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Received : January 2015. Accepted : March 2016

Proyecciones Journal of Mathematics
Vol. 35, No 2, pp. 137-157, June 2016.
Universidad Católica del Norte
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Abstract

In this paper, we continue our study of closed models defined in
categories of graphs. We construct a closed model defined in the cat-
egory of directed graphs which characterizes the strongly connected
components. This last notion has many applications, and it plays an
important role in the web search algorithm of Brin and Page, the foun-
dation of the search engine Google. We also show that for this closed
model, Euler graphs are particular examples of cofibrant objects. This
enables us to interpret in this setting the classical result of Euler which
states that a directed graph is Euleurian if and only if the in degree
and the out degree of every of its nodes are equal. We also provide a
cohomological proof of this last result.
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1. Introduction.

In this paper, we pursue our investigation of closed models defined in the
category Gph of directed graphs. Recall that in [2] and [3], that we have
published in collaboration with Terrence Bisson, we have introduced two
closed models: the first is related to the zeta function of directed graphs
and the second to dynamical systems. These constructions have been gen-
eralized in [10] where we have defined the notion of closed models defined
by counting and study the existence of such closed models in the category of
undirected graphs. For the closed model defined in [2], a morphism of Gph
f : X → Y is a weak equivalence if and only if for every cycle cn, n > 0, the
morphism of sets Hom(cn,X)→ Hom(cn, Y ) induced by f is a bijection.

In this paper, we modify this condition by allowing n to be equal to
zero, otherwise said, we are counting also the nodes of X. This new closed
model defined in Gph enables to study other interesting properties of this
category in particular it enlightens the important notion of strongly con-
nected component of a directed graph, which has many applications in
web search engines: the well known search engine Google designed by Brin
and Page [5] uses the notion of pagerank to construct an hierarchy of the
web which can be calculated by using strongly connected components and
Markov matrices. More precisely, we show that a morphism f : X → Y is
a weak equivalence for this closed model if and only if it induces a bijection
between the respective sets of strongly connected components of X and Y
and its restriction to each strongly connected component of X is an isomor-
phism onto a strongly connected component of Y . The cofibrant objects
obtained here enable us also to study Eulerian graphs and to interpret the
famous Euler theorem which states that a finite directed graph X is Eu-
lerian if and only if for every node x of X the inner and the outer degree
of x are equal. We also provide a construction of new closed models from
a closed model defined by counting. This enables us to give a conceptual
formulation of the closed model defined in [2].

We also introduce an homology theory in the category Gph and show
that the positive cycles of the first homology group of a directed graph is the
set of cycles; this also enables us to give an homological interpretation of the
Euler’s theorem that we have just quoted and to establish a link between
the notions studied in this paper and simplicial sets. In this regard, we show
that there exists a closed model defined in the category of 1-simplicial sets
also called the category of reflexive graphs which has many similarities
which the closed model studied earlier in this paper.
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2. Some basic properties of the category of directed graphs.

Let C be the category which has two objects that we denote by 0 and 1;
the morphisms of C which are not identities are s, t ∈ Hom(0, 1).

Definitions 2.1.
The category Gph of presheaves over C is the category of directed

graphs. Thus, a directed graph X is defined by two sets X(0) and X(1),
and two maps X(s),X(t) : X(1)→ X(0). The elements of X(0) are called
the nodes of X and the elements of X(1) the arcs of X. For every arc
a ∈ X(1), X(s)(a) is the source of a and X(t)(a) is the target of a. We
will also often say that a is an arc between X(s)(a) and X(t)(a) or that a
connects X(s)(a) and X(t)(a).

A morphism f : X → Y between two directed graphs is a morphism
of presheaves: it is defined by two maps f(0) : X(0) → Y (0) and f(1) :
X(1) → Y (1) such that Y (s) ◦ f(1) = f(0) ◦ X(s) and Y (t) ◦ f(1) =
f(0) ◦X(t).

Let X be a finite directed graph, suppose that the cardinality of X(0)
is n, the adjacency matrix AX of X is the n× n matrix whose entry (i, j)
is the cardinal of X(xi, xj), the set of arcs between xi and xj .

Definitions 2.2.
Let X be a graph, and x a node of X. We denote by X(x, ∗) the set

of arcs of X whose source is x, and by X(∗, x) the set of arcs of X whose
target is x. If X is finite, the inner degree of x is the cardinality of X(∗, x)
and the outer degree of x is the cardinality of X(x, ∗).

Examples of directed graphs are:
The directed dot graph D; D(0) is a singleton and D(1) is empty.

Geometrically it is represented by a point.
The directed arc A. The set of nodes of A contains two elements x, y,

and A has a unique arc a such A(s)(a) = x and A(t)(a) = y. Geometrically,
it is represented by an arc between x and y as follows: x −→ y.

The directed cycle cn, n ≥ 1 of length n; cn(0) is a set which contains
n elements that we denote by xn0 , ..., x

n
n−1. For i < n− 1, there is a unique

arc ani whose source is x
n
i and whose target is x

n
i+1; there is an arc a

n
n−1

whose source is xnn−1 and whose target is x
n
0 . Often, we will say that D is

the cycle c0 of length 0.

The directed line L is the graph such that L(0) is the set of integers Z,
and for every integer n, there exists a unique arc an such that L(s)(an) = n
and L(t)(an) = n+ 1.
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The directed path Pn of length n; the set of nodes Pn(0) has n elements
xn0 , ...., x

n
n−1 and for i < n− 1, there exists an arc ani between xni and xni+1;

xn0 is the source of the path and xnn−1 is its end.

