Proyecciones Journal of Mathematics Vol. 35, N^o 2, pp. 213-223, June 2016. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172016000200006

On Jensen's and the quadratic functional equations with involutions

B. Fadli A. Chahbi Iz. El-Fassi and S. Kabbaj

IBN Tofail University, Morocco Received: March 2016. Accepted: May 2016

Abstract

We determine the solutions $f: S \to H$ of the generalized Jensen's functional equation

$$f(x + \sigma(y)) + f(x + \tau(y)) = 2f(x), \quad x, y \in S,$$

and the solutions $f: S \to H$ of the generalized quadratic functional equation

$$f(x+\sigma(y))+f(x+\tau(y))=2f(x)+2f(y),\quad x,y\in S,$$

where S is a commutative semigroup, H is an abelian group (2-torsion free in the first equation and uniquely 2-divisible in the second) and σ, τ are two involutions of S.

Subjclass [2010] : *Primary 39B52.*

Keywords: Functional equation, Jensen, quadratic, additive function, semigroup.

1. Set up, notation and terminology

Throughout the paper we work in the following framework and with the following notation and terminology. We use it without explicit mentioning. S is a commutative semigroup [a set equipped with an associative composition rule $(x, y) \mapsto x + y$], $\sigma, \tau : S \to S$ are two homomorphisms satisfying $\sigma \circ \sigma = \tau \circ \tau = id$, and (H, +) denotes an abelian group with neutral element 0. We say that H is 2-torsion free if $[h \in H]$ and $[2h = 0] \Rightarrow h = 0$.

H is said to be uniquely 2-divisible if for any $h \in H$ the equation 2x = h has exactly one solution $x \in H$.

A function $A: S \to H$ is said to be additive if A(x+y) = A(x) + A(y) for all $x, y \in S$.

We recall that the Cauchy difference Cf of a function $f: S \to H$ is defined by

$$Cf(x,y) := f(x+y) - f(x) - f(y), \quad x, y \in S.$$

2. Introduction

In [16], Sinopoulos determined the general solution $f: S \to H$, where H is 2-torsion free, of Jensen's functional equation

$$(2.1) f(x+y) + f(x+\tau(y)) = 2f(x), \quad x, y \in S,$$

and the general solution $f: S \to H$, where H is uniquely 2-divisible, of the quadratic functional equation

$$(2.2) f(x+y) + f(x+\tau(y)) = 2f(x) + 2f(y), x, y \in S.$$

Some information, applications and numerous references concerning (2.1) and (2.2) and their further generalizations can be found, e.g., in [3-8, 10-14, 17, 18]. For more details, we refer to the monographs [9, 15, 19].

The purpose of the present paper is to solve the following functional equations

$$(2.3) f(x + \sigma(y)) + f(x + \tau(y)) = 2f(x), \quad x, y \in S,$$

$$(2.4) f(x + \sigma(y)) + f(x + \tau(y)) = 2f(x) + 2f(y), \quad x, y \in S.$$

Thus the contribution by our paper of new knowledge consists in introducing an involution σ and in solving the corresponding extensions (2.3) and

(2.4) of the functional equations (2.1) and (2.2). Our solution formulas contain the previous ones as special cases.

A similar functional equation that has been studied is

$$(2.5) f(x + \sigma(y)) + f(x + \tau(y)) = 2f(x)f(y), \quad x, y \in S,$$

where $f: S \to \mathbf{C}$ is the function to determine. Eq. (2.5) was solved in a more general framework (see [2]).

3. On Jensen's functional equation

In this section, we solve the functional equation (2.3) by expressing its solutions in terms of additive functions.

Lemma 3.1. Let $f: S \to H$ be a solution of the functional equation (2.3). Then

(3.1)
$$f(x + (\tau \circ \sigma)^2(y)) = f(x+y) \text{ for all } x, y \in S.$$

Proof. Making the substitutions $(x, \sigma(y))$ and $(x, \tau(y))$ in (2.3), we get respectively

$$f(x + y) + f(x + \tau(\sigma(y))) = 2f(x),$$

 $f(x + \sigma(\tau(y))) + f(x + y) = 2f(x).$

So

$$f(x + \tau(\sigma(y))) = f(x + \sigma(\tau(y)))$$
 for all $x, y \in S$.

