying Lr
−→
Hr+1 = λ

−→
Hr+1. Then the (r+1)th mean curvature is constant.

Theorem 1.4. Assume that x : Mn → En+1 is a weakly convex Lr-
biharmonic hypersurface in En+1, i.e. L2rx = 0. Then Hr+1 = 0

2. Preliminaries

In this section we recall some prerequisites about Newton transformations
Pr and their associated second order differential operators Lr from [2].

Let x : Mn → En+1 be an isometrically immersed hypersurface in the
Euclidean space, with the Gauss map N . We denote by ∇0 and ∇ the Levi-
Civita connections on En+1 andM , respectively, then, the basic Gauss and
Weingarten formulae of the hypersurface are written as

∇0XY = ∇XY+ < SX,Y > N
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and
SX = −∇0XN

for all tangent vector fields X,Y ∈ χ(M), where S : χ(M)→ χ(M) is the
shape operator (or Weingarten endomorphism) of M with respect to the
Gauss map N . As is well known, S defines a self-adjoint linear operator
on each tangent plane TpM , and its eigenvalues λ1(p), . . . , λn(p) are the
principal curvatures of the hypersurface. Associated to the shape operator
there are n algebraic invariants given by

sr(p) = σr(λ1(p), . . . , λn(p)), 1 ≤ r ≤ n,

where σr : R
n → R is the elementary symmetric function in Rn given by

σr(x1, . . . , xn) =
X

i1<···<ir
xi1 . . . xir .

Observe that the characteristic polynomial of S can be written in terms of
the sr as

Qs(t) = det(tI − S) =
nX

r=0

(−1)rsrtn−r,(2.1)

where s0 = 1 by definition. Then for any integer r ∈ {0, 1, . . . , n − 1}, we
introduce rth mean curvature function Hr and (r + 1)th mean curvature

vector field
−→
Hr+1 as follows:Ã

n

r

!
Hr = sr,

−→
Hr+1 = Hr+1N.

In particular, when r = 1

H1 =
1

n

nX
i=1

λi =
1

n
tr(S) = H

is nothing but the mean curvature of M , which is the main extrinsic cur-
vature of the hypersurface. On the other hand, Hn = λ1 · · ·λn is called the
Gauss-Kronecker curvature ofM . A hypersurface with zero (r+1)th mean
curvature in En+1 is called r-minimal (see [14]).

The classical Newton transformations Pr : χ(M) → χ(M) are defined
inductively by

P0 = I and Pr = srI − S ◦ Pr−1 =
Ã
n

r

!
HrI − S ◦ Pr−1
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for every r = 1, . . . , n where I denotes the identity in χ(M).

Equivalently,

Pr =
rX

j=0

(−1)jsr−jSj =
rX

j=0

(−1)j
Ã

n

r − j

!
Hr−jS

j .(2.2)

Note that by the Cayley-Hamilton theorem stating that any operator
T is annihilated by its characteristic polynomial, we have Pn = 0 from (2.1).

Each Pr(p) is also a self-adjoint linear operator on the tangent space
TpM which commutes with S(p). Indeed, S(p) and Pr(p) can be simul-
taneously diagonalized: if {E1, . . . , En} are the eigenvectors of S(p) cor-
responding to the eigenvalues λ1(p), . . . , λn(p), respectively, then they are
also the eigenvectors of Pr(p) with corresponding eigenvalues given by

µi,r(p) =
X

i1<···<ir,ij 6=i
λi1(p) · · ·λir(p),(2.3)

for every 1 ≤ i ≤ n.

Associated to each Newton transformation Pr, we consider the second-
order linear differential operator Lr : C

∞(M)→ C∞(M) given by

Lr(f) = tr(Pr ◦ ∇2f).

Here, ∇2f : χ(M) → χ(M) denotes the self-adjoint linear operator metri-
cally equivalent to the Hessian of f and is given by

< ∇2f(X), Y >=< ∇X(∇f), Y >, X, Y ∈ χ(M).

