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Abstract

The multiplicative Jordan decomposition of a linear isomorphism

of Rn into its elliptic, hyperbolic and unipotent components is well

know. One can define an abstract Jordan decomposition of an element

of a Lie group by taking the Jordan decomposition of its adjoint map.

For real algebraic Lie groups, some results of Mostow implies that

the usual multiplicative Jordan decomposition coincides with the ab-

stract Jordan decomposition. Here, for a semisimple linear Lie group,

we obtain this fact by elementary methods. We also obtain the cor-

responding results for semisimple linear Lie algebras. Complete and

simple proofs of these facts are lacking in the literature, so that the

main purpose of this article is to fill this gap.
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1. Introduction

The multiplicative Jordan decomposition of a linear isomorphism of Rn

into its elliptic, hyperbolic and unipotent components is well know (see
Section IX.7, p.430 of [2]). For a Lie group G, one can define an abstract
Jordan decomposition of g ∈ G by taking the Jordan decomposition of
the adjoint map Ad(g). For real algebraic Lie groups, some results of
Mostow (see Section 3 of [6]) implies that the usual multiplicative Jordan
decomposition coincides with the abstract Jordan decomposition. Here, for
a semisimple linear Lie group, we obtain this fact by elementary methods.
We also obtain the corresponding results for semisimple linear Lie algebras.
Complete and simple proofs of these facts are lacking in the literature, so
that the main purpose of this article is to fill this gap. As a byproduct we
obtain that a semisimple linear Lie group is the connected component of
the identity of an algebraic group and hence closed. Our interest in this
subject arose in the article [1], where we related the Jordan decomposition
with the dynamics on the flag manifold.

We now describe the structure of the present article. Let V be a finite
dimensional real vector space and T a linear map of V . The most usual
Jordan decomposition writes T as a commuting sum of a semisimple and
a nilpotent maps. They are called the semisimple and nilpotent additive
Jordan components of T and are given as polynomials in T (see Theorem 13,
p.267 of [3] or Proposition 4.2, p.17 of [4]). One can go further and write the
semisimple component as a commuting sum of an elliptic and a hyperbolic
components which also commutes with the nilpotent component. When T is
invertible, there is an analogous multiplicative Jordan decomposition which
writes T as a commuting product of an elliptic, a hyperbolic and a unipotent
components (see Section IX.7, p.430 of [2]). In Section 2, our main results
show that the elliptic and hyperbolic components of both additive and
multiplicative Jordan decomposition of T are given as polynomials in T
and the same happens for the unipotent component.

One can extend these decompositions to the context of semisimple Lie
algebras and groups in the following manner (see [2, 7, 8, 9]). Let g be
a semisimple Lie algebra and G be a Lie group with Lie algebra g. Let
ad : g → gl(g) be the adjoint representation of g and let Ad : G → Gl(g)
be the adjoint representation of G. For X ∈ g we say that X = E+H+N
is an abstract Jordan decomposition of X if E,H,N ∈ g commute, ad(E)
is additively elliptic, ad(H) is additively hyperbolic and ad(N) is nilpotent.
For g ∈ G we say that g = ehu is an abstract Jordan decomposition of g
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if e, h, u ∈ G commute, Ad(e) is elliptic, Ad(h) is hyperbolic and Ad(u)
is unipotent. In Section 3, by using the results of Section 2, we provide
a simple proof that, for an element X of a linear semisimple Lie algebra
g (or g of a linear semisimple connected Lie group G), its three Jordan
components lie again in the algebra (in the group). This fact implies that,
for this class of algebras and groups, the usual linear Jordan decomposition
coincides with the abstract Jordan decomposition. For real algebraic Lie
groups, this fact was previously obtained by Mostow (see Section 3 of [6]).
Here we obtain this fact by elementary methods and, in particular, we
obtain that a linear semisimple connected Lie group G is the connected
component of the identity of an algebraic group (see Proposition 3.5).

