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Abstract

Let E,G be Hausdorff topological vector spaces and let F be a vec-
tor space. Assume there is a bilinear operator h·, ·i : E×F → G such
that h·, yi : E → G is continuous for every y ∈ F . The triple E,F,G is
called an abstract duality pair with respect to G or an abstract triple
and is denoted by (E,F : G). If {Pj} is a sequence of continuous
projections on E, then (E,F : G) is called an abstract triple with
projections. Under appropriate gliding hump assumptions, a uniform
bounded principle is established for bounded subsets of E and pointwise
bounded subsets of F . Under additional gliding hump assumptions,
uniform convergent results are established for series

P∞
j=1 hPjx, yi

when x varies over certain subsets of E and y varies over certain
subsets of F . These results are used to establish uniform countable
additivity results for bounded sets of indefinite vector valued integrals
and bounded subsets of vector valued measures.
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1. Introduction

In the paper [12], D. Noll and W. Stadler introduced an abstract notion
of sectional operators modeled on the natural sectional projections of se-
quence spaces. They established a number of results for such sectional
operators and gave applications to scalar sequence and function spaces.
In [20] Zheng, Cui and Li gave a generalization of sectional operators to
abstract duality pairs and established several uniform convergence results
along with applications.

In this paper we present an abstraction of the coordinate projections
for scalar and vector valued sequence spaces much in the spirit of the ab-
straction of sectional operators given by Zheng, Cui and Li ([20]). We
establish a uniform boundedness principle for abstract duality pairs which
generalizes a scalar uniform boundedness result of Wu, Luo and Cui ([19]).
We also establish several uniform convergence results analogous to those
of Zheng, Cui and Li ([20]). In some sense our presentation requires fewer
assumptions and offers simpler notation than that of sectional operators
and the conclusions are stated in terms of series. Of course, it is possi-
ble to transfer back and forth between projection and sectional operators.
We indicate several applications which give general uniform convergence
results for vector valued sequence spaces, spaces of vector valued integrable
functions and vector valued measures.

We first describe what is meant by an abstract duality pair. Let E,G
be Hausdorff topological vector spaces and let F be a vector space. Assume
there is a bilinear operator h·, ·i : E × F → G such that h·, yi : E → G is
continuous for every y ∈ F . The triple E,F,G is called an abstract duality
pair with respect to G or an abstract triple and is denoted by (E,F : G)
(see [3], [20] for more general versions).

We assume throughout that (E,F : G) is an abstract duality pair with
respect to G and that there exist a sequence of projection operators {Pj}
, Pj : E → E, which are continuous with respect to the topology of E. We
refer to the triple E,F,G and the projections {Pj} as an abstract duality
pair or an abstract triple with projections. One can construct sectional
operators sk as in [12],[19],[20] by setting sk =

Pk
j=1 Pj ; if one assumes

PiPj = 0 when i 6= j, then the sectional operators will satisfy sksl = sl if l ≤
k as required in [12],[19],[20]. It should be noted that these authors require
that the space F is also equipped with sectional operators, an assumption
we do not make.

We give examples below.
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Example 1. Of course, the simplest example of an abstract duality pair is
just a pair of vector spaces E,F in duality where G is the space of scalars.
Here, E can be a locally convex space and F its dual or E can carry the
weak topology σ(E,F ) on E induced by F .

We give examples of abstract duality pairs with projections.

Example 2. Let λ be a scalar valued sequence space which contains c00,
the space of all scalar sequences which are eventually 0. If t ∈ λ, we write
t = {tj} so tj is the jth coordinate of t. The β-dual, λβ, of λ is

λβ = {{sj} :
∞X
j=1

sjtj converges for every t ∈ λ}.

Then λ, λβ form a dual pair with respect to the pairing t·s =P∞
j=1 sjtj .

Let ej be the sequence with 1 in the jth coordinate and 0 in the other
coordinates. Then for every j ∈ N, Pj(t) = tje

j defines the coordinate
projection Pj : λ→ λ from t onto its jth coordinate. Each Pj is obviously
σ(λ, λβ) continuous and in many cases λ will carry a locally convex topology
with respect to which each Pj will be continuous.

More generally, we have

Example 3. Let X,Y be topological vector spaces and let E be a vector
space of X valued sequences which contains c00(X), the space of all X
valued sequences which are eventually 0. Let L(X,Y ) be the space of all
continuous linear operators from X into Y . The β-dual of E with respect
to Y,EβY , is defined to be

EβY = {{Tj} ⊂ L(X,Y ) :
∞X
j=1

Tjxj = x·T converges for every x = {xj} ∈ E}

and we have a bilinear operator (x, T ) → x · T from E × EβY → Y . If
w(E,EβY ) is the weakest topology on E such that all the linear maps
x → x · T from E into Y are continuous for every T ∈ EβY , then E,EβY

is an abstract duality pair with respect to Y , (E,EβY : Y ). If z ∈ X and
j ∈ N, let ej ⊗ z be the sequence with z in the jth coordinate and 0 in
the other coordinates. The space E has the natural coordinate projection
operators Pj defined by Pjx = ej ⊗ xj which are continuous with respect
to w(E,EβY ). Then E,EβY is an abstract duality pair with respect to Y
with projections.
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We give several non-sequence space examples. Let (S,Σ, µ) be a σ-finite
measure space with {Aj} a pairwise disjoint sequence from Σ.

Example 4. Then L1(µ), L∞(µ) form a dual pair under the bilinear map
(f, g) =

R
S fgdµ which is continuous with respect to the natural topolo-

gies and Pjf = χAjf defines a projection operator on L1(µ) which is k·k1
continuous, where χA is the characteristic function of A.

More generally, let X be a Banach space.

Example 5. Let L1(µ,X) be the space of all X valued, Bochner µ inte-
grable functions with the L1 norm kfk1 =

R
S kf(s)k dµ(s) ([2]5.2, [4]II.2).

Then hf, gi =
R
S g(s)f(s)dµ(s) defines a continuous bilinear operator h·, ·i :

L1(µ,X) × L∞(µ) → X when L∞(µ) has its natural topology and Pjf =
χAjf defines a continuous projection operator on L

1(µ,X). Then (L1(µ,X), L∞(µ) :
X) is an abstract duality pair with respect toX with projections. Similarly,
if L∞(µ,X 0) is the space of essentially µ-bounded, X 0 valued functions with
its natural topology, (L1(µ,X), L∞(µ,X 0)) is a dual pair with projections
{Pj}. Dually,

(L∞(µ), L1(µ,X) : X), (L∞(µ,X), L1(µ,X 0)) and (L∞(µ), L1(µ))

are abstract triples with the projections defined as above.

