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Abstract

We determine the solutions f : S → H of the generalized Jensen’s
functional equation

f(x+ σ(y)) + f(x+ τ(y)) = 2f(x), x, y ∈ S,

and the solutions f : S → H of the generalized quadratic functional
equation

f(x+ σ(y)) + f(x+ τ(y)) = 2f(x) + 2f(y), x, y ∈ S,

where S is a commutative semigroup, H is an abelian group (2-torsion
free in the first equation and uniquely 2-divisible in the second) and
σ, τ are two involutions of S.
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1. Set up, notation and terminology

Throughout the paper we work in the following framework and with the
following notation and terminology. We use it without explicit mentioning.

S is a commutative semigroup [a set equipped with an associative compo-
sition rule (x, y) 7→ x+ y], σ, τ : S → S are two homomorphisms satisfying
σ◦σ = τ ◦τ = id, and (H,+) denotes an abelian group with neutral element
0. We say that H is 2-torsion free if [h ∈ H and 2h = 0]⇒ h = 0.

H is said to be uniquely 2-divisible if for any h ∈ H the equation 2x = h
has exactly one solution x ∈ H.

A function A : S → H is said to be additive if A(x+ y) = A(x) +A(y)
for all x, y ∈ S.

We recall that the Cauchy difference Cf of a function f : S → H is
defined by

Cf(x, y) := f(x+ y)− f(x)− f(y), x, y ∈ S.

2. Introduction

In [16], Sinopoulos determined the general solution f : S → H, where H is
2-torsion free, of Jensen’s functional equation

f(x+ y) + f(x+ τ(y)) = 2f(x), x, y ∈ S,(2.1)

and the general solution f : S → H, where H is uniquely 2-divisible, of the
quadratic functional equation

f(x+ y) + f(x+ τ(y)) = 2f(x) + 2f(y), x, y ∈ S.(2.2)

Some information, applications and numerous references concerning (2.1)
and (2.2) and their further generalizations can be found, e.g., in [3-8, 10-14,
17, 18]. For more details, we refer to the monographs [9, 15, 19].

The purpose of the present paper is to solve the following functional
equations

f(x+ σ(y)) + f(x+ τ(y)) = 2f(x), x, y ∈ S,(2.3)

f(x+ σ(y)) + f(x+ τ(y)) = 2f(x) + 2f(y), x, y ∈ S.(2.4)

Thus the contribution by our paper of new knowledge consists in introduc-
ing an involution σ and in solving the corresponding extensions (2.3) and
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(2.4) of the functional equations (2.1) and (2.2). Our solution formulas
contain the previous ones as special cases.

A similar functional equation that has been studied is

f(x+ σ(y)) + f(x+ τ(y)) = 2f(x)f(y), x, y ∈ S,(2.5)

where f : S → C is the function to determine. Eq. (2.5) was solved in a
more general framework (see [2]).

3. On Jensen’s functional equation

In this section, we solve the functional equation (2.3) by expressing its
solutions in terms of additive functions.

Lemma 3.1. Let f : S → H be a solution of the functional equation (2.3).
Then

f(x+ (τ ◦ σ)2(y)) = f(x+ y) for all x, y ∈ S.(3.1)

Proof. Making the substitutions (x, σ(y)) and (x, τ(y)) in (2.3), we get
respectively

f(x+ y) + f(x+ τ(σ(y))) = 2f(x),

f(x+ σ(τ(y))) + f(x+ y) = 2f(x).

So

f(x+ τ(σ(y))) = f(x+ σ(τ(y))) for all x, y ∈ S.

Replacing here y by τ(σ(y)), we obtain (3.1). 2

Theorem 3.2. Suppose that H is 2-torsion free. The general solution
f : S → H of the functional equation (2.3) is f = A+ c, where A : S → H
is an additive map such that A◦τ = −A◦σ, and where c ∈ H is a constant.