2. General linear algebra and group

We first introduce some preliminary definitions and notations. Defining the
complex vector space VC = {u+ iv : u, v ∈ V } we have that V ⊂ VC. For
X ∈ gl(V ) we put X(u+ iv) = Xu+ iXv so that gl(V ) ⊂ gl(VC). Since
the determinant of g ∈ Gl(V ) seen as an operator of V or VC coincide we
also have that Gl(V ) ⊂ Gl(VC). Let X ∈ gl(V ). As usual, we say that X
is semisimple if it is diagonalizable in VC and that X is nilpotent if there
exists n ∈ N such that Xn = 0. We say that X is elliptic (hyperbolic) in
the additive case if it is semisimple and its eigenvalues are purely imaginary
(real). Now let g ∈ Gl(V ). We say that g is elliptic (hyperbolic) in the
multiplicative case if it is semisimple and its eigenvalues have absolute
value equal to one (are real positive). We say that g is unipotent if g− I is
nilpotent. The proof of the following result is straightforward.

Lemma 2.1. Let X,Y be two commuting linear maps of V .

1. If both X,Y are semisimple, elliptic or hyperbolic, then X+Y in the
additive case (or XY in the multiplicative case) is semisimple, elliptic
or hyperbolic.

2. If both X,Y are nilpotent (or unipotent), then X+Y is nilpotent (or
XY is unipotent).

3. If Y is simultaneously semisimple and nilpotent (or semisimple and
unipotent) then Y = 0 (or Y = I).

4. If Y is elliptic and hyperbolic, then Y = 0 in the additive case (or
Y = I in the multiplicative case).
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Denote by F[x] the ring of the polynomials in x with coefficients in
F = C or R. We denote by p(x) the polynomial whose coefficients are the
conjugate of the coefficients of p(x) ∈ F[x]. Thus p(x) ∈R[x] if and only if
p(x) = p(x). Let X ∈ gl(V ) and consider the following ring homomorphism

F[x]→ gl(V ), p(x) �→ p(X),

where p(x) = a0+a1x+· · ·+amxm and p(X) = a0I+a1X+· · ·+amXm. We
denote by F(X) the image of this homomorphism. From now on, we will
denote simply by p both p(x) and p(X). It will be clear from the context
which polynomial is considered. The kernel of the above homomorphism
is the principal ideal generated by pX , the so called minimal polynomial of
X. Since X ∈ gl(V ), it follows that pX ∈ R[x]. Since pX ∈ R[x] we can
factor it over C as

pX = p1p1 · · · plplpl+1 · · · pn
where pk(x) = (x − λk)mk , λk has imaginary part for k = 1, . . . , l and λk
is real for k = l + 1, . . . , n. Note that, since the characteristic polynomial
of X divides pX(x), we have that the eigenvalues of X are λk, λk, for
k = 1, . . . , n.

Lemma 2.2. There exist polynomials πk, where 1 ≤ k ≤ n, and l such
that

(i) πk ∈ C[x], for 1 ≤ k ≤ l, and πk ∈R[x], for l + 1 ≤ k ≤ n.

(ii) If r 
= s then πrπs, πrπs and (x− λr)mrπr are multiples of pX . We
also have that πrπr is multiple of pX for r = 1, . . . , l.

(iii) 1 =
∑l
k=1(πk + πk) +

∑n
k=l+1 πk.

Proof: For 1 ≤ k ≤ l, we define the polynomials

qk = p1p1 · · · pkp̂k · · · plplpl+1 · · · pn

whose conjugates are given by

qk = p1p1 · · · p̂kpk · · · plplpl+1 · · · pn,

where the factor below ̂ is omitted. For l + 1 ≤ k ≤ n, we define the
polynomials

qk = p1p1 · · · plplpl+1 · · · p̂k · · · pn.
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Since the constant polynomials are the only polynomials dividing all qk and
qk, where 1 ≤ k ≤ n, it follows that the ideal generated by them is all of
C[x]. Thus there exists polynomials ak, bk and ck such that

1 =
l∑

k=1

(akqk + bkqk) +
n∑

k=l+1

ckqk.