Similarly,

Example 6. Let D(µ,X) [P (µ,X)] be the space of X valued Dunford
[Pettis] µ integrable functions with the norm

kfkD = sup{
Z
S

¯̄
x0f

¯̄
dµ :

°°x0°° ≤ 1}
(see [2]5.2,[4]II.3, for these integrals). Then hf, gi =

R
S g(s)f(s)dµ(s) de-

fines a continuous bilinear operator h·, ·i : D(µ,X) × L∞(µ) → X 00 [h·, ·i :
P (µ,X)× L∞(µ)→ X ] (if x0 ∈ X 0, kx0k ≤ 1,¯̄̄̄

x0
Z
S
g(s)f(s)dµ(s)

¯̄̄̄
=

¯̄̄̄Z
S
g(s)x0f(s)dµ(s)

¯̄̄̄
≤ kgk∞

Z
S

¯̄
x0f(s)

¯̄
dµ(s)

so khf, gik ≤ kfkD kgk∞; for the integrability of gf in the Pettis intre-
grable case, see [4]II.3.8). Also Pjf = χAjf defines a continuous projection
operator on D(µ,X) [P (µ,X)]. Then
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(D(µ,X), L∞(µ) : X 00) [(P (µ,X), L∞(µ) : X)]

is an abstract duality with respect to X 00 [X] with projections. Dually,

(L∞(µ),D(µ,X) : X 00) [(L∞(µ), P (µ,X) : X)]

is an abstract triple with the projections defined similarly.

Note in all of the examples above the projections satisfy PiPj = 0 when
i 6= j so we can define sectional operators sk =

Pk
j=1 Pj which satisfy

sksl = sk when k ≤ l as in [12],[19],[20].
We will give further examples of abstract triples with spaces of measures

later.
We now define the β-dual with respect to an abstract duality pair with

projections.

Definition 7. The β-dual of E with respect to the abstract duality pair
(E,F : G) and projections {Pj} is defined to be

Eβ = {y ∈ F :
∞X
j=1

hPjx, yi converges in G for every x ∈ E}.

We write x · y = P∞
j=1 hPjx, yi when x ∈ E and y ∈ Eβ and we set

PI =
P

j∈I Pj when I is a finite subset of N.
A few remarks are in order. First, the β-dual of E is a subset of F and

our notation does not reflect the dependence of the β-dual on the abstract
duality pair with projections; hopefully, the statements will be clear from
the context. It is also the case that the β-dual can be a proper subset of
F . To see this consider the abstract triple (l∞,D(µ, c0) : l∞) of Example 6,
where S = N and µ is counting measure. Define f : N→ c0 by f(j) = ej .
Then f is Dunford integrable (but not Pettis integrable) so f ∈ D(µ, c0)
and if t = {tj}∞,

R
A tfdµ = χAt [coordinate product]. Let Pj be the

coordinate projections as defined in Example 2 so (l∞,D(µ, c0) : l∞) is an
abstract triple with projections. Let e = {1} be the constant sequence of
1’s. Then

∞X
j=1

hPje, fi =
∞X
j=1

Z
N
Pjefdµ =

∞X
j=1

ej ,



344 Charles Swartz

a series which does not converge in l∞ with respect to k·k∞. Hence, f /∈
(l∞)β with respect to this abstract triple.

We say that E is a weak AK space if for each x ∈ E, x =
P∞

j=1 Pjx,

where the series is convergent with respect to w(E,Eβ). If E is a weak AK
space, then we have Eβ = F so this is a sufficient condition for equality
between F and the β dual.

Next, we should compare this definition with the previous definitions of
β-duals.

If λ is a scalar sequence space as in Example 2 , then the definition
in Example 2 above coincides with the definition above when we consider
the abstract duality pair λ, λβ with respect to the scalar field and the
projections defined in Example 2. To see the dependence of the β-dual on
the abstract duality pair consider the space cc of scalar sequences which are
eventually constant. In the duality pair cc, l

1 the β-dual in this pair is l1

while the β-dual in the classical setting of sequence spaces is cs, the space
of convergent series ([7]).

If X,Y,E are as in Example 3 , then the β-dual as defined in Example
3 coincides with the definition above when we consider the abstract duality
pair E,EβY with respect to Y and the projections defined in Example 3.

In Examples 4,5 and Example 6 for the Pettis integral, the β-dual is
just L∞(µ). This follows from the countable additivity of the integrals in
each case. In each case we would have

P∞
j=1 hPjf, gi =

P∞
j=1

R
Aj

gfdµ =R
∪∞j=1Aj

gfdµ for g ∈ L∞(µ) ([4] II.3.5 ).

We now consider one of our main results which depends on a gliding
hump assumption. An interval I in N is a subset of the form I = {j ∈
N : m ≤ j ≤ n},m ≤ n; a sequence of intervals {Ij} is increasing if
max Ij < min Ij+1. Let w(E,E

β) be the weakest topology on E such that
the linear maps x → x · y = P∞

j=1 hPjx, yi are continuous from E into G

for every y ∈ Eβ.

Definition 8. The space E (or the triple (E,F : G)) has the zero gliding
hump property (0-GHP) if whenever xk → 0 in E and {Ik} is an increas-
ing sequence of intervals, there is a subsequence {nk} such that the seriesP∞

k=1 PInkx
nk is w(E,Eβ) convergent in E.

In the case when E is a sequence space, in the usual definition of the β-
dual the series

P∞
k=1 PInkx

nk in the definition above is required to converge
pointwise or coordinatewise. Of course, in this abstract setting there is no
notion of pointwise convergence; in this case there are 2 natural choices for
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the convergence of the series
P∞

k=1 PInkx
nk , namely the topology w(E,Eβ)

or the original topology of E.. We have chosen the topology w(E,Eβ)
because it is often the weaker topology and it seems to be the correct
topology for the proof of Theorem 13. Also, if λ is a scalar sequence space
and if the series

P∞
k=1 PInkx

nk is coordinatewise convergent to an element

x ∈ λ, then the series is σ(λ, λβ) convergent to x so we have agreement
with the definition above. (The β-dual of a K-space is often contained
in the topological dual so the weak topology w(E,Eβ) is weaker than the
original topology (see [7], page 68, for examples).) In the papers [WCL] and
[20], the authors have chosen the original topology of E and used sectional
operators.

Examples of sequence spaces with 0-GHP can be found in [16], Ap-
pendices B and C; further examples of function and measure spaces with
0-GHP will be given later. The concept of 0-GHP was introduced by Lee
Peng Yee ([9]).