Replacing here y by $\tau(\sigma(y))$, we obtain (3.1). \square

Theorem 3.2. Suppose that H is 2-torsion free. The general solution $f: S \to H$ of the functional equation (2.3) is f = A + c, where $A: S \to H$ is an additive map such that $A \circ \tau = -A \circ \sigma$, and where $c \in H$ is a constant.

Proof. The method used here is closely related to and inspired by the one in [16, Proof of Theorem 2]. Assume that $f: S \to H$ is a solution of (2.3). Then

(3.2)
$$f(x+y) + f(x+\tau(\sigma(y))) = 2f(x), \quad x, y \in S.$$

Making the substitutions $(x, y + \tau(\sigma(y)))$ and (x + z, y) in (3.2) and using Lemma 3.1, we get respectively

(3.3)
$$f(x+y+\tau(\sigma(y))) = f(x),$$
$$f(x+z+y) + f(x+z+\tau(\sigma(y))) = 2f(x+z).$$

Interchanging y and z in the last equation we have

$$f(x+y+z) + f(x+y+\tau(\sigma(z))) = 2f(x+y).$$

Adding the last two equations we obtain

(3.4)
$$2f(x+y+z) + f(x+y+\tau(\sigma(z))) + f(x+z+\tau(\sigma(y)))$$

$$= 2f(x+z) + 2f(x+y).$$

Using Lemma 3.1, we get that

$$f(x+z+\tau(\sigma(y))) = f(x+(\tau\circ\sigma)[y+(\tau\circ\sigma)(z)]).$$

So, using (3.2), we can reformulate (3.4) to

$$2f(x+y+z) + 2f(x) = 2f(x+z) + 2f(x+y).$$

Setting here $z = \tau(\sigma(x))$ and using (3.3) and the fact that H is 2-torsion free, we get

(3.5)
$$f(y) + f(x) = f(x + \tau(\sigma(x))) + f(x + y).$$

Interchanging x and y in (3.5), we get that

$$f(x + \tau(\sigma(x))) = f(y + \tau(\sigma(y)))$$

for all $x, y \in S$. So $f(x + \tau(\sigma(x)))$ is a constant, say c. By using (3.5), we infer that the function A(x) := f(x) - c is additive. Substituting f into (2.3) we see that $A \circ \tau = -A \circ \sigma$.

The other direction of the proof is trivial to verify. \Box

As a immediate consequence of Theorem 3.2, we have the following result.

Corollary 3.3. [16, Theorem 2] Suppose that H is 2-torsion free. The general solution $f: S \to H$ of the functional equation (2.1) is f = A + c, where $A: S \to H$ is an additive map such that $A \circ \tau = -A$, and where $c \in H$ is a constant.

4. On the quadratic functional equation

In this section, we generalize Sinopoulos's result [16, Theorem 3] on semi-groups by solving the functional equation (2.4). The following lemma lists pertinent basic properties of any solution $f: S \to H$ of (2.4).

Lemma 4.1. Suppose that H is 2-torsion free and let $f: S \to H$ be a solution of the functional equation (2.4).

- a) $f \circ \sigma + f \circ \tau = 2f$.
- b) Let $A:S\to H$ be $A:=f\circ\sigma-f\circ\tau.$ Then A is additive and $A\circ\sigma=A\circ\tau=-A.$
- c) For all $x, y, z \in S$, we have

$$f(x+y+z) = f(x+y) + f(x+z) + f(y+z) - f(x) - f(y) - f(z).$$
(4.1)

- d) $Cf: S \times S \to H$ is a symmetric, bi-additive map satisfying $Cf(x, \tau(y)) = -Cf(x, \sigma(y))$ for all $x, y \in S$.
- e) Let $\varphi: S \to H$ be $\varphi(x) := A(x) + 2f(x + \tau(x)), x \in S$. Then $\varphi \circ \sigma + \varphi \circ \tau = 2\varphi$ and φ satisfies that $\varphi(x + y) = \varphi(x) + \varphi(y) + 4\{Cf(x, y) Cf(x, \sigma(y))\}, x, y \in S$.
- f) φ is a solution of (2.4).
- g) $4f(x) = 2Cf(x, \sigma(x)) + \varphi(x)$ for all $x \in S$.