Adding the above equation with its conjugate and dividing by two, we can
assume that bk = ak and ck = ck. Defining the polynomials πk = akqk,
k = 1, . . . , l, and πk = bkqk, k = l + 1, . . . , n we obtain the result.

Lemma 2.3. Applying the above polynomials to X we have the following.

(i) I =
∑l
k=1(πk + πk) +

∑n
k=l+1 πk.

(ii) If r 
= s, then πrπs = 0, πrπs = 0 and (X − λr)mrπr = 0. We also
have that πrπr = 0, for r = 1, . . . , l.

(iii) For r = 1, . . . , n we have π2r = πr.

Proof: Items (i) and (ii) are immediate from the previous lemma and the
definition of the minimal polynomial. For item (iii), apply πk to both sides
of item (i) and use item (ii).

Now we make the following remarks. By items (i) and (ii) of the above
lemma we have that VC is the direct sum of the images of the projections
πk, πk. Also, consider the linear maps

Tr =
l∑

k=1

(arkπk + brkπk) +
n∑

k=l+1

crkπk,

where r = 1, 2 and ark, brk, crk are polynomials in X. Again by the above
lemma, we have that

T1T2 =
l∑

k=1

(a1ka2kπk + b1kb2kπk) +
n∑

k=l+1

c1kc2kπk.

We now obtain the description of the additive Jordan components as poly-
nomials.
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Theorem 2.4. Let X ∈ gl(V ) and put λk = uk + ivk. Then X can be
written uniquely as a commutative sumX = E+H+N , where E is elliptic,
H is hyperbolic and N is nilpotent and they are given by the following real
polynomials

(i) E =
∑l
k=1(ivkπk + ivkπk).

(ii) H =
∑l
k=1 uk(πk + πk) +

∑n
k=l+1 ukπk.

(iii) N =
∑l
k=1((X − λk)πk + (X − λk)πk) +

∑n
k=l+1(X − λk)πk.

Proof: Let S =
∑l
k=1(λkπk+λkπk)+

∑n
k=l+1 λkπk. Note that N = X−S

and that S = E + H and thus X = E + H + N . Using the remarks
after Lemma 2.3, it is immediate that S is semisimple, E is elliptic, H is
hyperbolic and that

Nm =
l∑

k=1

((X − λk)mπk + (X − λk)mπk) +
n∑

k=l+1

(X − λk)mπk.

Taking m = maxk{mk}, by item (ii) of Lemma 2.3, it follows that Nm = 0.
For the uniqueness, consider the commuting sum X = Ẽ+H̃+ Ñ , with

Ẽ elliptic, H̃ hyperbolic and Ñ nilpotent. Define S̃ = Ẽ + H̃. Since Ẽ
and H̃ commute, by Lemma 2.1, we have that S̃ is semisimple. Since E,
H, N are polynomials in X, they commute with Ẽ, H̃, Ñ . Using that
X = S +N = S̃ + Ñ , by Lemma 2.1, we have that S − S̃ = Ñ −N is both
semisimple and nilpotent and thus S = S̃ and Ñ = N . Now using that
S = E+H = Ẽ+ H̃, by Lemma 2.1, we have that E− Ẽ = H̃ −H is both
elliptic and hyperbolic and thus E = Ẽ and H̃ = H.

When X is invertible, we denote it by g ∈ Gl(V ) with eigenvalues λk.
The following result provides the description of the multiplicative Jordan
components as polynomials.

Theorem 2.5. Let g ∈ Gl(V ) and put λk = uk + ivk. Then g can be
written uniquely as a commutative product g = ehu, where e is elliptic, h
is hyperbolic and u is unipotent and they are given by the following real
polynomials

(i) e =
∑l
k=1 |λk|−1(λkπk + λkπk) +

∑n
k=l+1 |λk|−1λkπk.