If E is a Banach space having projections {Pj} which satisfy the con-
dition that PiPj = 0 when i 6= j and sup{kPIk : I ⊂ N finite} = M < ∞
and if Y is any locally convex space and F ⊂ L(E, Y ), then(E,F : Y ) is an
abstract triple under the map (x, T )→ Tx and E has 0-GHP. For if xk → 0
in E and {Ik} is an increasing sequence of intervals, there is a subsequence
{nk} such that

P∞
k=1 kxnkk <∞ and then

∞X
k=1

°°°PInkxnk°°° ≤M
∞X
k=1

kxnkk <∞

and the series
P∞

k=1 PInkx
nk converges to some x ∈ E by completeness.

But then the series is w(E,F ) convergent to x. More generally, any K
space where the projections satisfy the conditions above has 0-GHP (see
[15] for the definition of K space and examples; there exist non-complete
normedK spaces). In particular, these remarks give the following examples
of triples with 0-GHP.

Example 9. (L1(µ,X), L∞(µ) : X), (L∞(µ), L1(µ,X) : X) and the other
triples in Example 5 have 0-GHP. As another example, let 1 < p < ∞
and 1

p +
1
q = 1 and Lp(µ,X) be the space of strongly measurable functions

which are pth power integrable with the norm kfkp = (
R
S kf(s)k

p dµ(s))1/p.
Then ( Lp(µ,X), Lq(µ,X 0)) form a dual pair under the pairing hf, gi =R
S hf(s), g(s)i dµ(s) and if {Aj} is a pairwise disjoint sequence from Σ,
then Pjf = χAjf defines a sequence of continuous projections satisfying
the condition above and ( Lp(µ,X), Lq(µ,X 0)) has 0-GHP.
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Example 10. Similarly the triple (L∞(µ), P (µ,X) : X) of Example 6 has
0-GHP.

As a dual result, we have

Example 11. The triple (P (µ,X), L∞(µ) : X) and the projections of Ex-
ample 6 has 0-GHP. (Recall that P (µ,X) is not complete so the remark
above does not apply ([2] Example 5.13, [5]).) Suppose {fk} ⊂ P (µ,X)
converges to 0 and for convenience assume kfkk < 1/2k. Let {Ik} be an in-
creasing sequence of intervals and set Bk = ∪j∈IkAj . Let f be the pointwise
limit of the series

∞X
k=1

PIkfk =
∞X
k=1

χBk
fk.

We claim that f ∈ P (µ,X). Obviously f is scalarly measurable and if
x0 ∈ X 0, then x0f =

P∞
k=1 x

0χBk
fk and |x0f | =

P∞
k=1 |x0χBk

fk| pointwise.
By the Monotone Convergence Theorem,Z

S

¯̄
x0f

¯̄
dµ =

∞X
k=1

Z
Bk

¯̄
x0fk

¯̄
dµ ≤

°°x0°° ∞X
k=1

kfkk ≤
°°x0°° ∞X

k=1

1/2k

so f is scalarly integrable. We claim that f is Pettis integrable. Let A ∈ Σ.
Since ∞X

k=1

°°°°Z
A∩Bk

fkdµ

°°°° ≤ ∞X
k=1

kfkk ≤
∞X
k=1

1/2k,

the series
P∞

k=1

R
A∩Bk

fkdµ converges to some xA ∈ X since X is complete.
Now x0(xA) =

P∞
k=1

R
A∩Bk

x0fkdµ and |x0f | ≥ |
Pn

k=1 χA∩Bk
fk| for n ∈ N

and x0 ∈ X 0 so the Dominated Convergence Theorem impliesZ
A
x0fdµ =

∞X
k=1

Z
A∩Bk

x0fkdµ.

Hence xA =
R
A fdµ ∈ X and f is Pettis integrable. Let g ∈ L∞(µ).

Then°°°°°gf −
nX

k=1

gχBk
fk

°°°°° = sup{
Z
S

¯̄̄̄
¯̄x0 ∞X

k=n+1

gfk

¯̄̄̄
¯̄ dµ : °°x0°° ≤ 1}

≤ sup{
∞X

k=n+1

Z
Bk

¯̄
x0gfk

¯̄
dµ :

°°x0°° ≤ 1} ≤ ∞X
k=n+1

kfkk kgk∞

so the series
P∞

k=1 χBk
fk is w(P (µ,X), L

∞(µ)) convergent to f . Hence, the
triple has 0-GHP.
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Example 12. We give an example of a non-complete normed space whose
projections satisfy the conditions above and which has 0-GHP. Consider
Example 5 and let Y be a subspace of X and let L1(µ, Y ) be the sub-
space of L1(µ,X) which consists of those functions with values in Y . Sup-
pose {fk} → 0 in L1(µ, Y ) and {Ik} is an increasing sequence of inter-
vals. Note each PIk is a projection of norm 1 and PiPj = 0 for i 6= j.
There is a subsequence {nk} such that

P∞
k=1 kfnkk1 < ∞. Then the

series
P∞

k=1 PInkfnk is absolutely convergent in L1(µ,X) and the seriesP∞
k=1 PInkfnk is pointwise convergent to a function f with values in Y

and the series is w(L1(µ, Y ), L∞(µ)) convergent to f . Thus, the triple
(L1(µ, Y ), L∞(µ) : X) has 0-GHP.

We now establish the first of our main results which is a uniform bound-
edness result. For this and later results we use a signed version of a result of
Antosik and Mikusinski for infinite matrices. An infinite matrixM = [mpq]
with values in a topological vector space Z is a signed K matrix if the
columns of M converge in Z and every increasing sequence of integers
{mq} has a further subsequence {nq} and there exists a sequence of signs
{sq} such that the series

P∞
q=1 sqmpnq converges and limp

P∞
q=1 sqmpnq ex-

ists in Z. The signed version of the Antosik-Mikusinski Theorem asserts
that the diagonal of M ,{mpp}, converges to 0 (see [15], [16] for this and
more general versions of the theorem; the signed version of the theorem is
due to Stuart ([14])). If all of the signs can be chosen equal to 1, the matrix
M is called a K matrix.

Theorem 13. Assume that E has 0-GHP and for every j, PjE is barrelled
under the topology of E. If A ⊂ E is bounded and B ⊂ Eβ is pointwise
bounded on E, then {x · y = P∞

j=1 hPjx, yi : y ∈ B, x ∈ A} is bounded in
G.