Proof. The method used here is closely related to and inspired by the
one in [16, Proof of Theorem 2]. Assume that f : S → H is a solution of
(2.3). Then

f(x+ y) + f(x+ τ(σ(y))) = 2f(x), x, y ∈ S.(3.2)
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Making the substitutions (x, y + τ(σ(y))) and (x + z, y) in (3.2) and
using Lemma 3.1, we get respectively

f(x+ y + τ(σ(y))) = f(x),(3.3)

f(x+ z + y) + f(x+ z + τ(σ(y))) = 2f(x+ z).

Interchanging y and z in the last equation we have

f(x+ y + z) + f(x+ y + τ(σ(z))) = 2f(x+ y).

Adding the last two equations we obtain

2f(x+ y + z) + f(x+ y + τ(σ(z))) + f(x+ z + τ(σ(y)))
= 2f(x+ z) + 2f(x+ y).

(3.4)

Using Lemma 3.1, we get that

f(x+ z + τ(σ(y))) = f(x+ (τ ◦ σ)[y + (τ ◦ σ)(z)]).

So, using (3.2), we can reformulate (3.4) to

2f(x+ y + z) + 2f(x) = 2f(x+ z) + 2f(x+ y).

Setting here z = τ(σ(x)) and using (3.3) and the fact thatH is 2-torsion
free, we get

f(y) + f(x) = f(x+ τ(σ(x))) + f(x+ y).(3.5)

Interchanging x and y in (3.5), we get that

f(x+ τ(σ(x))) = f(y + τ(σ(y)))

for all x, y ∈ S. So f(x+ τ(σ(x))) is a constant, say c. By using (3.5), we
infer that the function A(x) := f(x) − c is additive. Substituting f into
(2.3) we see that A ◦ τ = −A ◦ σ.
The other direction of the proof is trivial to verify. 2

As a immediate consequence of Theorem 3.2, we have the following
result.

Corollary 3.3. [16, Theorem 2] Suppose that H is 2-torsion free. The
general solution f : S → H of the functional equation (2.1) is f = A + c,
where A : S → H is an additive map such that A ◦ τ = −A, and where
c ∈ H is a constant.
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4. On the quadratic functional equation

In this section, we generalize Sinopoulos’s result [16, Theorem 3] on semi-
groups by solving the functional equation (2.4). The following lemma lists
pertinent basic properties of any solution f : S → H of (2.4).

Lemma 4.1. Suppose that H is 2-torsion free and let f : S → H be a
solution of the functional equation (2.4).

a) f ◦ σ + f ◦ τ = 2f.

b) Let A : S → H be A := f ◦ σ − f ◦ τ. Then A is additive and
A ◦ σ = A ◦ τ = −A.

c) For all x, y, z ∈ S, we have

f(x+ y + z) = f(x+ y) + f(x+ z) + f(y + z)− f(x)− f(y)− f(z).
(4.1)

d) Cf : S × S → H is a symmetric, bi-additive map satisfying
Cf(x, τ(y)) = −Cf(x, σ(y)) for all x, y ∈ S.

e) Let ϕ : S → H be ϕ(x) := A(x) + 2f(x + τ(x)), x ∈ S. Then
ϕ ◦ σ + ϕ ◦ τ = 2ϕ and ϕ satisfies that

ϕ(x+ y) = ϕ(x) + ϕ(y) + 4{Cf(x, y)− Cf(x, σ(y))}, x, y ∈ S.

f) ϕ is a solution of (2.4).

g) 4f(x) = 2Cf(x, σ(x)) + ϕ(x) for all x ∈ S.

Proof. (a) Let us first observe that f ◦ σ + f ◦ τ is a solution of (2.4).
We next replace x, first by σ(x) and then by τ(x), in (2.4) we find that

f(σ(x) + σ(y)) + f(σ(x) + τ(y)) = 2f(σ(x)) + 2f(y),(4.2)

f(τ(x) + σ(y)) + f(τ(x) + τ(y)) = 2f(τ(x)) + 2f(y).(4.3)

Summing these two equations and using (2.4) and the fact that H is
2-torsion free, we obtain