(ii) h =
∑l
k=1 |λk|(πk + πk) +

∑n
k=l+1 |λk|πk.



A note on the Jordan decomposition 129

(iii) u = I +N
(∑l

k=1(λ
−1
k πk + λ

−1
k πk) +

∑n
k=l+1 λ

−1
k πk

)
,

where N is the nilpotent component of g. Furthermore, we have that
h = eH , where

H =
l∑

k=1

log(|λk|)(πk + πk) +
n∑

k=l+1

log(|λk|)πk.

Proof: By the proof of Theorem 2.4 we have that g = S+N . Noting that
u = I+NS−1, we have that Su = S+N = g. It is immediate that S = eh,
and thus g = ehu. Since S, N commute and N is nilpotent, it follows that
u is unipotent. Using the remarks after Lemma 2.3, it is immediate that e
is elliptic, that h is hyperbolic and that h = eH .

For the uniqueness, consider the commuting product g = ẽh̃ũ, with
ẽ elliptic, h̃ hyperbolic and ũ unipotent. Define S̃ = ẽh̃. Since ẽ and h̃
commute, by Lemma 2.1, we have that S̃ is semisimple. Since e, h, u are
polynomials in g, they commute with ẽ, h̃, ũ. Using that g = Su = S̃ũ, by
Lemma 2.1, we have that S̃−1S = ũu−1 is both semisimple and unipotent
and thus S = S̃ and ũ = u. Now using that S = eh = ẽh̃, by Lemma 2.1,
we have that ẽ−1e = h̃h−1 is both elliptic and hyperbolic and thus e = ẽ
and h̃ = h.

Example: In this example we display polynomials which give the additive
and multiplicative Jordan components of the invertible linear map

g =




1 1 0 0

−1 1 0 0

0 0 2 1

0 0 0 2



,

which has minimal polynomial pg(x) = (x−(1+ i))(x− (1− i))(x−2)2. By
using the Euclidean algorithm, we obtain the following polynomials which
satisfy Lemma 2.2

π1(x) =
1

4
(x− 1 + i) (x− 2)2 , π2(x) = −

1

2
(x− 3)

(
x2 − 2x+ 2

)
.

Applying Theorem 2.4 we obtain, after factorization,

E(x) = −1
2
(x− 2)2 , H(x) = −1

2
x3 +

5

2
x2 − 4x+ 4.
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Applying Theorem 2.5 we obtain, after factorization,

e(x) =
1

4

(√
2− 2

)(
x3 + (

√
2− 4)x2 + 4(1−

√
2)x+ 2

√
2− 4

)
,

h(x) =
1

2

(√
2− 2

)(
x3 − 5x2 + 8x− 8− 2

√
2
)
,

u(x) =
1

4
x
(
x2 − 4x+ 6

)
.

One can use a mathematical software package to check that these poly-
nomials give the correct additive and multiplicative Jordan components of
g.

3. Semisimple linear Lie algebras and groups

In this section we will obtain the Jordan decomposition in semisimple linear
Lie algebras and groups. When g = gl(V ) and G = Gl(V ), we have that
ad(X)Y = XY − Y X and Ad(g)X = gXg−1.

3.1. Additive Jordan decomposition

Let g ⊂ gl(V ) be a semisimple Lie algebra of gl(V ). Denote by n(g) the
normalizer of g in gl(V ), that is,

n(g) = {X ∈ gl(V ) : ad(X)g ⊂ g}.