Proof. If the conclusion fails to hold, there exist a closed symmetric
neighborhood of 0, U , in G, {yk} ⊂ B, {xk} ⊂ A, 0 < sk → 0 such
that xk · skyk /∈ U . Pick a closed, symmetric neighborhood of 0, V , such

that V + V ⊂ U . For k1 = 1 pick m1 such that sk1
Pm1

j=1

D
Pjx

k1 , yk1
E
/∈

U . By the continuity of the Pj , PjA is bounded in E with respect to

the topology of E,
D
·, yk

E
: PjE → G is continuous with respect to the

topologies of E and G and {
D
·, yk

E
: k ∈ N} is pointwise bounded on

PjE. Since PjE is barrelled, for every j, {Pjxk · yk : k} is bounded in
G. Therefore, limk sk

D
Pjx

k, yk
E
= 0 in G for every j. Hence, there exists
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k2 > k1 such that sk
Pm1

j=1

D
Pjx

k, yk
E
∈ V for k ≥ k2. Pick m2 > m1 such

that sk2
Pm2

j=1

D
Pjx

k2 , yk2
E
/∈ U . Put I2 = [m1 + 1,m2]. Then

sk2
X
j∈I2

D
Pjx

k2 , yk2
E
= sk2

m2X
j=1

D
Pjx

k2 , yk2
E
− sk2

m1X
j=1

D
Pjx

k2 , yk2
E
/∈ V.

Continuing this construction produces an increasing sequence {kp} and
an increasing sequence of intervals {Ip} such that

(#) skp
X
j∈Ip

D
Pjx

kp , ykp
E
/∈ V.

Define an infinite matrix

M = [mpq] = [
√
skp

X
l∈Iq

D√
skqPlx

kq , ykp
E
] = [
√
skp

*X
l∈Iq

√
skqPlx

kq , ykp

+
].

We claim that M is a K matrix. First, the columns of M converge to 0
since {yp} is pointwise bounded on E. Next, since

√
skqx

kq → 0 in E, the
0-GHP implies that given any subsequence there is a further subsequence
{rq} such that

x =
∞X
q=1

p
skrq

X
l∈Irq

Plx
krq ∈ E,

where the series converges in w(E,Eβ). By the w(E,Eβ) convergence of
the series for x, we have

∞X
q=1

mprq =
∞X
q=1

√
skp

*p
skrq

X
l∈Irq

Plx
krq , ykp

+
= x ·√skpykp

and x ·√skpykp → 0 since {yp} is pointwise bounded on E. Therefore,M is
a K matrix and by the Antosik-Mikusinski Matrix Theorem the diagonal
of M converges to 0. But, this contradicts (#). 2

Remark 14. The proof of Theorem 13 shows that the assumption in The-
orem 13 that the spaces PjE are barrelled can be replaced by the assump-
tion that these are A spaces; A spaces have the property that pointwise
bounded families of continuous linear operators on these spaces are uni-
formly bounded on bounded subsets (see [10], [15] for the definition and
properties).
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The scalar version of Theorem 13 when E,F is a dual pair of vector
spaces gives a generalization of one part of Theorem 1 of [19] where it is
assumed that E is a normed AK space. See also Theorem 8.13 of [16] for
a scalar sequence space version of the result.

We give an application of Theorem 13 to vector valued sequence spaces
as in Example 3.

Example 15. Assume the notation as in Example 3 and further assume
that E has 0-GHP with respect to a locally convex topology and that the
projections Pjx = ej ⊗ xj are continuous. If the space X is barrelled (an
A space) and if the spaces X and PjE = ej ⊗X are isomorphic, Theorem
13 (Remark 14) implies that if A ⊂ E is bounded in E and B ⊂ EβY

is pointwise bounded on E, then {x · T =
P∞

j=1 Tjxj : x ∈ A, T ∈ B} is
bounded in Y .

In particular, Example 15 is applicable to the spaces c0(X), l
p(X) (1 ≤

p ≤ ∞),cs(X), bs(X) when X is a normed, barrelled (A space) space (see
Appendix C of [16] for the definitions and topologies of these spaces). It
should be noted that there are non-complete, normed, barrelled (A) spaces
X so the spaces above may fail to be complete.

In the case of scalar sequence spaces as in Example 2, the spaces PjE
are trivially barrelled so if E has 0-GHP, then σ(Eβ, E) bounded subsets
are uniformly bounded on bounded subsets of E. Therefore, if E0 = Eβ,
then E is a Banach-Mackey space ([18] 10.4) in this case, and if E is also
normed, E is barrelled. These statements are similar to those in Theorem
1 of [12] and Corollaries 1 and 2 of [WCL] where different assumptions are
made.

From Theorem 13 and Example 10, we have a uniform boundedness
result for the Pettis integral.

Corollary 16. Suppose µ is σ-finite with S = ∪∞j=1Aj , µ(Aj) < ∞. Let
A ⊂ L∞(µ) be bounded and B ⊂ P (µ,X) be w(P (µ,X), L∞(µ)) bounded
. Then H = {

R
S gfdµ : g ∈ A, f ∈ B} is bounded.

Proof. If f ∈ P (µ,X), g ∈ L∞(µ), then

f · g =
∞X
j=1

hPjf, gi =
∞X
j=1

Z
Aj

gfdµ =

Z
S
gfdµ.

2
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It follows from Corollary 16 that if B ⊂ P (µ,X) is pointwise bounded
on L∞(µ), then

sup
f∈B

sup{
°°°°Z

C
fdµ

°°°° : C ∈ Σ} <∞.

The expression sup{k
R
C fdµk : C ∈ Σ} = kfk0 defines a norm on

P (µ,X) which is equivalent to the norm previously defined ([11] p.198)
so subsets of P (µ,X) which are pointwise bounded on L∞(µ) are norm
bounded, a conclusion like that of the classical Uniform Boundedness Prin-
ciple. Recall the space of Pettis integrable functions is not complete but is
barrelled ([5]).

We next establish several uniform convergence results for abstract du-
ality pairs with projections.

Theorem 17. Assume that E has 0-GHP. If y ∈ Eβ and xi → 0 in E,
then the series

P∞
j=1

­
Pjx

i, y
®
converge uniformly for i ∈N.

Proof. If the conclusion fails, there exists a symmetric neighborhood
of 0, U , in G such that for every k there exist mk > k, pk such thatP∞

j=mk
hPjxpk , yi /∈ U . Choose a symmetric neighborhood V such that V +

V ⊂ U . For k = 1 letm1 and p1 satisfy this condition so
P∞

j=m1
hPjxp1 , yi /∈

U . There exists n1 > m1 such that
P∞

j=n1+1 hPjxp1 , yi ∈ V . ThenPn1
j=m1

hPjxp1 , yi /∈ V . There exists N1 such that
Pn

j=m

­
Pjx

i, y
®
∈ V for

1 ≤ i ≤ p1, n > m ≥ N1. Let p2,m2 > N1, n2 > m2 satisfy the condition
above for k = N1 so

n2X
j=m2

hPjxp2 , yi /∈ V

(this is an abuse of the notation above but avoids multiple subscripts,
should cause no difficulty and makes the notation more palatable). Then
p2 > p1 by the choice of N1. Continuing this construction produces in-
creasing sequences {pk}, {mk}, {nk},mk+1 > nk > mk with

(∗)
nkX

j=mk

hPjxpk , yi /∈ V.