Definitions 2.3.

Let X be an object of Gph and x, y two nodes of X. A path between x
and y is a morphism f : Pn → X such that f(0)(xn0 ) = x and f(0)(xnn−1) =
y. We say that X is connected if and only if for every nodes x and y of X,
there exists a finite set of nodes (xi)i=1,...,l such that x1 = x, xl = y and for
i < l, there exists a path between xi and xi+1 or a path between xi+1 and
xi.

The graph X is strongly connected if and only if for every nodes x, y of
X there exists a path between x and y and a path between y and x. This
is equivalent to saying that there exists a cycle which contains x and y.

Let X be a directed graph, consider the equivalent relation R defined
on the space of nodes of X such that xRx for every x ∈ X(0), if x is distinct
of y then xRy if and only if there exists a cycle which contains x and y.

We denote by U1, ..., Up, ... the set of equivalent classes of this relation.
We denote by XUi the subgraph of X whose set of nodes is Ui. An arc
a ∈ X(1) is an arc of XUi if and only if X(s)(a) and X(t)(a) are elements
of Ui. The graphs XUi are the strongly connected components of X.

3. Closed models in Gph.

We recall now the notion of closed model category:

Definition 3.1.

Let C be a category, we say that the morphism f : X → Y has the left
lifting property with respect to the morphism g : A→ B (resp., g has the
right lifting property with respect to f) if and only if for each commutative
square

X l−−−−→A

. ⏐⏐⏐⏐⏐⏐y f

⏐⏐⏐⏐⏐⏐y g

Y m−−−−−→B
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there exists a morphism n : Y → A such that l = n ◦ f and m = g ◦ n. Let
I be a class of maps of C, we denote by inj(I) the class of morphisms of
C such that for every f in I and every g ∈ inj(I), g has the right lifting
property with respect to f . We denote cell(I) the subclass of maps of C
which are retracts of transfinite composition of pushouts of elements I.

Two class of maps L and R define a weak factorization system (L,R)
of C if and only if: for every morphism f of C, there exists g ∈ R and
h ∈ L such that f = g ◦ h and L is the class of morphisms which have the
left lifting property with respect to every morphism R and R is the class
of morphisms which have the right lifting property with respect to every
morphism of L.

Definition 3.2.

A closed model category is a categoryM which has projective limits and
inductive limits endowed with three subclasses of morphismsW,F,C called
respectively the weak equivalences, the fibrations and the cofibrations. We
denote by F 0 (resp., C 0) the intersection F∩W (resp., C∩W ). The subclass
F 0 is called the class of weak fibrations and C 0 the class of weak cofibrations.
The following two axioms are also satisfied:

M1. (C,F 0) and (C 0, F ) are weak factorization systems.
M2 Let f : X → Y and g : Y → Z be two maps in M , if two maps of

the triple {f, g, g ◦ f} is a weak equivalence so is the third.
In this paper, we are only going to consider locally presentable cate-

gories. This has the virtue to avoid set theoretical difficulties when one
tries to find weak factorizations systems. We are going to use Proposition
1.3 of Beke [1] which asserts that if I is a class of morphisms of a locally
presentable category, (cell(I), inj(I)) is a weak factorization system. The
categories of graphs used here are locally presentable categories since they
are isomorphic to categories of presheaves defined on a small category.

Definition 3.3.

A closed model structure defined on C is cofibrantly generated if and
only if there exists a set of morphisms I (resp., J) such that inj(I) (resp.,
inj(J)) is the class of weak fibrations (resp., the class of fibrations).

In [10] we have introduced the notion of a closed model category defined
by counting which we outline: it is a closed model category C, whose class
of weak equivalences W is defined as follows:

Firstly, we consider a set of objects of C, (Xl)l∈L. Let φ be the initial
object of C, we can define the morphisms il : φ → Xl and the folding
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morphism jl : Xl +Xl → Xl which is the sum of two copies of IdXl
: Xl →

Xl. The class W is inj(I) where I = {ij , jl; l ∈ L}. Thus a morphism
f : X → Y is a weak equivalence if and only if for every l ∈ L, the map
Hom(Xl,X)→ Hom(Xl, Y ) which sends g : Xl → X to f ◦ g is bijective,
and (cell(I),W ) is a weak factorization system. We can define a closed
model on C whose class of weak equivalences is W , the class of fibrations is
the class of morphisms of C and the class of cofibrations is cell(I). Remark
that such a closed model is cofibrantly generated since its class of fibrations
is inj(φ) where φ is the initial object.

Proposition 3.1.
Let W be the class of weak equivalences of the closed model defined

by counting the objects (Xl)l∈L, J a set of morphisms (fj)j∈P such that
cell(J) ⊂ W . Denote by F the class inj(J) and by Cof the class of mor-
phisms cell(I

S
J). Then (W,F,Cof) defines a closed cofibrantly generated

closed model on C.