By definition g is an ideal in n(g).
Consider the representation ρ : g→ gl(VC), of g in VC, given by

ρ(X)(v) = Xv,(3.1)

for allX ∈ g and v ∈ VC. Since g is semisimple and VC has finite dimension
we have, by the Weyl decomposition theorem (Theorem 3.13.1, p.222 of [7]),
that there exist subspaces V1, . . . , Vm such that

VC = V1 ⊕ · · · ⊕ Vm(3.2)

and each Vk, 1 ≤ k ≤ m is invariant and irreducible by ρ. For each
k = 1, . . . ,m, denote by gk the subalgebra of gl(V ) given by

gk = {X ∈ gl(V ) : X(Vk) ⊂ Vk and tr(X|Vk) = 0}.(3.3)
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Since g is semisimple it follows that g ⊂ gk. Let g̃ the following subalgebra
of gl(V ):

g̃ = n(g) ∩ g1 ∩ · · · ∩ gm.(3.4)

We have that g is an ideal in g̃.
The following result is an adaptation for real semisimple Lie algebras

of proof of Theorem 6.4 , p.29 of [4].

Lemma 3.1. With the above notations, we have that g = g̃.

Proof: Consider the representation ρ̃ : g → gl(g̃) of g in g̃, given by
ρ̃(X)(Y ) = ad(X)Y , where X ∈ g and Y ∈ g̃. By the Weyl decomposition
theorem (Theorem 3.13.1, p.222 of [7]), there exists a subspace h ⊂ g̃

invariant by ρ̃ such that
g̃ = g⊕ h.

Since h is invariant by ρ̃ and g is an ideal of g̃, it follows that ad(X)Y ∈
g ∩ h = {0}, for all X ∈ g and Y ∈ h.

Let Y ∈ h. For each 1 ≤ k ≤ m and v ∈ Vk we have that

ρ(X)Y (v) = XY (v) = Y X(v) = Y ρ(X)v

for allX ∈ g. By the Schur lemma, there exists c ∈ C such that Y |Vk = cIk,
where Ik is the identity of Vk. We have that

0 = tr(Y |Vk) = tr(cIk) = cdimVk,

so that c = 0 and Y |Vk = 0. Since k is arbitrary, Y = 0. It follows that
h = {0}, that is, g̃ = g.

Lemma 3.2. We have the following.

1. If E ∈ gl(V ) is elliptic then ad(E) is elliptic.

2. If H ∈ gl(V ) is hyperbolic then ad(H) is hyperbolic.

3. If N ∈ gl(V ) is nilpotent, then ad(N) is nilpotent.

Proof: For items 1 and 2, let {v1, . . . , vn} be a basis of VC given by
eigenvectors of a semisimple S ∈ gl(V ) . Let λ1, . . . , λn be the respec-
tive eigenvalues. Consider the basis of gl(VC) given by Ers : VC → VC,
Ers(vk) = δjkvr, where δjk is the Kronecker delta. We have that

SErsvk = Sδjkvr = λrδjkvr = λrErsvk
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and thus
ad(S)Ersvk = (λr − λs)Ersvk,

which shows that Ers is an eigenvector of ad(S) associated to the eigenvalue
λr − λs. It is then immediate that ad(S) is elliptic (hyperbolic) when S is
elliptic (hyperbolic).

For the last item consider the linear map LN : gl(V ) → gl(V ) given
by LN(Y ) = NY , Y ∈ gl(V ). Since LnN(Y ) = N

nY , it follows that LN
is nilpotent. Consider also the linear map RN : gl(V ) → gl(V ) given by
RN(Y ) = Y N , Y ∈ gl(V ). Since RnN (Y ) = Y N

n, it follows that RN is also
nilpotent. Noting that LN and RN commute, and that ad(N) = LN −RN ,
it follows that ad(N) is nilpotent.

We now obtain the main result of this subsection.

Theorem 3.3. Let g be a semisimple Lie subalgebra of gl(V ) and X ∈ g.
The additive Jordan components of X lie in g.