Set Ik = [mk, nk] so {Ik} is an increasing sequence of intervals. Since
xk → 0, the 0-GHP implies there exists a subsequence {qk} of {pk} such
that

x =
∞X
k=1

PIqkx
qk ∈ E,
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where the series is w(E,Eβ) convergent. Condition (*) implies the series

∞X
j=1

hPjx, yi

doesn’t converge which gives the desired contradiction. 2
A similar result for sectional operators was established in Theorem 12

of [20]; see also Theorem 2.22 of [16] for a scalar sequence version. Even in
the case of scalar sequence spaces the conclusion of Theorem 17 may fail
to hold without some assumptions on the space (Example 2.23 of [16]).

We now continue to establish other uniform convergence results which
require different gliding hump assumptions.

Definition 18. The space E (or the triple (E,F : G)) has the signed
weak gliding hump property (signed WGHP) if whenever x ∈ E and {Ik}
is an increasing sequence of intervals, there exist a subsequence {pk} and
a sequence of signs {sk} such that the series

P∞
k=1 skPIpkx is w(E,E

β)
convergent in E. If all of the signs can be chosen equal to 1, E is said to
have the weak gliding hump property (WGHP).

Remark 19. See [16], Appendices B and C, for the sequence space def-
initions and examples where as noted earlier the series

P∞
k=1 skPIpkx is

required to converge pointwise, an option not available in this abstract set-
ting. In [20] there is a similar definition. Note that the signed-WGHP
does not depend on the topology of E but on the topology w(E,Eβ); the
signed-WGHP is an algebraic condition.

We give a condition which is sufficient for a triple to have WGHP.

Notation 20. If I ⊂ N is an infinite set whose elements are arranged in
a sequence {nj} and {xj} ⊂ E, we write

P
j∈I xj =

P∞
j=1 xnj provided the

series
P∞

j=1 xnj is w(E,E
β) convergent to an element of E.

Definition 21. The space E (or the triple (E,F : G)) is monotone if for
every x ∈ E and I ⊂ N the series

P
j∈I Pjx is w(E,E

β) convergent to an
element in E, denoted by PIx.

Remark 22. A scalar (or vector) sequence space λ is monotone if χIx ∈ λ
when x ∈ λ and I ⊂ N, where χIx is the coordinate product of χI and x.
This means the series

P
j∈I xje

j is coordinatewise convergent to χIx. If the

element χIx ∈ λ, then the series
P

j∈I xje
j is σ(λ, λβ) convergent to χIx so

the definition above agrees with the scalar (vector) definition of monotone.
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Examples of monotone sequence spaces are given in [16].
As is in the sequence space case, a monotone space has WGHP.

Proposition 23. If E is monotone, then E has WGHP.

Proof. Suppose x ∈ E and {Ij} is an increasing sequence of intervals.
If I = ∪∞j=1Ij , then

PIx =
∞X
k=1

X
j∈Ik

Pjx =
∞X
k=1

PIkx

is w(E,Eβ) convergent to an element of E. 2

Example 24. The triple (L1(µ,X), L∞(µ) : X) of Example 5 is monotone
and, therefore, has WGHP. Suppose f ∈ L1(µ,X) and I ⊂ N. Let h be the
pointwise limit of the series

P
j∈I Pjf =

P
j∈I χAjf . We claim PIf = h.

For this, let g ∈ L∞(µ) = L1(µ,X)β. Then, by countable additivity,X
j∈I

Pjf · g =
X
j∈I

Z
Aj

gfdµ =

Z
∪j∈IAj

gfdµ =

Z
S
ghdµ

justifying the claim. Similarly, (L∞(µ), L1(µ,X) : X) and ( Lp(µ,X),
Lq(µ,X 0)) are monotone and have WGHP.

Example 25. The abstract triple (L∞(µ), P (µ,X) : X) with the projec-
tions Pjg = χAjg in Example 6 is monotone. Note L∞(µ)β = P (µ,X)
by the countable additivity of the Pettis integral ([4]II.3.5). We show that
L∞(µ) is monotone and so has WGHP . Let I = {nj} ⊂ N and g ∈ L∞(µ).
Let h be χ∪∞j=1Anj g. We claim that the series

P∞
j=1 Pnjg =

P∞
j=1 χAnj

g

is w(L∞(µ), P (µ,X)) convergent to h. By the countable additivity of the
Pettis integral, if f ∈ P (µ,X), then

∞X
j=1

Pnjg · f =
∞X
j=1

Z
Anj

gfdµ =

Z
∪∞j=1Anj

gfdµ =

Z
S
hfdµ

justifying the claim. Thus, L∞(µ) is monotone and has WGHP. The same
proof shows that the triple (P (µ,X), L∞(µ) : X) is monotone.

Further examples of monotone spaces other than sequence spaces will
be given later.

We establish a uniform convergence result for triples with signedWGHP.

Theorem 26. Assume E has signed-WGHP. If {yk} ⊂ Eβ is such that

limk

D
x, yk

E
exists for each x ∈ E, then for each x the series

P∞
j=1

D
Pjx, y

k
E

converge uniformly for k ∈ N.
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Proof. If the conclusion fails, there is a symmetric neighborhood of 0,
U , in G such that for every k there exist pk, nk > mk > k such that

(∗)
nkX

j=mk

hPjx, ypki /∈ U.

For k = 1 this condition implies there exist p1, n1 > m1 > 1 such thatPn1
j=m1

hPjx, yp1i /∈ U . There existsm0 > n1 such that
Pn

j=m

D
Pjx, y

k
E
∈ U

for 1 ≤ k ≤ p1, n > m > m0. The condition (*) for k = m0 implies there ex-
ist p2, n2 > m2 > m0 such that

Pn2
j=m2

hPjx, yp2i /∈ U . Then p2 > p1. Con-
tinuing this construction produces increasing sequences {pk}, {mk}, {nk}
with mk+1 > nk > mk and

(∗∗)
nkX

j=mk

hPjx, ypki /∈ U.

Set Ik = [mk, nk] so {Ik} is an increasing sequence of intervals. Define
a matrix

M = [mij ] = [
X
l∈Ij

hPlx, ypii].

We claim that M is a signed K-matrix. First, the columns of M con-
verge by hypothesis. Next, given any subsequence there exist a further
subsequence {rj} and signs {sj} such that the series

P∞
j=1 sjPIrjx = z is

w(E,Eβ) convergent in E. Then

∞X
j=1

sjmirj =
∞X
j=1

sj
X
l∈Irj

hPlx, ypii = hz, ypii

and {hz, ypii} converges in G by hypothesis. Hence, M is a signed K-
matrix and the diagonal of M converges to 0 by the signed version of the
Antosik-Mikusinski Matrix Theorem. But, this contradicts (**). 2

A similar result was established in Theorem 5 of [20]; see also Theorems
2.26 and 11.14 of [16] for the sequence space result. The results in [16] were
used to establish the weak sequential completeness of β-duals (see also [14]).
Again without assumptions on the space E the conclusion of Theorem 26
may fail ([16], Example 2.30).