Proof. (a) Let us first observe that $f \circ \sigma + f \circ \tau$ is a solution of (2.4). We next replace x, first by $\sigma(x)$ and then by $\tau(x)$, in (2.4) we find that

(4.2)
$$f(\sigma(x) + \sigma(y)) + f(\sigma(x) + \tau(y)) = 2f(\sigma(x)) + 2f(y),$$

(4.3)
$$f(\tau(x) + \sigma(y)) + f(\tau(x) + \tau(y)) = 2f(\tau(x)) + 2f(y).$$

Summing these two equations and using (2.4) and the fact that H is 2-torsion free, we obtain

$$[f(x) + f(\sigma(y))] + [f(x) + f(\tau(y))] = f(\sigma(x)) + f(\tau(x)) + 2f(y),$$

i.e.

$$2f(x) - f(\sigma(x)) - f(\tau(x)) = 2f(y) - f(\sigma(y) - f(\tau(y)),$$

for all $x, y \in S$. From this last equation we infer that $2f - f \circ \sigma - f \circ \tau$ is a constant in H, say c. Using the fact that $2f - (f \circ \sigma + f \circ \tau)$ is a solution of (2.4) and that H is 2-torsion free, we see that c = 0.

(b) We subtract (4.3) from (4.2) and get that

$$(f \circ \sigma - f \circ \tau)(x+y) + [f(\sigma(x) + \tau(y)) - f(\tau(x) + \sigma(y))] = 2(f \circ \sigma - f \circ \tau)(x),$$
(4.4)

for all $x, y \in S$. By using (2.4) and (a), we have

$$\begin{split} f(\sigma(x) + \tau(y)) - f(\tau(x) + \sigma(y)) \\ &= [f(\sigma(x) + \tau(y)) + f(\tau(x) + \tau(y))] - 2f \circ \tau(x) - 2f(y) \\ &= 2f(x) + 2f \circ \tau(y) - 2f \circ \tau(x) - 2f(y) \\ &= (f \circ \sigma - f \circ \tau)(x) - (f \circ \sigma - f \circ \tau)(y), \end{split}$$

which turns the identity (4.4) into

$$(f \circ \sigma - f \circ \tau)(x + y) = (f \circ \sigma - f \circ \tau)(x) + (f \circ \sigma - f \circ \tau)(y),$$

for all $x, y \in S$. This show that the function $A = f \circ \sigma - f \circ \tau$ is additive. Using (a), we see that

$$A = 2f - 2f \circ \tau = 2f \circ \sigma - 2f.$$

So, $A \circ \sigma = A \circ \tau = -A$.

- (c) Making the substitutions $(x+y,\sigma(z)), (x+\tau(\sigma(z)),\sigma(y)), \text{ and } (x,\sigma(y+z))$
- z) in (2.4), we get respectively

$$\begin{split} f(x+y+z) + f(x+y+\tau(\sigma(z))) &= 2f(x+y) + 2f(\sigma(z)), \\ f(x+\tau(\sigma(z)) + y) + f(x+\tau(\sigma(y+z))) &= 2f(x+\tau(\sigma(z)) + 2f(\sigma(y)) \\ &= 2\left[2f(x) + 2f(\sigma(z)) - f(x+z)\right] + 2f(\sigma(y)), \\ f(x+y+z) + f(x+\tau(\sigma(y+z))) &= 2f(x) + 2f(\sigma(y+z)). \end{split}$$

Subtracting the middle identity from the sum of the other two we get that

$$2f(x+y+z) = 2f(x+y) + 2f(x+z) + 2f(\sigma(y+z)) -2f(x) - 2f(\sigma(y)) - 2f(\sigma(z)).$$

Replacing here $2f \circ \sigma$ by 2f + A and using the fact that H is 2-torsion free, we get (4.1).