3. Hypersurfaces in Euclidean spaces satisfying LrHr+1 = λHr+1

First, we recall the definition of an Lr-finite type hypersurface from [11],
which is the basic notion of the paper.

Definition 3.1. An isometrically immersed hypersurface x : Mn → En+1

is said to be of Lr-finite type if x has a finite decomposition x =
Pm

i=0 xi,
for some positive integer m satisfying the condition that Lrxi = κixi, κi ∈
R, 1 ≤ i ≤ m, where xi :M

n → En+1 are smooth maps, 1 ≤ i ≤ m, and x0
is constant. If all κi’s are mutually different,M

n is said to be of Lr-m-type.
An Lr-m-type hypersurface is said to be null if some κi; 1 ≤ i ≤ m, is zero.
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Let x : Mn → En+1 be a connected orientable hypersurface immersed
into Euclidean space, with Gauss map N . Then, as is well known (see [2]),

Lrx = cr
−→
Hr+1,(3.1)

where cr = (n − r)
¡n
r

¢
. This shows, in particular, that Mn is a r-minimal

hypersurface of En+1 if and only if its coordinate functions are Lr-harmonic
(i.e., if they are eigenfunctions with eigenvalue 0):

−→
Hr+1 = 0⇐⇒ Lrx = 0.(3.2)

Condition (3.2) can be generalized in several directions. In [13] and
inspired by Takahashi theorem, the first author jointly with Kashani studied
and classified hypersurfaces in Euclidean spaces for which

Lrx = λx; λ ∈ R,(3.3)

that is, hypersurfaces for which all coordinate functions are eigenfunctions
of Lr with the same eigenvalue λ. In terms of Lr-finite type theory, con-
dition (3.3) characterizes the Lr-1-type hypersurfaces of E

n+1. In [13],
the authors showed that r-minimal hypersurfaces and open parts of hyper-
spheres are the only Lr-1-type Euclidean hypersurfaces.

Most recently, condition (3.2) generalized in another direction by Aminian
and Kashani([3]), they studied the hypersurfaces of En+1 satisfying

Lr
−→
Hr+1 = 0⇐⇒ L2rx = 0.(3.4)

Hypersurfaces of En+1 satisfying (3.4) called Lr-biharmonic hypersur-
faces. Conditions (3.3) and (3.4) may be generalized and combined into
the

Lr
−→
Hr+1 = λ

−→
Hr+1, λ ∈ R.(3.5)

Theorem 1.1 determines hypersurfaces of En+1 which satisfy Lr
−→
Hr+1 =

λ
−→
Hr+1 for some λ ∈ R.
Proof of Theorem 1.1. Under the hypothesis, assume that Lr

−→
Hr+1 =

λ
−→
Hr+1 holds for some real number λ. If λ = 0, thenM

n is a Lr-biharmonic

hypersurface, which gives (a). Now, assume that Lr
−→
Hr+1 = λ

−→
Hr+1 with

λ 6= 0. Taking
xp =

1

λ
Lrx and x0 = x− xp,
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we find

Lrxp =
1

λ
L2rx =

cr
λ
Lr
−→
Hr+1 = cr

−→
Hr+1 = Lrx.

Hence, M is either of Lr-1-type or of Lr-null-2-type, depending on x0
is a constant or non-constant. Conversely, if M is Lr-biharmonic or Lr-
null-2-type hypersurface, then L2rx = λx; λ ∈ R, so formula (3.1) gives the
result. IfM is Lr-1-type hypersurface, then Lrx = λx; λ ∈ R, so by taking
Lr of this equation and using (3.1) we get the result. 2

By formulae in [2] page 122, we have

L2rx = −cr
Ã

n

r + 1

!
Hr+1∇Hr+1 − 2(S ◦ Pr)(∇Hr+1)

-cr
³¡ n

r+1

¢
Hr+1(nH1Hr+1 − (n− r − 1)Hr+2)− LrHr+1

´
N.