The results in Theorems 17 and 26 require different gliding hump as-
sumptions and these gliding hump assumptions are independent of one
another; the space c has 0-GHP but not WGHP while the space c00 has
WGHP but not 0-GHP (see Proposition B.29 of [16] for a relationship).
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Using Theorems 17 and 26 we can obtain a more general result for
spaces with both 0-GHP and signed-WGHP.

Theorem 27. Assume E has 0-GHP and signed-WGHP. If {yk} ⊂ Eβ is

such that limk

D
x, yk

E
exists for each x ∈ E and xk → 0 in E, then the

series
P∞

j=1

D
Pjx

k, yl
E
converge uniformly for k, l ∈ N.

Proof. If the conclusion fails, as in the proof above, there exists a neigh-
borhood, U , of 0 in G such that for every k there exist k < mk < nk, pk, qk
such that

Pnk
j=mk

hPjxpk , yqki /∈ U . By this condition for k = 1 there exist
p1, q1, n1 > m1 > 1 such that

Pn1
j=m1

hPjxp1 , yq1i /∈ U . Now by Theorems

17 and 26 above there existsm0 > n1 such that
Pq

j=p

D
Pjx

k, yl
E
∈ U for k ∈

N, 1 ≤ l ≤ q1 and 1 ≤ k ≤ p1, l ∈ N, q > p > m0. By the condition above
for k = m0 there exist p2, q2, n2 > m2 > m0 such that

Pn2
j=m2

hPjxp2 , yq2i /∈
U . By the choice of m0 we have p2 > p1, q2 > q1. Continuing this construc-
tion produces increasing sequences {pk}, {qk}, {mk}, {nk},mk+1 > nk >
mk with

(#)
nkX

j=mk

hPjxpk , yqki /∈ U.

Set Ik = [mk, nk] so {Ik} is an increasing sequence of intervals. Define
a matrix

M = [mij ] = [

njX
l=mj

hPlxpj , yqii] = [
D
PIjx

pj , yqi
E
].

We claim thatM is aK-matrix. First the columns ofM converge by hy-
pothesis. Next, by 0-GHP, given any increasing sequence of integers, there
is a subsequence {rk} such that the series x =

P∞
k=1 PIrkx

prk is w(E,Eβ)
convergent in E. Then

∞X
k=1

mirk =
∞X
k=1

D
PIrkx

prk , yqi
E
= hx, yqii

and {hx, yqii} converges. Hence, M is a K-matrix and by the Antosik-
Mikusinski Matrix Theorem the diagonal of M converges to 0. But this
contradicts (#). 2

There is a version of this result for scalar sequences given in Theorem
2.39 of [16] where the hypothesis that λ has signed WGHP is needed.

We give an application of Theorem 27 to weak convergence in L∞(µ).
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Corollary 28. Suppose {gk} ⊂ L∞(µ) is such that lim
R
S gkfdµ exists for

every f ∈ L1(µ,X). Then if {fk} ⊂ L1(µ,X) converges to 0 in L1(µ,X),
the family of vector measures H = {

R
· gkfjdµ : j, k ∈ N} is uniformly

countably additive.

Proof. This follows from Theorem 27 and Examples 9 and 24 applied to
the triple (L1(µ,X), L∞(µ) : X) since we can take {Aj} to be an arbitrary
pairwise disjoint sequence from Σ. 2

From Examples 9 and 24 and Theorem 27, we also have a dual result
for sequences {fk} ⊂ L1(µ,X) such that lim

R
S gfkdµ exists for every g ∈

L∞(µ) and gk → 0 in L∞(µ).
A similar result holds for the triple ( Lp(µ,X), Lq(µ,X 0)) (Examples 9

and 24, Theorem 27).

We give a similar application of Theorem 27 to weak convergence in the
space of Pettis integrable functions (Example 6).

Corollary 29. Suppose {fk} ⊂ P (µ,X), the space of Pettis integrable
functions (Example 6), is such that limk

R
S gfkdµ exists for every g ∈

L∞(µ). Then if gk → 0 in L∞(µ), the family of vector measures H =
{
R
· gjfkdµ : j, k ∈ N} is uniformly countably additive.

Proof. This follows from Examples 10 and 25 and Theorem 27. 2

A similar dual result can be established for weak convergence in the
triple (P (µ,X), L∞(µ) : X). By Examples 11 and 25 and Theorem 27 if the
family {gk} ⊂ L∞(µ) is such that lim

R
S gkfdµ exists for every f ∈ P (µ,X)

and fk → 0 in P (µ,X), then the family of vector measures H = {
R
· gkfjdµ :

j, k ∈ N} is uniformly countably additive.
The conclusions in Corollaries 28 and 29 and the observation above also

imply that the families H in the conclusions are uniformly µ continuous.
This follows from Theorem 3.14.1 of [17] since each indefinite Pettis inte-
gral is µ continuous. See [6] IV.8.9, IV.8.11 and IV.9.1 for applications of
uniform countable additivity and uniform µ-continuity.

We give an example of a space of measures with WGHP and 0-GHP
and give an application of Theorem 27. Let (S,Σ, µ) be a measure space
with {Aj} a pairwise disjoint sequence from Σ .

Example 30. Let B(Σ) be the space of all bounded, Σ-measurable func-
tions defined on S with the sup-norm. Let X be a Banach space and let
ca(Σ,X : µ) be the space of all countably additive set functions ν : Σ→ X
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which are µ continuous (i.e., limµ(A)→0 ν(A) = 0). We define a com-
plete norm on ca(Σ,X : µ) by setting kνk = sup{kν(A)k : A ∈ Σ}
(there is an equivalent norm using the semi-variation of ν; see [6]IV.10.4).
Then (ca(Σ,X : µ), B(Σ) : X) is an abstract triple with respect to the
pairing hν, fi =

R
S fdν (see [6] IV.10 for integration of scalar functions

with respect to vector valued measures especially IV.10.8(c) for integrating
bounded functions). Define projections Pj on (ca(Σ,X : µ), B(Σ) : X) by
Pjν(·) = ν(Aj ∩ ·). We also have ca(Σ,X : µ)β = B(Σ) by the count-
able additivity of the integral ([6]IV.10.8(d)). We claim that (ca(Σ,X :
µ), B(Σ) : X) is monotone and, therefore, has WGHP. Let ν ∈ ca(Σ,X : µ)
and I = {nj} ⊂ N. If f ∈ B(Σ) , by the countable additivity of the integral,

X
j∈I
hPjν, fi =

∞X
j=1

Z
Anj

fdν =

Z
∪∞j=1Anj

fdν.