[f(x) + f(σ(y))] + [f(x) + f(τ(y))] = f(σ(x)) + f(τ(x)) + 2f(y),

i.e.
2f(x)− f(σ(x))− f(τ(x)) = 2f(y)− f(σ(y)− f(τ(y)),
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for all x, y ∈ S. From this last equation we infer that 2f − f ◦ σ− f ◦ τ is a
constant in H, say c. Using the fact that 2f − (f ◦ σ + f ◦ τ) is a solution
of (2.4) and that H is 2-torsion free, we see that c = 0.
(b) We subtract (4.3) from (4.2) and get that

(f ◦ σ − f ◦ τ)(x+ y) + [f(σ(x) + τ(y))− f(τ(x) + σ(y))] = 2(f ◦ σ − f ◦ τ)(x),
(4.4)
for all x, y ∈ S. By using (2.4) and (a), we have

f(σ(x) + τ(y))− f(τ(x) + σ(y))

= [f(σ(x) + τ(y)) + f(τ(x) + τ(y))]− 2f ◦ τ(x)− 2f(y)
= 2f(x) + 2f ◦ τ(y)− 2f ◦ τ(x)− 2f(y)
= (f ◦ σ − f ◦ τ)(x)− (f ◦ σ − f ◦ τ)(y),

which turns the identity (4.4) into

(f ◦ σ − f ◦ τ)(x+ y) = (f ◦ σ − f ◦ τ)(x) + (f ◦ σ − f ◦ τ)(y),

for all x, y ∈ S. This show that the function A = f ◦ σ − f ◦ τ is additive.
Using (a), we see that

A = 2f − 2f ◦ τ = 2f ◦ σ − 2f.

So, A ◦ σ = A ◦ τ = −A.
(c) Making the substitutions (x+y, σ(z)), (x+τ(σ(z)), σ(y)), and (x, σ(y+
z)) in (2.4), we get respectively

f(x+ y + z) + f(x+ y + τ(σ(z))) = 2f(x+ y) + 2f(σ(z)),

f(x+ τ(σ(z)) + y) + f(x+ τ(σ(y + z))) = 2f(x+ τ(σ(z)) + 2f(σ(y))

= 2 [2f(x) + 2f(σ(z))− f(x+ z)] + 2f(σ(y)),

f(x+ y + z) + f(x+ τ(σ(y + z))) = 2f(x) + 2f(σ(y + z)).

Subtracting the middle identity from the sum of the other two we get
that

2f(x+ y + z) = 2f(x+ y) + 2f(x+ z) + 2f(σ(y + z))

−2f(x)− 2f(σ(y))− 2f(σ(z)).

Replacing here 2f ◦ σ by 2f +A and using the fact that H is 2-torsion
free, we get (4.1).
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(d) That Cf is symmetric and bi-additive follows immediately from the
very definition of Cf and (4.1). Let x, y ∈ S be arbitrary. By help of (4.1)
and (a), we get that

Cf(x, τ(y)) = f(x+ τ(y))− f(x)− f(τ(y))

= 2f(x) + 2f(y)− f(x+ σ(y))− f(x)− f(τ(y))

= f(x) + f(σ(y))− f(x+ σ(y))

= −Cf(x, σ(y)).

(e) For all x ∈ S, we have

(ϕ ◦ σ + ϕ ◦ τ)(x)
= A(σ(x)) + 2f(σ(x) + τ(σ(x))) +A(τ(x)) + 2f(τ(x) + x)

= −2A(x) + 2f(x+ τ(x)) + 8f(σ(x))− 2f(x+ σ(x))

= −2A(x) + 2f(x+ τ(x)) + 8f(x) + 4A(x)− 2f(x+ σ(x))

= 2A(x) + 4f(x+ τ(x))

= 2ϕ(x).