Proof.
We are going to apply the result of D. Kan quoted by Hirschhorn [9]

p. 213, Theorem 11.3.1 that shows that the sets of morphisms I
S
J and J

define a cofibrantly generated closed model on C where I = {il, jl; l ∈ L}.
A morphism f of cell(J) is an element of W by assumption, and is

obviously contained in cell(I
S
J). A morphism f of C which is right

orthogonal to I
S
J is a weak equivalence since it is right orthogonal to I

and is obviously right orthogonal to J . This verifies the conditions 2 and 3
of the theorem of Kan. A morphism f which is right orthogonal to J and is
in W is a morphism right orthogonal to I

S
J . This verifies the condition

4(b).

Examples.
We present now the following closed model defined by counting the cycle

graphs (cn)n>0 in the category Gph. A morphism f : X → Y is contained
in the class W 0 of weak equivalences of this closed model if for every n > 0,
the map Hom(cn,X)→ Hom(cn, Y ) is bijective. We have a closed model
(W 0, F ib0, Cof 0) for which Fib0 is the class of all the maps and Cof 0 is
cell(in, jn, n > 0), where in : φ→ cn and jn : cn + cn → cn.

We can apply the Proposition 3.1, to obtain other closed models with
the same class of weak equivalences. On this purpose, consider a non empty
graph X such that for every integer n > 0, Hom(cn,X) is empty. Such a
graph is called acyclic. Let x be any node of X, consider the morphism
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sx : D → X such that the image of sx(0) is x. An element of cell(sx) is a
composition of morphisms f : Y → Z, where f is the canonical embedding
of Y into a graph Z obtained by attaching an acyclic graph to a node of Y .
See also [4] Proposition 4. We deduce that the class cell(sx) is contained
in W 0. We can thus apply the Proposition 3.1 to obtain the closed model
(W 0, FX , CofX) such that FX is inj(sx), and CofX = cell(in, jn, s

x, n > 0).
In particular, if s : D → A is the morphism between the dot graph and
the arc graph such that s(0) is the source of A, we obtain the closed model
presented in [2] for which the class of fibrations is inj(s) and the cofibrations
are cell(in, jn, s). Other examples may rise some interest. We can define
t : D→ A such that the image of t(0) is the target of A and obtain a closed
model whose weak equivalences are W 0, the class of fibrations is inj(t) and
the cofibrations are cell(in, jn, t, n > 0). We can also defined the closed
model whose weak equivalences are W 0, the class of fibrations is inj(s, t)
and the cofibrations are cell(in, jn, s, t).

4. Closed models and strongly connected components.

One of the main purposes of this paper is to study a closed model defined
by counting on Gph related to (W 0, F ib0, Cof 0). This time, we count the
cycles (cn)n≥0. That is, we are also counting nodes. Thus a weak equiv-
alence W for this closed model is a morphism f : X → Y such that for
every n ≥ 0, the map Hom(cn,X) → Hom(cn, Y ) which associates f ◦ g
to each element g ∈ Hom(cn,X) is bijective. We obtain a closed model
(W,Fib, Cof) for which Fib is the class of all the morphisms of Gph and
Cof is cell(in, jn, n ≥ 0). This closed model is related to strongly con-
nected components of directed graphs, a notion which is intensively used
in computer science and in particular in web search as shows the work of
Brin and Page [5], the conceptual foundation of the search engine Google.
Given a network (a directed graph), it is important for a web search en-
gine to recommend pages to an user, on this purpose, a weight is assigned
to each page (vertex) called the pagerank which depends on the number
of important links that the page receives (the weight of the source of the
incoming arcs). If A is the adjacency matrix of the network, to obtain the
pagerank, one has to define a new matrice P by replacing the non zero co-
efficients of A by numbers which quantify the importance of the link, and
the pagerank of the page i is just the sum of the entries of the i-row of P .
It is also reasonable to normalize the columns of the matrix P to minimize
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the importance of outgoing links from a page, so surfing online is assimi-
lated to a random walk described by the Markov matrix P . Linear algebra
shows thus the pagerank is an eigenvalue of P . If P is irreducible, the Per-
ron theorem shows the existence of a unique maximal positive eigenvalue
which defines the pagerank. The fact that P is irreducible means also that
the graph is strongly connected. In practice this is not true, but research
shows that 90 percent of the world wide web is connected and contains
a giant strongly connected component. To cope of the general situation,
google uses transition probabilities.

We have the following result:

Theorem 4.1.
A morphism f : X → Y of Gph is an element of W if and only if

it induces a bijection between the sets of strongly connected components
of X and Y and the restriction of f to a strongly component of X is an
isomorphism onto a strongly connected component of Y .

Proof.
Firstly, we show that the image of a strongly connected component U

of X is a strongly connected component. The restriction f|U of f to U is
injective on nodes, since f induces a bijection on the set of nodes. Let a
and b be two arcs of U such that f(1)(a) = f(1)(b). Since f is injective on
nodes, s(a) = s(b) and t(a) = t(b). Consider a path p in U between t(a)
and s(a). We can construct two cycles c and c0 obtained respectively by the
concatenation of a and p and the concatenation of b and p The images of c
and c0 by f coincide. This implies that c = c0 since f is injective on cycles,
thus a = b. The image of U is thus imbedded in a strongly connected
component V of Y .