Thus, the series X
j∈I

Pjν

converges in w(ca(Σ,X : µ), B(Σ)) to PIν = ν((∪∞j=1Anj )∩ ·) and ca(Σ,X :
µ) is monotone. We next claim that (ca(Σ,X : µ), B(Σ) : X) has 0-GHP.
Suppose kνkk→ 0 and {Ik} is an increasing sequence of intervals. Pick nk
such that kνnkk ≤ 1/2k. For every A ∈ Σ,

∞X
k=1

kνnk(A)k ≤
∞X
k=1

kνnkk ≤
∞X
k=1

1/2k <∞

so the series
P∞

k=1 νnk(A) is absolutely convergent. Let ν(A) =
P∞

k=1 νnk(A).
By the Vitali-Hahn-Saks Theorem ([4]I.4.10), ν is countably additive and
µ continuous so ν ∈ ca(Σ,X : µ). Moreover, if f ∈ B(Σ),°°°°°
∞X

k=N

Z
S
fdνnk

°°°°° ≤
∞X

k=N

°°°°Z
S
fdνnk

°°°° ≤ ∞X
k=N

kfk∞ 4 kνnkk ≤ 4 kfk∞
∞X

k=N

1/2k

(see [6]IV.10.8(c) and IV.10.4 for the inequality above) so the series

∞X
k=1

Z
S
dνnk

converges to ν in w(ca(Σ,X : µ), B(Σ)). This establishes the claim.
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From Theorem 27 we have a result similar in spirit to the Nikodym Con-
vergence Theorem ([6]IV10.6) except that we have a stronger hypothesis
and a stronger conclusion.

Corollary 31. Suppose νk → 0 in ca(Σ,X : µ) and {fk} ⊂ B(Σ) is such
that limk

R
S fkdν exists for every ν ∈ ca(Σ,X : µ). Then the family of

vector measures H = {
R
· fkdνl : k, l ∈ N} is uniformly countably additive

and uniformly µ continuous.

Proof. The first conclusion follows from Theorem 27. The last conclu-
sion follows from Theorem 3.14.1 of [17]. 2

Similarly, if ca(Σ,X) is the space of countably additive, X valued mea-
sures with the norm as defined above, (ca(Σ,X), B(Σ) : X) forms an ab-
stract triple under the map hν, fi =

R
S fdν and with projections as defined

above is monotone and has 0-GHP (in the proof of 0-GHP one employs the
Nikodym Convergence Theorem ([6]IV.10.6) in place of the Vitali-Hahn-
Saks Theorem). Thus, a result analogous to Corollary 31 holds in this
case.

The results in Theorems 17 and 26 give conditions for the series to
converge uniformly over subsets of either E or Eβ. We can obtain a similar
result where the series converge uniformly over subsets of both E and Eβ

as in Theorem 27 by imposing another gliding hump condition.

Definition 32. The space E (or the triple (E,F : G)) has the signed
strong gliding hump property (signed SGHP) if whenever {xk} is bounded
in E and {Ik} is an increasing sequence of intervals, there exist a subse-
quence {pk} and a sequence of signs {sk} such that the series

P∞
k=1 skPIpkx

pk

is w(E,Eβ) convergent in E. If all the signs can be chosen equal to1, then
E has the strong gliding hump property (SGHP).

Note that the SGHP depends on the duality triple but also on the
topology of the space E. See [16] for the scalar and vector space definitions
and examples. A different definition is given in [20] where the sequence
{xk} is required to be w(E,Eβ) bounded.

Theorem 33. Assume E has signed SGHP. If y ∈ Eβ and B ⊂ E is
bounded, then the series

P∞
j=1 hPjx, yi converge uniformly for x ∈ B.
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Proof. If the conclusion fails, then as in previous arguments there exist
a symmetric neighborhood U in G,mk+1 > nk > mk, x

k ∈ B such that

(∗)
nkX

j=mk

D
Pjx

k, y
E
/∈ U.

Put Ik = [mk, nk]. By the signed SGHP, there exist an increasing
sequence {pk} and signs {sk} such that x =

P∞
k=1 skPIpkx

pk ∈ E with the

series being w(E,Eβ) convergent. But then the series

∞X
j=1

hPjx, yi =
∞X
k=1

sk

nkX
j=mk

D
Pjx

k, y
E

fails the Cauchy criterion by (*). 2
A similar result is obtained in Theorem 8 of [20] under different hypoth-

esis. See also Theorem 2.16 of [16].
Using Theorem 33 we can obtain a more general result where the series

converge uniformly over subsets of both E and Eβ.

Theorem 34. Assume that E has signed SGHP. If {yk} ⊂ Eβ is such that

limk

D
yk, x

E
exists for every x ∈ E and B ⊂ E is bounded, then the seriesP∞

j=1

D
Pjx, y

k
E
converge uniformly for k ∈ N, x ∈ B.

Proof. If the conclusion fails, then as in previous arguments there exists
a symmetric neighborhood U in G such that for every k there exist pk >
k, nk > mk, x

k ∈ B such that

(#)
nkX

j=mk

D
Pjx

k, ypk
E
/∈ U.

For k = 1 this condition gives
Pn1

j=m1

­
Pjx

1, yp1
®
/∈ U . By Theorem 33

there exists m0 > n1 such that
Pq

j=p

D
Pjx, y

k
E
∈ U for 1 ≤ k ≤ p1, x ∈

B, q > p > m0. By (#) for k = m0 we have
Pn2

j=m2

­
Pjx

2, yp2
®
/∈ U .

Thus p2 > p1. Continuing this construction produces increasing sequences
{pk}, {mk}, {nk},mk+1 > nk > mk, {xk} ⊂ B such that

(##)
X
j∈Ik

D
Pjx

k, ypk
E
/∈ U,

where Ik = [mk, nk]. Now define a matrix
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M = [mij ] = [
X
l∈Ij

D
Plx

j , ypi
E
].

As in the proof of Theorem 26, M is a signed K matrix so by the
signed version of the Antosik-Mikusinski Matrix Theorem the diagonal of
M converges to 0 contradicting (##). 2

This result can be compared to Theorem 2.35 of [16]. The conclusion
may fail to hold without assumptions on E ([16], Example 2.20).