(3.6)

By identifying normal and tangent parts of (3.6), one obtains necessary

and sufficient conditions for the (r+1)th mean curvature vector field
−→
Hr+1

be an eigenvector of Lr, namely

LrHr+1 −
Ã

n

r + 1

!
Hr+1(nH1Hr+1 − (n− r − 1)Hr+2) = λHr+1

(3.7)

and

(S ◦ Pr)(∇Hr+1) = −
1

2

Ã
n

r + 1

!
Hr+1∇Hr+1.(3.8)

Since Pn = 0, (n = dimM); S ◦ Pn−1 = HnI, by equations (3.7) and
(3.8), hence one leads to consider the case r = n−1, at first. Here we prove
Theorem 1.2.

Proof of Theorem 1.2. By (3.8) we have

(S ◦ Pn−1)(∇Hn) = −
1

2
Hn∇Hn.
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We know that Pn = 0 , hence S ◦ Pn−1 = HnI. So
3
2∇H2

n = 0. Therefore
Hn is constant.
If λ = 0 and Hn 6= 0, by using (3.7) we obtain that H = 0. 2

4. Weakly convex hypersurfaces in Euclidean spaces

Recently, in [12], the ordinary biharmonicity condition is verified on the
hypersurfaces of space forms of nonpositive sectional curvature with an
additional condition named weak convexity. A hypersurfaces of a space
form is said to be weakly convex if all of its principal curvatures be non-
negative. Here, we study the Lr-biharmonicity condition and in general

Lr
−→
Hr+1 = λ

−→
Hr+1 on weakly convex Euclidean hypersurfaces. We prove

the Theorem 1.3.
Proof of Theorem 1.3.
Define

B := {p ∈M : ∇H2
r+1(p) 6= 0}.

We will prove that B is an empty set by a contradiction argument, and so
(r+1)th mean curvature is constant and we are done. We choose a local or-
thonormal frame {E1, . . . , En} such that S(Ei) = λiEi and Pr(Ei) = µi,rEi,
where λi, s and µi,r, s are eigenvalues of S and Pr, respectively, 1 ≤ i ≤ n,
which are nonnegative by the assumption that Mn is weakly convex.

We have ∇Hr+1 =
nP
i=1

< ∇Hr+1, Ei > Ei, so (3.8) is equivalent to

< ∇Hr+1, Ei >

Ã
λiµi,r +

1

2

Ã
n

r + 1

!
Hr+1

!
= 0, on B,(4.1)

for every i = 1, . . . , n. Therefore, for every i such that < ∇Hr+1, Ei >6= 0
on B we get

(λiµi,r +
1

2

Ã
n

r + 1

!
Hr+1) = 0, on B.

So by the assumption that Mn is weakly convex, we obtain that Hr+1 = 0
locally on B, which is a contradiction with the definition of B. This finishes
the proof. 2

Using the idea of the last proof, we prove Theorem 1.4 as follows.
Proof of Theorem 1.4. By Theorem 1.3, the (r + 1)th mean curvature

Hr+1 is constant. It is always true that

Hi−1Hi+1 ≤ H2
i
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and

H1 ≥ H
1/2
2 ≥ H

1/3
3 ≥ · · · ≥ H

1/i
i (1 ≤ i < n),

provided H1,H2, . . . ,Hi are nonnegative, [page 52 of [9]].
Then, from these above inequalities, we obtain

HHr+1−Hr+2 ≥
Hr+1

Hr
(HHr−Hr+1) ≥

Hr+1

Hr
(HHr−H

r+1
r

r ) ≥ Hr+1(H−H
1
r
r ) ≥ 0.

(4.2)
And the other hand, since Hr+1 is a constant and Mn is Lr-biharmonic,
by using formula (3.7) we get

nHHr+1 = (n− r − 1)Hr+2,

so, when r = n − 1, we have H = 0 therefore from the above inequalities,
we get Hn = 0. When r < n− 1, formula (4.2) and this above equation we
get Hr+1 = 0. 2

References

[1] Akutagawa, K., Maeta, S., Biharmonic properly immersed submani-
folds in Euclidean spaces, Geom. Ded., 164, pp. 351-355, (2013).
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