Suppose that there exists a node y in V which is not in the image of
U . Let y0 = f(0)(x), x ∈ U . Since V is strongly connected, there exists a
cycle c of V whose set of nodes contains y and y0. Consider the cycle c0 of
X whose image by f is c; c0 contains x since f(0) is injective. This implies
that c0 is in U , and c is contained in the image of U . This is a contradiction
with the fact that y is not in the image of U . Consider an arc b of V which
is not in the image of U . There exists a cycle c of V that contains b. Since
f induces a bijection on cycles, there exists a cycle c0 of X whose image
by f is c. Let a be the arc of c0 whose image by f is b; s(a) and t(a) are
contained in U since their image are contained in f(0)(U). This implies
that a is in U since U is a strongly connected component and henceforth b
is in the image of U . Thus the restriction of f to U is surjective on arcs.
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Since the restriction of f to U is injective, we deduce that f induces an
isomorphism of U onto its image V .

Let V be a strongly connected component of Y , and y a node of V .
There exists a node x ∈ X(0) such that f(0)(x) = y. The image of the
strongly connected component which contains x is V . This implies that f
induces a bijection on strongly connected components.

Conversely, suppose that f induces a bijection between the set of on
strongly connected components of X and Y and the restriction of f to a
strongly connected component of X is an isomorphism. Let c and c0 two
n-cycles (n eventually 0) of X whose image by f coincide. This implies that
that c and c0 are in the same strongly connected component U , and are equal
since the restriction of f to U is an imbedding. Let c be a cycle of Y , c is
an element of a strongly connected component V . The strongly connected
component U of X whose image maps isomorphically to V contains a cycle
whose image is c. We deduce that f is a weak equivalence.

Corollary 4.1.
A morphism f : X → Y between two strongly connected directed graphs

is a weak equivalence if and only if it is an isomorphism.

Cofibrant replacement.
We are going to study in this section the notion of cofibrant replace-

ment for the closed model defined in this section 4 on Gph by (W,Fib =
Hom(Gph), Cof). Recall that an object X is cofibrant if and only if the
map φ→ X is a cofibration where φ is the initial object. The object Y is a
cofibrant replacement ofX if and only if Y is a cofibrant object and there ex-
ists a weak equivalence f : Y → X. We know that Cof = cell(in, jn, n ≥ 0).
This implies that the n-cycles n ≥ 0 are cofibrant. We deduce also that the
sum of cycles are cofibrant objects.

Some cofibrant maps: Gluing nodes and paths.
Let f : c0 → cm and g : c0 → cn two morphisms of graphs. Consider

the pushout diagram:

c0 l−−−−→cm

. ⏐⏐⏐⏐⏐⏐y g

⏐⏐⏐⏐⏐⏐y
cn m−−−−−→X
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The graph X is obtained by identifying a node of cm with a node of
cn. We say also that X is obtained by attaching cm and cn by a node.
The graph X is cofibrant. We can iterate this operation to create more
cofibrant objects: for example we can attach more cycles or identify paths
as follows:

Consider the graph X defined as follows: there exist two cycles cm and
cn, nodes x, y of cm and nodes x0, y0 of cn such that there exist a path
p1 ∈ cm between y and x and a path p2 in cn between y

0 and x0 which have
the same length. We can construct the graph X obtained by attaching cm
and cn by identifying x, x

0 and y, y0. We denote by [x] (resp., [y]) the node
of X corresponding to x (resp., y). In X, we have paths l1, l2 between
[y] and [x] and obtained respectively from p1 and p2 and which have the
same length. There exist also another l3 between [x] and [y] in X. We can
construct the cycles c = l1l3 and l2l3 which have the same length p. Let
f : cp → X whose image is l1l3 and g : cp → X whose image is l2l3. We
can construct the pushout of f + g : cp+ cp → X by jp : cp+ cp → cp. It is
a morphism h : X → Y and Y is obtained from X by identifying l1 and l2.
We say that Y is obtained by gluing the paths l1 and l2.

Theorem 4.2.

A strongly connected graph is a cofibrant object.

Proof.

Let X be a strongly connected graph. There exists a family of cycles
(cni , i ∈ I) and a morphism f :

P
i cni → X surjective on nodes and arcs.

We can write f = h ◦ g where g is a cofibration and h a weak fibration.
Write h : Y → X, without restricting the generality, we can suppose that
the image Y of g is connected. Thus Y can be constructed from a cycle cp
by repeating the following operations: attach a cycle to a point, identifying
two nodes or two arcs. This implies that Y is strongly connected. The
Corollary 4.1 implies that h is an isomorphism, we deduce that f is a
cofibration and X is cofibrant.

The previous construction yields to the following:

Corollary 4.2.

Let X be a directed graph, consider the subgraph c(X) of X which has
the same nodes of X, an arc of X is an arc of c(X) if and only if it is
contained in a strongly connected component of X, the canonical embedding
cX : c(X)→ X is a cofibrant replacement of X.
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Proof.
The graph c(X) is the disjoint union of the strongly connected compo-

nents of X. The Theorem 4.2 implies that c(X) is a cofibrant object, and
the Theorem 4.1 implies that the canonical embedding c(X)→ X is a weak
equivalence.

Application to Eulerian graphs.
We are going to apply these results to Eulerian cycles. Remark that:

Proposition 4.1.
Let X be a finite strongly connected directed graph, there exists an in-

teger n(X), and a morphism f : cn(X) → X surjective on arcs.

Proof.
We fix a node x0 of X. We can index the arcs of X by a1, ..., al. Since X

is strongly connected, there exists a path pi from x0 to s(ai) and a path p0i
from t(ai) to x0 i = 1, ...l. We can construct the cycle p

0
lalpl...p

0
iaipi...p

0
1a1p1

which contains all the arcs of X.

