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Abstract

Let R be the set of real numbers, Y be a Banach space and f :
R→ Y . We prove the Hyers-Ulam stability for the Drygas functional
equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)

for all (x, y) ∈ Ω, where Ω ⊂ R2 is of Lebesgue measure 0.
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1. Introduction

To obtain a Jordan and von Neumann type characterization theorem for the
quasi-inner-product spaces, Drygas [12] considered the functional equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)(1.1)

for all x, y ∈ R. However, the general solution of this functional equation
was given by Ebanks, Kannappan and Sahoo [13] as

f(x) = A(x) +Q(x),

where A : R −→ R is an additive function and Q : R −→ R is a quadratic
function.

In 2002, S. M. Jung and P. K. Sahoo [18] considered the stability prob-
lem of the following functional equation:

f(x+ y) + f(x− y) = 2f(x) + f(y) + g(2y),(1.2)

and as a consequence they obtained the stability theorem of functional
equation of Drygas (1.1) where f and g are functions from a real vector
space X to a Banach space Y .

Here we state a slightly modified version of the results in [18].

Theorem 1.1. Let ε ≥ 0 be fixed and let X be a real vector space and Y
a Banach space. If a function f : X −→ Y satisfies the inequality

kf(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)k ≤ ε,(1.3)

for all x, y ∈ X, then there exists a unique additive mapping A : X −→ Y
and a unique quadratic mapping Q : X −→ Y such that S = A + Q is a
solution of (1.1) such that

kf(x)− S(x)k ≤ 25
3 ε for all x ∈ X.

This result was improved first by Yang in [27] and later by Sikorska in
[26]. In this paper we use the Sikorska’s result as a basic tool in the main
result. So, we need to present the following theorem.

Theorem 1.2. [26] Let (X,+) be a group and Y be a Banach space. Given
an ε > 0, assume that f : X → Y satisfies the condition

kf(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)k ≤ ε, x, y ∈ X.
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Then there exists a uniquely determined function g : X → Y such that

g(x) =
2

9
g(3x)− 1

9
g(−3x), x ∈ X,

and
kf(x)− g(x)k ≤ ε x ∈ X.

Moreover, if X is Abelian, then g satisfies

g(x+ y) + g(x− y) = 2g(x) + g(y) + g(−y), x, y ∈ X.

The stability and solution of the Drygas equation under some additional
conditions was also studied by Forti and Sikorska in [15] in the case when
X and Y are amenable groups.

It is a very natural subject to consider functional equations or inequal-
ities satisfied on restricted domains or satisfied under restricted conditions
[1]-[8], [11], [14]-[17], [19], [20], [23]-[25]. Among the results, S. M. Jung and
J. M. Rassias proved the Hyers-Ulam stability of the quadratic functional
equations in a restricted domain [17], [22].
It is very natural to ask if the restricted domain D := {(x, y) ∈ X2 :
kxk + kyk ≥ d} can be replaced by a much smaller subset Ω ⊂ D, i.e., a
subset of measure 0 in a measure space X. In 2013, J. Chung considered
the stability of the Cauchy functional equation

f(x+ y) = f(x) + f(y)(1.4)

in a set Ω ⊂ {(x, y) ∈ R2 : |x| + |y| ≥ d} of measure m(Ω) = 0 when
f : R −→ R. In 2014, J. Chung and J. M. Rassias proved the stability of
the quadratic functional equation in a set of measure zero.
In this paper, we prove the Hyers-Ulam stability theorem for the Drygas
functional equation (1.1) in Ω ⊂ X2 of Lebesgue measure 0.

2. General approach

Through this paper, we denote by X and Y a real normed space and a real
Banach space. For given x, y, a ∈ X, we define

Px,y,a :=

½
(x+ y, a), (x− y, a), (x, y + a), (x, y − a), (y, a), (−y,−a)

¾
Let Ω ⊂ X2. Throughout this section, we assume that Ω satisfies the
condition: For given x, y ∈ X, there exists a ∈ X such that
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(C) Px,y,a ⊂ Ω.
In the following, we prove the Hyers-Ulam stability theorem for the

Drygas functional equation (1.1) in Ω.

Theorem 2.1. Let ε ≥ 0 be fixed. Suppose that f : X −→ Y satisfies the
functional inequality

kf(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)k ≤ ε(2.1)

for all (x, y) ∈ Ω. Then there exists a unique mapping g : X −→ Y such
that g is a solution of (1.1) and

kf(x)− g(x)k ≤ 3ε(2.2)

for all x ∈ X.

Proof. Let D(x, y) = f(x+ y)+ f(x− y)− 2f(x)− f(y)− f(−y). Since
Ω satisfies (C), for given x, y ∈ X, there exists a ∈ X such that

kD(x+y, a)k ≤ ε, kD(x−y, a)k ≤ ε, kD(x, y+a)k ≤ ε,

kD(x, y−a)k ≤ ε, kD(y, a)k ≤ ε, kD(−y,−a)k ≤ ε.