Proof: LetX = E+H+N be the additive Jordan decomposition of X. By
Lemma 3.2 we have that ad(X) = ad(E) + ad(H) + ad(N) is the additive
Jordan decomposition of ad(X). By Theorem 2.4 it follows that g is in-
variant by the Jordan components of ad(X), since they are polynomials in
ad(X). Thus, the Jordan components of X lie in n(g). Again by Theorem
2.4 it follows that Vk is invariant by the Jordan components of X, since
they are polynomials inX. Since N is nilpotent, then N |Vk is also nilpotent
so that tr(N |Vk) = 0. Since E is elliptic, then E|Vk is also elliptic so that
tr(E|Vk) is both real and pure imaginary and thus vanishes. It follows that
tr(H|Vk) = 0, since tr(X|Vk) = 0. Hence the Jordan components of X lie
in gk, for each k = 1, . . . ,m, showing that they lie in g̃. The result now
follows from Lemma 3.1.

Using the previous result and Lemma 3.2 we have the next result, which
proves also the existence of the abstract Jordan decomposition in g.

Corollary 3.4. If g is a semisimple Lie subalgebra of gl(V ) then the ab-
stract and usual Jordan decompositions coincide.

3.2. Multiplicative Jordan decomposition

Let g be a semisimple Lie subalgebra of gl(V ) and G a connected Lie
subgroup of Gl(V ) with Lie algebra g. We denote by N(g) the normalizer
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of g in Gl(V ) which is given by

N(g) = {g ∈ Gl(V ) : Ad(g)g = g}.

We have that G is a normal subgroup of N(g) since, by the connectedness
of G, N(g) is the normalizer of G in Gl(V ).

Consider the representation ρ : g → gl(VC) given in (3.1) and the
decomposition VC = V1 ⊕ · · · ⊕ Vm given in (3.2), such that each Vk is
invariant and irreducible by ρ, 1 ≤ k ≤ m. For each k = 1, . . . ,m, denote
by Gk the subgroup of Gl(V ) given by

Gk = {g ∈ Gl(V ) : g(Vk) ⊂ Vk e det(g|Vk) = 1}.

Since G is connected and semisimple it follows that G ⊂ Gk. Consider the
subgroup of Gl(V ) given by

G̃ = N(g) ∩G1 ∩ · · · ∩Gm.

Proposition 3.5. LetG be a connected semisimple Lie subgroup ofGl(V ).
With the above notations, G̃ is algebraic and its connected component

of the identity is G. In particular, G is closed.

Proof: We first show that G̃ is algebraic. We start by showing that N(g)
is algebraic. Let g be given, as a subspace, by the kernel of a T ∈ gl(gl(V )).
Consider g ∈ Gl(V ), then it is well known ĝ = g−1 det(g) is a polynomial
in g. Then condition that Ad(g)g = g is clearly seen to be equivalent to
T (gXĝ) = 0, for all X ∈ g. Thus, taking a basis {X1, . . . , Xn} of g, the
condition Ad(g)g = g is equivalent to the algebraic condition T (gXrĝ) = 0,
for r = 1, . . . ,m. To show that each Gk is algebraic we choose a basis of
{v1, . . . , vn} of VC such that {v1, . . . , vl} is a basis of Vk, l ≤ n. Denote by
zrs(g) the (r, s)-entry of the matrix of g ∈ Gl(V ) in this basis. It follows
that gVk ⊂ Vk if and only if zrs(g) = 0 for r > l, s ≤ l, and in this case we
have

det(g|Vk) = det ((zrs(g))1≤r,s≤l) .

Now, since G is connected, it is enough to show that its Lie algebra
coincides with the Lie algebra of G̃. Since the Lie algebra of N(g) is n(g)
and the Lie algebra of Gk is the subalgebra gk given in (3.3), we have that
the Lie algebra of G̃ is given by (3.4). The result now follows by Lema 3.1.
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Lemma 3.6. We have the following.