This leads to to the following definition:

Definition 4.1.
An Eulerian cycle in a directed graph X is a cycle f : cn → X such that

f(1) is a bijection.

We have the following proposition:

Proposition 4.2.
A finite directed graph X is Eulerian if and only if it is cofibrant and

obtained from a cycle by identifying nodes.

Proof.
Let X be an Eulerian graph. There exist an integer n and a morphism

f : cn → X surjective on nodes and bijective on arcs; f is a cofibration since
it is the composition of morphisms which identify nodes and henceforth,
we deduce that X is cofibrant since cn is cofibrant. Conversely, a cofi-
brant graph X obtained from a cycle cn by identifying some of its nodes is
Eulerian and the canonical morphism f : cn → X is an Eulerian cycle.

Proposition 4.3.
Consider a graph X constructed recursively as follows: X0 is a cycle cn,

to construct X1, identify two nodes of cn or attach a cycle to a node of cn.
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Suppose defined Xn, to obtain Xn+1, identify two nodes of Xn or attach a
cycle to a node of Xn. Each graph Xn is Eulerian.

Proof.
The graph X0 = cn is Eulerian. Suppose that Xn is Eulerian. Let f :

cp → Xn be an Eulerian cycle. If Xn+1 is obtained from Xn by identifying
two nodes, let g : Xn → Xn+1 be the identifying morphism, g ◦ f is an
Eulerian cycle of X. Suppose that Xn+1 is obtained from Xn by attaching
a cycle cm. The concatenation of the cycles f and cm is an Eulerian cycle
of Xn+1.

Theorem 4.3.
A finite directed connected graph X is obtained by the processus de-

scribed in Proposition 4.3 if and only if for every node x of X, the in and
out degree of x are equal.

Proof.
Suppose that X is an Eulerian graph, then Proposition 4.2 shows that

there exists a sequence of graphs X0 = cn, ...,Xn = X such that Xi+1 is
obtained from Xi by identifying two nodes of Xi. The identification of two
nodes of an Eulerian graph increases the in degree and the out degree of a
node by the same number, we deduce that if Xi is Eulerian, then Xi+1 is
Eulerian. Since cn is Eulerian, we deduce recursively that X is Eulerian.

Conversely, suppose that X is a connected directed finite graph such
that the in degree and the out degree of every node of X coincide, we are
going to show thatX is constructed by the process described at Proposition
4.3. Let x be any node ofX and a0 ∈ X(x, ∗), thenX(t(a0), ∗) is not empty
since its in degree is equal to its out degree, we consider a1 ∈ X(t(a0), ∗),
if t(a1) = x we stop otherwise there exists a2 ∈ X(t(a1), ∗) by continuing
this process we obtain a cycle f1 : cn1 → X injective on arcs. We can
consider the subgraph X1 of X which is the image of f1; X1 is obtained
from cn1 by identifying nodes. If X1 is not X, since X is connected, we have
x2 ∈ X1 such that X(x2, ∗) contains an arc a21 which is not in X1, since
the in degree and the out degree of t(a21) are equal, if t(a

2
1) is distinct of

x2 there exists an arc a
2
2 ∈ X(t(a22), ∗) as above, we conclude the existence

of an injective morphism f2 : cn2 → X whose image is a cycle through
x2. We can construct the subgraph of X which is the union of X1 and the
image of f2. Remark that X2 is obtained from X1 by attaching a cycle
and identifying nodes. We can repeat the process to obtain an increasing
sequence of graphsX1 ⊂ X2 ⊂ ...Xi ⊂ Xi+1 ⊂ ... such thatXi+1 is obtained



Closed models, strongly connected components and Euler graphs 149

from Xi by attaching a cycle and identifying nodes of this cycle. Since X
is finite, we deduce the existence of n such that Xn = X. The Theorem 4.3
shows that X is Eulerian.

Corollary. 4.3. (Euler).

A finite directed graph X is Eulerian if and only if for every node x of
X, the in and out degree of x are equal.

5. Cohomological interpretation.

Let X be a directed graph. We denote by Z(X(0)) (resp., Z(X(1)) the
free commutative group generated by the set X(0) (resp., by the arcs of
X). The elements of Z(X(0)) are called the 0-chains. A 1-chain u of X
is the linear sum

Pi=l
i=1 difni where di is an integer and fni : Pni → X is a

morphism between the path of length ni and X. We denote by Z(ch(X))
the space of 1-chains of X. To each 1-chain u, we associate u0 the element
of Z(X(1)) defined by

Pi=l
i=1 di

Pm=ni−1
m=0 fni(1)(a

ni
m), we will often call u

0

the image of u.

We say that u is positive if and only if di ≥ 0, i = 1, ..., l.
The length lX(u) of u is

P
i ni | di |.

Suppose that X is finite, for each arc a ∈ X(1), we define the mor-
phism fa : P1 → X whose image is a; the fundamental chain [X] of X isP

a∈X(1) fa.

We define the linear map dX1 : Z(ch(X)) → Z(X(0)) such that for
every chain f : Pn → X of X, dX1 (f) = t(f)− s(f). Remark that dX1 (f) =Pi=n−1

i=0 t(f(1)(ani ))− s(f(1)(ani )).

We also define the linear map dX0 : Z(X(0)) → Z such that for every
node x of X, dX0 (x) = 1. We have the relation dX0 ◦ dX1 = 0. We denote by
H1(X) the kernel of d1, and by H0(X) the quotient of the kernel of d0 by
the image of d1.