(d) That Cf is symmetric and bi-additive follows immediately from the very definition of Cf and (4.1). Let $x, y \in S$ be arbitrary. By help of (4.1) and (a), we get that

$$Cf(x,\tau(y)) = f(x+\tau(y)) - f(x) - f(\tau(y))$$

$$= 2f(x) + 2f(y) - f(x+\sigma(y)) - f(x) - f(\tau(y))$$

$$= f(x) + f(\sigma(y)) - f(x+\sigma(y))$$

$$= -Cf(x,\sigma(y)).$$

(e) For all $x \in S$, we have

$$\begin{split} &(\varphi \circ \sigma + \varphi \circ \tau)(x) \\ &= A(\sigma(x)) + 2f(\sigma(x) + \tau(\sigma(x))) + A(\tau(x)) + 2f(\tau(x) + x) \\ &= -2A(x) + 2f(x + \tau(x)) + 8f(\sigma(x)) - 2f(x + \sigma(x)) \\ &= -2A(x) + 2f(x + \tau(x)) + 8f(x) + 4A(x) - 2f(x + \sigma(x)) \\ &= 2A(x) + 4f(x + \tau(x)) \\ &= 2\varphi(x). \end{split}$$

So, $\varphi \circ \sigma + \varphi \circ \tau = 2\varphi$.

Next, let $x, y \in S$ be arbitrary. Using (4.1) repeatedly and the fact that $2f \circ \tau = 2f - A$ and that $A \circ \tau = -A$ we find

$$\begin{split} \varphi(x+y) &= A(x+y) + 2f((x+\tau(x)) + y + \tau(y)) \\ &= A(x) + A(y) + 2f(x + \tau(x) + y) + 2f(x + \tau(x) + \tau(y)) \\ &+ 2f(y+\tau(y)) - 2f(x+\tau(x)) - 2f(y) - 2f(\tau(y)) \\ &= A(x) + A(y) + [2f(x+\tau(x)) + 2f(x+y) + 2f(\tau(x) + y) \\ &- 2f(x) - 2f(\tau(x)) - 2f(y)] + [2f(x+\tau(x)) + 2f(x+\tau(y)) \\ &+ 2f \circ \tau(x+y) - 2f(x) - 2f(\tau(x)) - 2f(\tau(y))] \\ &+ 2f(y+\tau(y)) - 2f(x+\tau(x)) - 2f(y) - 2f(\tau(y)) \\ &= \varphi(x) + \varphi(y) + [2f(x+y) + 2f \circ \tau(x+y)] + [2f(x+\tau(y)) \\ &+ 2f \circ \tau(x+\tau(y))] - 4f(x) - 4f \circ \tau(x) - 4f(y) - 4f \circ \tau(y) \\ &= \varphi(x) + \varphi(y) + 4f(x+y) + 4f(x+\tau(y)) - A(x+y) \\ &- A(x+\tau(y)) - 8f(x) + 2A(x) - 4f(y) - 4f \circ \tau(y) \\ &= \varphi(x) + \varphi(y) + 4Cf(x,y) + 4Cf(x,\tau(y)) \\ &= \varphi(x) + \varphi(y) + 4\left\{Cf(x,y) - Cf(x,\sigma(y))\right\}. \end{split}$$

(f) Using (e) and (d), we get

$$\varphi(x + \sigma(y)) + \varphi(x + \tau(y))$$

$$= 2\varphi(x) + \varphi(\sigma(y)) + \varphi(\tau(y)) + 4\{Cf(x, \sigma(y)) - Cf(x, y)\}$$

$$+4\{Cf(x, \tau(y)) - Cf(x, \sigma(\tau(y)))\}$$

$$= 2\varphi(x) + 2\varphi(y) + 4\{Cf(x, \sigma(y)) - Cf(x, y)\}$$

$$+4\{-Cf(x, \sigma(y)) + Cf(x, y)\}$$

$$= 2\varphi(x) + 2\varphi(y).$$

So, φ is a solution of (2.4).

(g) Using the equality $A = 2f \circ \sigma - 2f$ and (2.4), we obtain

$$\begin{aligned} 2Cf(x,\sigma(x)) + \varphi(x) \\ &= 2f(x+\sigma(x)) - 2f(x) - 2f(\sigma(x)) + A(x) + 2f(x+\tau(x)) \\ &= [2f(x+\sigma(x)) + 2f(x+\tau(x))] - 2f(x) - 2f(\sigma(x)) + 2f(\sigma(x)) \\ &- 2f(x) \\ &= 8f(x) - 4f(x) \\ &= 4f(x) \text{ for all } x \in S. \end{aligned}$$

The second main theorem of the present paper reads as follows.