1. If e ∈ Gl(V ) is elliptic then Ad(e) is elliptic.

2. If h ∈ Gl(V ) is hyperbolic then Ad(h) is hyperbolic.

3. If u ∈ Gl(V ) is unipotent, then Ad(u) is unipotent.

Proof: For items 1 and 2, let {v1, . . . , vn} be a basis of VC given by
eigenvectors of a semisimple s ∈ Gl(V ). Let λ1, . . . , λn be the respec-
tive eigenvalues. Consider the basis of gl(VC) given by Ers : VC → VC,
Ers(vk) = δjkvr, where δjk is the Kronecker delta. We have that

Ad(s)Ersvk = sErss
−1vk = sErsλ

−1
k vk = λ

−1
k δjksvr

= λrλ
−1
s δjkvr = λrλ

−1
s Ersvk.

which shows that Ers is an eigenvector of Ad(s) associated to the eigenvalue
λrλ

−1
s . It is then immediate that Ad(s) is elliptic (hyperbolic) when s is

elliptic (hyperbolic).
For the last item, by Lemma IX.7.3 p.431 of [2], we have that u = eN

where N ∈ g is nilpotent. Since Ad(u) = ead(N) the result follows from the
last item of Lemma 3.2.

We now obtain the principal result of this subsection.

Theorem 3.7. Let G be a connected semisimple Lie subgroup of Gl(V )
and g ∈ G. Then the multiplicative Jordan components of g lie in G.

Proof: Let g = ehu be the multiplicative Jordan decomposition of g. By
Lemma 3.6 we have that Ad(g) = Ad(e)Ad(h)Ad(u) is the multiplicative
Jordan decomposition of Ad(g). By Theorem 2.5 it follows that g is in-
variant by the Jordan components of Ad(g), since they are polynomials in
Ad(g). Thus, the Jordan components of g lie in N(g). Again by Theorem
2.5 it follows that Vk is invariant by the Jordan components of g, since
they are polynomials in g. Since u is unipotent, then u|Vk is also unipotent
so that det(u|Vk) = 1. Since e is elliptic and h is hyperbolic, then e|Vk is
also elliptic and h|Vk is also hyperbolic so that det(e|Vk) is real and have
absolute value equal to one and det(h|Vk) is positive real. It follows that
det(e|Vk) = det(h|Vk) = 1, since det(g|Vk) = 1. Hence the Jordan compo-
nents of g lie in Gk, for each k = 1, . . . ,m, showing that they lie in G̃. By
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Proposition 3.5, it remains to show that the Jordan components of g lie in
the connected component of the identity of G̃.

For the hyperbolic component, by Theorem 2.5, we have that h = eH ,
where H ∈ gl(V ) is hyperbolic. Let {v1, . . . , vl} be a basis of V such that
Hvr = λrvr. We have that hnvr = enλrvr, for all n ∈ Z. In this basis,
let {Qs} be the set of polynomials defining G̃. Let Ps be the polynomial
obtained by restricting Qs to the diagonal matrices in this basis. Since
hn ∈ G̃, we have that Ps(e

nλ1 , . . . , enλl) = 0, for all n ∈ Z. By Lemma
1.142 p.116 of [5], we have that Ps(e

tλ1 , . . . , etλl) = 0, for all t ∈ R. This
shows that etH ∈ G̃, for all t ∈ R, so that h lies in the connected component
of identity of G̃. For the unipotent component, by Lemma IX.7.3 p.431 of
[2], we have that u = eN , where N ∈ gl(V ) is nilpotent. Choosing a basis of
V , we have that the (r, s)-entry of un is a polynomial prs(n) in n ∈ Z, since
un = enN and N is nilpotent. We have that qj(n) = Qj((prs(n))1≤r,s≤l) is

also a polynomial in n. Since un ∈ G̃, we have that qj(n) = 0, for all n ∈ Z,
which implies that qj(t) = 0, for all t ∈ R. This shows that etN ∈ G̃, for
all t ∈ R, so that u lies in the connected component of identity of G̃.

Since g is already in G and g = ehu it follows that e lies in G, which
completes the proof.

Using the previous result and Lemma 3.6 we have the next result, which
proves also the existence of the abstract Jordan decomposition in G.

Corollary 3.8. If G is a connected semisimple Lie subgroup of Gl(V ) then
the abstract and usual Jordan decompositions coincide.
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