Each morphism f : X → Y between directed graphs induces natural
morphisms f∗0 : Z(X(0))→ Z(Y (0)) and f∗1 : Z(ch(X))→ Z(ch(Y )).

Remark that if f : cn → X is an n-cycle of X, the composition of f ◦pn
of f with the canonical morphism pn : Pn+1 → cn is a chain such that
dX1 (f ◦ pn) = 0.

Proposition 5.1.
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Let X be a finite directed graph, u =
P

i∈I difni a positive 1-chain,
dX1 (u) = 0 if and only if there exists a finite set of cycles gj : cnj → X such
that the images of

P
i difni and

P
j gj ◦ pnj coincide.

Proof.
Without restricticting the generality, we can assume that di = 1, i ∈ I

since the chain is positive. We are going to give a recursive proof depending
of the cardinality of I. Suppose that I is a singleton, then u = f where
f : Pn → X. The fact that dX1 (f) = 0 is equivalent to say that f factors
by a morphism cn → X.

Suppose that the result is true if the cardinality of I is l. Assume now
that the cardinality of I is l+1. Remark that dX1 (u) =

P
i fni(0)(t(Pni))−

fni(0)(s(Pni)) = 0. This implies the existence of ip such that fnip (0)(s(Pnip )) =
fn0(0)(t(Pn0)) we can thus define the concantenation fnipfn0 of fnp which
is an n0 + np-chain. We consider the family L = {fni , fnipfn0 , i ∈ I} −
{fn0 , fnip} whose cardinal is strictly inferior to the cardinal of I and such
that

P
i6=0,p fni + fnipfn0 has the same image than u. We can apply the

recursive hypothesis to it and obtain a family of cycles gj : cnj → X such
that the images of

P
i difni and

P
j gj ◦ pnj coincide.

This enables to give another proof of the theorem of Euler:

Corollary. 5.1. (Euler).
Let X be a finite connected directed graph, there exists a morphism

f : cn → X bijective on arcs if and only if for every node x of X the in and
the out degrees of x coincide.

Proof.
Suppose that for every node x of X, the in degree in(x) and the out

degree out(x) of X coincide, we have dX1 ([X]) =
P

x∈X(0)(out(x)− in(x)) =
0. The Proposition 5.1 implies the existence of morphism fn1 : cn1 →
X, ..., fnl : cnl → X such that

Pi=l
i=1 fni and [X] have the same image. We

also deduce that
Pi=l

i=1 fni is bijective on arcs since the coefficients of its
image are 1. Since X is connected, we deduce the existence of a morphism
f : cn → X bijective on arcs by making a concatenation of fni , i = 1, ...l.

Remark.
Let X be a finite graph, H0(X) = 0 if and only if X is connected,

and H1(X) = 0 if and only if X is acyclic: this is equivalent to saying
that for every integer n > 0, Hom(cn,X) is empty. In fact, there exists a
bijection between the set of cycles of X and positive elements of H1(X).
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This allows to give another description of the class of weak equivalences
W 0 studied in: a morphism f : X → Y is an element of W 0 if and only if
f∗1 : H1(X)→ H1(Y ) is bijective on positive chains.

Let X be a finite strongly connected finite directed graph. We have seen
that there exists a morphism f : cn → X surjective on nodes and arcs. A
good question is to find the lower bound n(X) of n. We know that if X is
Eulerian, n(X) is the cardinal of the number of arcs of X. The Proposition
5.1 shows that to find n(X), it is sufficient to find a positive chain c such
that d1([X] + c) = 0 and the length of l([X] + c) is minimal.

6. Closed models on RGph.

The cohomological interpretation of the proof ot the Euler theorem suggests
that this theory is related to simplicial sets. In fact, 1-simplicial sets are
often called reflexive graphs, in this part, we are going to study a closed
model in the category RGph of reflexive graphs related to the closed model
that we have just studied in Gph. Consider the category CR which has
two objects 0R and 1R, the morphisms of CR different of the identities are
sR, tR ∈ HomCR(0R, 1R) and a morphism jR ∈ HomCR(1R, 0R) such that
jR ◦ sR = jR ◦ tR = id0R .

The category of presheaves over CR is called the category of reflexive
graphs.

An object X of the category RGph is defined by two sets X(0R) and
X(1R), two morphisms X(sR),X(tR) : X(1R) → X(0R) and a morphism
X(jR) : X(0R) → X(1R) such that X(sR) ◦ X(jR) = X(tR) ◦ X(jR) =
IdX(0R). Let x be an element of X(0R), we will often denote X(jR)(x) by
[x]. Geometrically, a node x ∈ X(0R) is represented by a point; we do not
represent geometrically X(jR)(X(0R)). If a ∈ X(1R) is an arc which is not
an element of X(jR)(X(0R)), it is represented by a directed arrow between
X(sR)(a) and X(tR)(a).

Examples of reflexive graphs are:

The reflexive dot graph DR; DR(0R) and DR(1R) are singletons.

The reflexive arc AR; AR(0R) contains two elements x, y; AR(1R) con-
tains three elements [x], [y] and a such that AR(jR)(x) = [x], AR(jR)(y) =
[y], AR(sR)(a) = x and AR(tR)(a) = y.