Theorem 4.2. Suppose that H is uniquely 2-divisible. The general solution $f: S \to H$ of the functional equation (2.4) is

$$f(x) = Q(x, \sigma(x)) + \psi(x), \quad x \in S,$$

where $Q: S \times S \to H$ is an arbitrary symmetric, bi-additive map such that $Q(x, \tau(y)) = -Q(x, \sigma(y))$ for all $x, y \in S$, and where $\psi: S \to H$ is an arbitrary solution of

$$\psi(x+y) = \psi(x) + \psi(y) + 2\{Q(x,y) - Q(x,\sigma(y))\}, \quad x,y \in S,$$

such that $\psi \circ \sigma + \psi \circ \tau = 2\psi$.

Proof. That all solutions of (2.4) have this form is a consequence of Lemma 4.1 and the fact that H is uniquely 2-divisible. Conversely, simple computations based on the properties of Q and ψ , show that the indicated functions are solutions. \square

As a immediate consequence of Theorem 4.2, we have the following result.

Corollary 4.2. [16, Theorem 3] Suppose that H is uniquely 2-divisible. The general solution $f: S \to H$ of the functional equation (2.2) is

$$f(x) = Q(x, x) + \psi(x),$$

where $Q: S \times S \to H$ is an arbitrary symmetric, bi-additive map such that $Q(x, \tau(y)) = -Q(x, y)$ for all $x, y \in S$, and where $\psi: S \to H$ is an arbitrary additive map such that $\psi \circ \tau = \psi$.

References

- [1] J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, New York (1989).
- [2] A. Chahbi, B. Fadli, S. Kabbaj, A generalization of the symmetrized multiplicative Cauchy equation, Acta Math. Hungar., pp. 1-7, (2016).
- [3] J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo, On a quadratic trigonometric functional equation and some applications, Trans. Amer. Math. Soc., 347, pp. 1131-1161, (1995).
- [4] B. Fadli, D. Zeglami and S. Kabbaj, On a Gajda's type quadratic equation on a locally compact abelian group, Indagationes Math., 26, pp. 660-668, (2015).
- [5] B. Fadli, D. Zeglami and S. Kabbaj, A variant of Jensen's functional equation on semigroups, Demonstratio Math., to appear.
- [6] P. de Place Friis and H. Stetkær, On the quadratic functional equation on groups, Publ. Math. Debrecen 69, pp. 65-93, (2006).
- [7] S-M. Jung, Quadratic functional equations of Pexider type, J. Math. & Math. Sci., 24, pp. 351-359, (2000).
- [8] P. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27, pp. 368-372, (1995).
- [9] P. Kannappan, Functional equations and inequalities with applications, Springer, New York, (2009).

- [10] C. T. Ng, Jensen's functional equation on groups, Aequationes Math. 39, pp. 85-99, (1990).
- [11] C. T. Ng, Jensen's functional equation on groups, II, Aequationes Math. 58, pp. 311-320, (1999).
- [12] C. T. Ng, Jensen's functional equation on groups, III, Aequationes Math. 62, pp. 143-159, (2001).
- [13] C. T. Ng, A Pexider-Jensen functional equation on groups, Aequationes Math. 70, pp. 131-153, (2005).
- [14] J. C. Parnami and H.L. Vasudeva, On Jensen's functional equation, Aequationes Math. 43, pp. 211-218, (1992).
- [15] Th. M. Rassias, Inner Product Spaces and Applications, Pitman Research Notes in Mathematics Series, Addison Wesley Longman Ltd, 376, (1997).
- [16] P. Sinopoulos, Functional equations on semigroups, Aequationes Math., 59, pp. 255-261, (2000).
- [17] H. Stetkær, Functional equations on abelian groups with involution, Aequationes Math. 54, pp. 144-172, (1997).
- [18] H. Stetkær, On Jensen's functional equation on groups, Aequationes Math. 66, pp. 100-118, (2003).
- [19] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co, Singapore, (2013).

B. Fadli

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, B. P. 14000. Kenitra, Morocco

e-mail: himfadli@gmail.com

A. Chahbi

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, B. P. 14000. Kenitra, Morocco

e-mail: abdellatifchahbi@gmail.com

Iz. EL-Fassi

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, B. P. 14000. Kenitra, Morocco

e-mail: izidd-math@hotmail.fr

and

S. Kabbaj

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, B. P. 14000. Kenitra, Morocco

e-mail: samkabbaj@yahoo.fr