Thus, using the triangle inequality we have

°°°°f(x+y)+f(x−y)−2f(x)−f(y)−f(−y)°°°° = °°°°− 12D(x+y, a)− 12D(x−y, a)
+
1

2
D(x, y + a) +

1

2
D(x, y − a) +

1

2
D(y, a) +

1

2
D(−y,−a)

°°°° ≤ 3ε
for all x, y ∈ X. Next, according Theorem 1.1, there exists a unique map-
ping g : X −→ Y such that

kf(x)− g(x)k ≤ 3ε

for all x ∈ X. This completes the proof. 2 The following corollary is a
particular case of Theorem 2.1, where ε = 0.

Corollary 2.2. Suppose that f : X −→ Y satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)(2.3)

for all (x, y) ∈ Ω. Then, (2.3) holds for all x, y ∈ X.
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3. Construction of a set Ω of Lebesgue measure zero

In this section we construct a set Ω of measure zero satisfying the condition
(C) when X = R. From now on,we identify R2 with C. The following
lemma is a crucial key of our construction [[22], Theorem 1.6].

Lemma 3.1. The set R of real numbers can be partitioned as R = F ∪K
where F is of first Baire category, i.e., F is a countable union of nowhere
dense subsets of R, and K is of Lebesgue measure 0.

The following lemma was proved by J. Chung and J. M. Rassias in [9] and
[10].

Lemma 3.2. LetK be a subset ofR of measure 0 such thatKc := R\K is
of first Baire category. Then, for any countable subsets U ⊂ R, V ⊂ R\{0}
and M > 0, there exists a ≥M such that

U + aV = {u+ av : u ∈ U, v ∈ V } ⊂ K.(3.1)

In the following theorem, we give the construction of a set Ω of Lebesgue
measure zero.

Theorem 3.3. Let Ω = e−
π
6
i(K ×K) be the rotation of K ×K by −π

6 ,
i.e.,

Ω =

½
(p, q) ∈ R2 :

√
3

2
p− 1

2
q ∈ K,

1

2
p+

√
3

2
q ∈ K

¾
.(3.2)

Then Ω satisfies the condition (C) which has two-dimensional Lebesgue
measure 0.

Proof. By the construction of Ω, the condition (C) is equivalent to the
condition that for every x, y ∈ R, there exists a ∈ R such that

e−
π
6
iPx,y,a ⊂ K ×K.(3.3)

The inclusion (3.3) is equivalent to

Sx,y,a :=

½√
3

2
u− 1

2
v,
1

2
u+

√
3

2
v : (u, v) ∈ Px,y,a

¾
⊂ K.(3.4)

It is easy to check that the set Sx,y,a is contained in a set of form U + aV ,
where

U =

(√
3

2
(x+ y),

√
3

2
(x− y),

1

2
(x+ y),

1

2
(x− y), (

√
3

2
x− 1

2
y), (

1

2
x+

√
3

2
y),
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√
3

2
y,−
√
3

2
y,
1

2
y,−1

2
y

)
,

V =

(
1

2
,−1
2
,

√
3

2
,−
√
3

2

)
.

By Lemma 3.2, for given x, y ∈ R andM > 0 there exists a ≥M such that

Sx,y,a ⊂ U + aV ⊂ K.(3.5)

Thus, Ω satisfies (C). This completes the proof. 2

Corollary 3.4. Suppose that f : R −→ R satisfies

|f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)| −→ 0(3.6)

as (x, y) ∈ Ω, |x|+ |y| −→∞. Then f is a Drygas mapping.

Proof. The condition (3.6) implies that for each n ∈ N, there exists
dn > 0 such that

|f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)| ≤ 1

n
(3.7)

for all (x, y) ∈ Ωdn := {(x, y) ∈ Ω : |x|+ |y| ≥ dn}. In view of the proof of
Theorem 2.1, the inclusion (3.5) implies that for every x, y ∈ R andM > 0
there exists a ≥M such that

Px,y,a ⊂ Ω.(3.8)

For given x, y ∈ R if we take M = dn + |x| + |y| and if a ≥ M , then we
have

Px,y,a ⊂ {(p, q) : |x|+ |y| ≥ dn}.(3.9)

It follows from (3.8) and (3.9) that for every x, y ∈ R there exists a ∈ R
such that

Px,y,a ⊂ Ωdn .(3.10)

So, Ωdn satisfies the condition (C). Thus, by Theorem 2.1, there exists a
unique additive mapping A : R −→ R and a unique quadratic mapping
Q : R −→ R such that

kf(x)−An(x)−Qn(x)k ≤
25

n
(3.11)
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for all x ∈ R. Replacing n ∈ N by m ∈ N in (3.11) and using the triangle
inequality we have

–An(x)−Am(x)+Qn(x)−Qm(x)| ≤ |An(x)+Qn(x)−f(x)|+ |f(x)−
Am(x)−Qm(x)|
≤ 25

n +
25
m ≤ 50

for all m,n ∈ N and x ∈ R. Hence, An +Qn − Am −Qm is bounded.
So, we get that

An +Qn(x) = Am +Qm(x)

for all m,n ∈ N. Then, An = Am and Qn = Qm for all m,n ∈ N. Now,
letting n −→∞ in (3.11) we get the result. 2
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