The reflexive cycle of length n, cRn ; c
R
n (0R) contains n elements that

we denote by xn0 , ..., x
n
n−1, For i < n − 1, there is a unique arc ani whose

source is xni and whose target is x
n
i+1; there is an arc a

n
n−1 whose source
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is xnn−1 and whose target is x
n
0 . There exists arcs [x

n
0 ], ..., [x

n
n−1] such that

cRn (jR)(x
n
i ) = [x

n
i ].

We are going to transport the closed models defined on Gph to RGph.

We recall the transport theorem due to Crans, see Cisinski [6] 1.4.23.

Theorem 6.1.

Let, C, D be categories such that:

(i) C and D are complete and cocomplete and L : C → D a functor
which has a right adjoint R.

Suppose that C is endowed with a closed model structure (WC , F ibC , CofC)
cofibrantly generated by I and J such that:

(ii) L(I) and L(J) allow the small element argument

(iii) for every arrow d of D which is the transfinite composition of
pushouts of arrows L(c) where c is an element of WC ∩ CofC, the arrow
R(d) is a weak equivalence in C.

Then there exists a closed model structure (WD, CofD, F ibD) on D such
that:

T1 An arrow d of D is in WD if and only if R(d) is in WC

T2 An arrow f of C is in FibD if and only if R(f) is in FibC.

T3 An arrow of D is in CofD if and only it has the left lifting property
with respect to all elements of WD ∩ FibD.

We thus deduce the following result:

Proposition 6.1.

Let C,D be categories of presheaves defined on a set. Let (WC , F ibC , CofC)
be a closed model defined by counting the set of objects (Xl)l∈L of C. We
suppose that FibC is the class of all maps of C. Let F : C → D be a
functor which has a right adjoint G. Suppose that D is complete and co-
complete, then we can transfer (WC , F ibC , CofC) to D to obtain a closed
model (WD, F ibD, CofD) whose class of weak equivalences is defined by
counting the set (F (Xl))l∈L.

Proof.

The condition (i) and (ii) are satisfied since C and D are categories of
presheaves defined on a set. Since the weak cofibrations are isomorphisms,
the condition (iii) is also satisfied. We deduce the class of weak equiv-
alences of the closed model (WD, F ibD, CofD) transfered to D are mor-
phisms f : U → V such that G(f) is a weak equivalence. This is equivalent
to saying that for every l ∈ L, the morphism of sets Hom(Xl, G(U)) →
Hom(Xl, G(V )) which sends h to G(f) ◦ h is an isomorphism. Since G
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is the right adjoint of F , we deduce that this last condition is equivalent
to saying that the morphism Hom(F (Xl), U) → Hom(F (Xl), V ) which
sends h to h ◦f is an isomorphism. Thus (WD, F ibD, CofD) is obtained by
counting the family (F (Xl))l∈L.

We are going to apply the previous proposition to the following situa-
tion: consider the functor fR : C → CR defined on objects by fR(0) = 0R
and fR(1) = 1R. On morphisms, it is defined by fR(s) = sR and fR(t) = tR.

Recall that if S is a presheaf defined on a category D, and F : D0 → D
a functor, the inverse image F ∗S of S is the presheaf defined on D0 such
that for every object X of D0, F ∗S(X) = S(F (X)). When applying this
construction to the functor fR, we obtain that: if X is a reflexive graph,
f∗R(X)(0) = X(0R) and f∗R(X)(1) = X(1R). In particular, f

∗
R(DR) = c1

and f∗R(AR) is the directed graph which has two nodes x and y, there exists
an arc a whose source is x and whose target is y, there exists two loops ax
such that s(ax) = x and ay such that s(ay) = y. The Proposition 5.1 p.23
of [8] insures that the functor f∗R has a left adjoint fR∗ and a right adjoint
fR!.

Proposition 6.2.

The closed models of RGph obtained by transferring the closed models
(W,Cof, F ib) which counts the cycles (cn)n≥0 and (W 0, Cof 0, F ib0) which
counts the cycles (cn)n>0 to RGph by the adjunction pair (fR∗, f

∗
R) are

identic.

Proof.

The Proposition 6.1 implies that the transfer of (W,Cof, F ib) (resp.,
(W 0, Cof 0, F ib0)) on RGph is the closed model defined by counting (cRn )n≥0
(resp., (cRn )n≥1). Thus we have to show that a morphism f : X → Y is right
orthogonal to iRn , j

R
n , n ≥ 0 if and only if it is right orthogonal to iRn , jRn , n ≥

1. On this purpose, it is enough to show that if f is right orthogonal to
iRn , j

R
n , n ≥ 1, then it is right orthogonal to iR0 and jR0 . Suppose that such an

f is not right orthogonal to iR0 or j
R
0 . This equivalent to saying that f does

not induces a bijection between the nodes of X and Y . If f(0) : X(0R)→
Y (0R) is not injective, let x, y ∈ X(0R) such that f(0)(x) = f(0)(y). There
exist morphisms u, v : cR1 → X such that u(0)(x10) = x, v(0)(x10) = y, and
u(1)(a10) = [x] and v(1)(a

1
0) = [y]. Consider the morphism w : cR1 → Y such

that w(0)(x10) = f(0)(x) and w(1)(a10) = [x]. The following diagram does
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not have a filler.
cR1 + cR1 u+ v−−−−−−−−→X⏐⏐⏐⏐⏐⏐y jR1

⏐⏐⏐⏐⏐⏐y f

cR1 w−−−−−→Y

This is a contradiction with the fact that f is right orthogonal to jR1 ;
thus f(0) is injective.