So, ϕ ◦ σ + ϕ ◦ τ = 2ϕ.
Next, let x, y ∈ S be arbitrary. Using (4.1) repeatedly and the fact that

2f ◦ τ = 2f −A and that A ◦ τ = −A we find

ϕ(x+ y) = A(x+ y) + 2f((x+ τ(x)) + y + τ(y))

= A(x) +A(y) + 2f(x+ τ(x) + y) + 2f(x+ τ(x) + τ(y))

+2f(y + τ(y))− 2f(x+ τ(x))− 2f(y)− 2f(τ(y))
= A(x) +A(y) + [2f(x+ τ(x)) + 2f(x+ y) + 2f(τ(x) + y)

−2f(x)− 2f(τ(x))− 2f(y)] + [2f(x+ τ(x)) + 2f(x+ τ(y))

+2f ◦ τ(x+ y)− 2f(x)− 2f(τ(x))− 2f(τ(y))]
+2f(y + τ(y))− 2f(x+ τ(x))− 2f(y)− 2f(τ(y))
= ϕ(x) + ϕ(y) + [2f(x+ y) + 2f ◦ τ(x+ y)] + [2f(x+ τ(y))

+2f ◦ τ(x+ τ(y))]− 4f(x)− 4f ◦ τ(x)− 4f(y)− 4f ◦ τ(y)
= ϕ(x) + ϕ(y) + 4f(x+ y) + 4f(x+ τ(y))−A(x+ y)

−A(x+ τ(y))− 8f(x) + 2A(x)− 4f(y)− 4f ◦ τ(y)
= ϕ(x) + ϕ(y) + 4Cf(x, y) + 4Cf(x, τ(y))

= ϕ(x) + ϕ(y) + 4 {Cf(x, y)− Cf(x, σ(y))} .
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(f) Using (e) and (d), we get

ϕ(x+ σ(y)) + ϕ(x+ τ(y))

= 2ϕ(x) + ϕ(σ(y)) + ϕ(τ(y)) + 4{Cf(x, σ(y))− Cf(x, y)}
+4{Cf(x, τ(y))− Cf(x, σ(τ(y)))}
= 2ϕ(x) + 2ϕ(y) + 4{Cf(x, σ(y))−Cf(x, y)}
+4{−Cf(x, σ(y)) + Cf(x, y)}
= 2ϕ(x) + 2ϕ(y).

So, ϕ is a solution of (2.4).
(g) Using the equality A = 2f ◦ σ − 2f and (2.4), we obtain

2Cf(x, σ(x)) + ϕ(x)

= 2f(x+ σ(x))− 2f(x)− 2f(σ(x)) +A(x) + 2f(x+ τ(x))

= [2f(x+ σ(x)) + 2f(x+ τ(x))]− 2f(x)− 2f(σ(x)) + 2f(σ(x))
−2f(x)
= 8f(x)− 4f(x)
= 4f(x) for all x ∈ S.

2

The second main theorem of the present paper reads as follows.
Theorem 4.2. Suppose that H is uniquely 2-divisible. The general solu-
tion f : S → H of the functional equation (2.4) is

f(x) = Q(x, σ(x)) + ψ(x), x ∈ S,

where Q : S × S → H is an arbitrary symmetric, bi-additive map such
that Q(x, τ(y)) = −Q(x, σ(y)) for all x, y ∈ S, and where ψ : S → H is an
arbitrary solution of

ψ(x+ y) = ψ(x) + ψ(y) + 2{Q(x, y)−Q(x, σ(y))}, x, y ∈ S,

such that ψ ◦ σ + ψ ◦ τ = 2ψ.

Proof. That all solutions of (2.4) have this form is a consequence of
Lemma 4.1 and the fact that H is uniquely 2-divisible. Conversely, simple
computations based on the properties of Q and ψ, show that the indicated
functions are solutions. 2

As a immediate consequence of Theorem 4.2, we have the following
result.
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Corollary 4.2. [16, Theorem 3] Suppose that H is uniquely 2-divisible.
The general solution f : S → H of the functional equation (2.2) is

f(x) = Q(x, x) + ψ(x),

where Q : S×S → H is an arbitrary symmetric, bi-additive map such that
Q(x, τ(y)) = −Q(x, y) for all x, y ∈ S, and where ψ : S → H is an arbitrary
additive map such that ψ ◦ τ = ψ.
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