Suppose that f(0) is not surjective. Then there exists a node y of Y
which is not in the image of f(0). Let u : cR1 → Y defined by u(0)(x10) = y
and u(1)(a10) = [y]. The following diagram does not have a filler:

φ−−−→X⏐⏐⏐⏐⏐⏐y i1

⏐⏐⏐⏐⏐⏐y f

cR1 u−−−−−→Y

This is in contradiction with the fact that f is right orthogonal to iR1 .
We deduce that f(0) is surjective.

Definitions 6.1.

Let X be a reflexive graph, the cycle f : cRn → X is degenerated if
there exists i such that f(1)(ani ) = [y] where y is a node of Y . A cycle is
nondegenerated if it is not degenerated.

The following proposition shows that a morphism of WR preserves the
nondegenerated cycles.

Proposition 6.3.

A weak equivalence f : X → Y of RGph induces a bijection on nonde-
generated cycles.

Proof.

Suppose that the image of a cycle u : cRn → X is degenerated. This
implies that there exists a cycle v : cRn−1 → Y which has the same image
than u and such that there exists a commutative diagram:



Closed models, strongly connected components and Euler graphs 155

φ−−−→X⏐⏐⏐⏐⏐⏐y
⏐⏐⏐⏐⏐⏐y f

cRn−1 v−−−−→Y

which has a filler w : cRn−1 → X, and there exists a degenerated mor-
phism h : cRn → cRn−1 such that f ◦ w ◦ h = f ◦ u. Since the image of w
and the image of u are different, we deduce that f does not induces an
injection on n-cycles. This is a contradiction with the fact that f is a weak
equivalence.

There exist morphisms which induces bijection on nondegenerated cy-
cles, but which are not weak equivalences an example is the canonical mor-
phism f : AR → DR. The following result can be compared to [10] Theorem
4.9:

Proposition 6.4.

Let W 0
R be the class of morphisms of RGph which induce a bijection on

nondegenerated cycles. There does not exist a closed model whose class of
weak equivalences is W 0

R.

Proof.

Suppose that such a closed model exists. Consider the canonical mor-
phism f : AR → DR, we can write f = g ◦h where g is a weak fibration and
h a cofibration, the 2-3 property implies that h is a weak cofibration. Write
g : X → DR, suppose that the cardinality of X(0R) is superior or equal
to 2. Let l : cR1 → DR, the pullback of l by g is not a weak equivalence
since its domain contains at least two distinct subgraphs isomorphic to cR1 ,
this implies that the cardinal of X(0R) is 1 and henceforth the cardinal of
X(1R) is 1 since g is a weak equivalence; thus g is the identity. We deduce
that f = h is a weak cofibration.

Let Y be the reflexive graph such that Y (0R) contains two elements u
and v, Y (1R) contains [u], [v] and two elements c, d such that X(sR)(c) =
X(sR)(d) = u and X(tR)(c) = X(tR)(d) = v. Consider the morphism
k : AR → Y such that k(0)(x) = u, k(0)(y) = v and k(1)(a) = c. The
image of the pushout m of f by k is cR1 . This implies that m is not weak
equivalence. This is a contradiction with the fact that the pushout of a
weak cofibration is a weak cofibration.
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We will show now that some properties of the closed model defined on
RGph similar to the properties of the closed model (W,Fib, Cof) defined
on Gph. A reflexive graph X is strongly connected if and only if for every
nodes x and y of X, there exists a reflexive cycle f : cRn → X such that the
image of f(0) contains x and y.

Proposition 6.5.
A strongly connected reflexive graph X is cofibrant.

Proof.
Let X be a strongly connected reflexive graph X. There exists a

graph X 0 in Gph such that fR∗(X
0) = X; X 0(0) = X(0R) and X 0(1) is

X(1R)− {[x], x ∈ X(0)}. The graph X 0 is also strongly connected, thus it
is a cofibrant object of (W,Cof, F ib). Since the map cX0 : φ→ X 0 is a cofi-
bration, this implies that cX0 is an element of cell(in, jn, n ≥ 0). We deduce
that cX : φ→ X is an element of cell(iRn , j

R
n , n ≥ 0) since X = fR∗(X

0) and
left adjoint preserve colimits and henceforth that X is a cofibrant object.

Proposition 6.6.
A morphism f : X → Y between two reflexive graphs is a weak equiv-

alence if and only if it induces a bijection between strongly connected com-
ponents and its restriction to each strongly connected component is an iso-
morphism onto a strongly connected component of Y .

Proof.
Let f : X → Y be a weak equivalence of the closed model defined on

RGph. The morphism fR
∗(f) is also a weak equivalence. The Theorem 4.1

implies that it induces a bijection between the strongly connected compo-
nents of fR

∗(X) and fR
∗(Y ) and the restriction of fR

∗(f) to each connected
component of fR

∗(X) is an isomorphism. Remark that fR
∗(X)(0) = X(0R)

and fR
∗(X)(1) = X(1R), since fR

∗ is just the forgetful functor. This im-
plies that the strongly connected components of fR

∗(X) are of the form
V = fR

∗(U) where U is a strongly connected component of X and that
f induces a bijection between strongly connected components and its re-
striction to each strongly connected component is an isomorphism onto a
strongly connected component of Y .
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