A uniform boundedness result as in Theorem 13 can be obtained from
Theorem 34. Assume E has signed SGHP and PjE is barrelled for every
j. If A ⊂ E is bounded and B ⊂ Eβ is pointwise bounded on E, then

{x · y =
∞X
j=1

hPjx, yi : y ∈ B, x ∈ A}

is bounded. For suppose xj ∈ A, yj ∈ B and tj → 0. Let U be a neighbor-
hood of 0 and V a neighborhood of 0 such that V +V ⊂ U . Since tkyk → 0
pointwise, by Theorem 34 there exists N such that

P∞
j=N tk hPjxk, yki ∈ V

for all k. Now {Pjxk : k} is bounded and {yk} is pointwise bounded so
{hPjxk, yki : k} is bounded by the barrelledness assumption. Therefore,
there exists K such that

PN−1
j=1 tk hPjxk, yki ∈ V for k ≥ K. Then if

k ≥ K,

∞X
j=1

tk hPjxk, yki =
N−1X
j=1

tk hPjxk, yki+
∞X

j=N

tk hPjxk, yki ∈ V + V ⊂ U

and the result follows. Note that the 0-GHP and SGHP assumptions are
independent of one another (consider c0 and l∞) so the result above and
the result in Theorem 13 are independent.

We give an application of Theorem 34 to weak topologies on L1. First
we show L∞(µ) has SGHP in the triple (L∞(µ), L1(µ,X) : X) when L∞(µ)
has the essential-sup norm k·k∞.

Example 35. L∞(µ) has SGHP in the triple (L∞(µ), L1(µ,X) : X) when
L∞(µ) has the essential-sup norm k·k∞. First, note that L∞(µ)β = L1(µ,X)
by the countable additivity of the integral. Let {gk} be bounded in L∞(µ)
and {Ik} be an increasing sequence of intervals. For convenience, assume
kgkk∞ ≤ 1 for every k. The series

P
k PIkgk =

P
k χ∪j∈IkAjgk converges

pointwise to a function g which is essentially bounded and measurable and
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so belongs to L∞(µ). We claim the series converges to g with respect to
w(L∞(µ), L1(µ,X)); this will establish the result. Let f ∈ L1(µ,X). Then
for every n, we have °°°°°

nX
k=1

χ∪j∈IkAjgk(·)f(·)
°°°°° ≤ kf(·)k

so by the Dominated Convergence Theorem

∞X
k=1

Z
∪j∈IkAj

gkfdµ =

Z
S
gfdµ

so gk → g in w(L∞(µ), L1(µ,X)).

We use Theorem 34 and Example 35 to establish a result for weak
convergence in L1(µ,X).

Theorem 36. Let {fk} ⊂ L1(µ,X) be such that lim
R
S gfkdµ exists for

every g ∈ L∞(µ), i.e., {fk} is ”weak” Cauchy. If B ⊂ L∞(µ) is bounded,
then the family of vector measures H = {

R
· gfkdµ : k ∈ N, g ∈ B} is

uniformly countably additive.

This result should be compared to Theorem IV.8.9 of [6] which implies
that if {fk} ⊂ L1(µ) is a weak Cauchy sequence, then {

R
· fkdµ : k ∈ N}

is uniformly countably additivity. In Theorem 36 the uniform countable
additivity is additionally over bounded subsets of L∞(µ). The conclusion
of Theorem 36 can also be rephrased to read that the elements of the set
H are uniformly µ continuous (see [6], IV.8,[17]3.14.1).

We can also obtain results like those in Example 35 and Theorem 36
for vector and operator valued functions. Let X,Y be Banach spaces and
consider the pair L∞(µ,X), L1(µ,L(X,Y )). If f ∈ L1(µ,L(X,Y )) and
g ∈ L∞(µ,X), we first observe that the function t→ f(t)(g(t)) is strongly
measurable. Suppose first that g is a simple function, g =

Pn
j=1 χBjxj , with

{Bj}, Bj ∈ Σ, a partition of S. Then f(·)(g(·)) = Pn
j=1 χBj (·)f(·)(xj) so

f(·)(g(·)) is a measurable function. If g ∈ L∞(µ,X), there exists a sequence
{gk} of simple functions which converges pointwise almost everywhere to
g ([4]II.1). Then f(·)(gk(·))→ f(·)(g(·)) almost everywhere so f(·)(g(·)) is
measurable. Moreover,

kf(t)(g(t))k ≤ kf(t)k kg(t)k ≤ kgk∞ kf(t)k
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implies f(·)(g(·)) is Bochner integrable with°°°°Z
S
f(·)(g(·))dµ

°°°° ≤ kgk∞ kfk1 .
Thus, (L∞(µ,X), L1(µ,L(X,Y )) : Y ) is an abstract triple under the

mapping (g, f) →
R
S f(·)(g(·))dµ and if {Aj} ⊂ Σ is pairwise disjoint,

Pjg = χAjg defines projections on L∞(µ,X). The proof of Example 35
shows that the triple

(L∞(µ,X), L1(µ,L(X,Y )) : Y )

has SGHP so a result as in Theorem 36 holds in this case.
It should also be noted that dually, we have the triple

(L1(µ,X), L∞(µ,L(X,Y )) : Y )

under the same type of mapping and projections and as in Example 9 and
Example 24 the triple has 0-GHP and is monotone so a result like that
stated following Corollary 28 holds for this triple. Similarly, if 1 < p < ∞
and 1

p +
1
q = 1, then the triple (L

p(µ,X), Lq(L(X,Y )) : Y ) has 0-GHP and
is monotone so a result as stated in Corollary 28 also holds for this triple.
Note that in general this triple does not have SGHP.

Theorem 34 can also be used to establish a Schur type result for l1(X)
when X is a Banach space. Recall the Schur Theorem asserts that a se-
quence in l1 which is weakly convergent converges in norm and a normed
space with this property is called a Schur space. Consider the dual pair
l∞(X 0), l1(X) under the pairing hx, yi = P∞

j=1(xj , yj), where x = {xj} ∈
l∞(X 0), y = {yj} ∈ l1(X) and (·, ·) is the duality between X 0 and X. The
triple (l∞(X 0), l1(X)) with the projections as in Example 3 has SGHP so
Theorem 34 applies. Suppose yk → 0 with respect to σ(l1(X), l∞(X 0)).We

show that if X is a Schur space, then
°°°yk°°°

1
→ 0 so l1(X) is a ”Schur type

space”. Let � > 0 andN be such that
¯̄̄P∞

j=N

D
Pjx, y

k
E¯̄̄
=
¯̄̄P∞

j=N(xj , y
k
j )
¯̄̄
<

� for all k and kxk∞ ≤ 1 (Theorem 34). For each j, limk y
k
j = 0 with respect

to σ(X,X 0) [consider
D
Pj(e

j ⊗ x0), yk
E
= (x0, ykj ) for x

0 ∈ X 0] so limk

°°°ykj °°° =
0 for each j. Therefore, there exists M such that

¯̄̄PN−1
j=1 (xj , y

k
j )
¯̄̄
< � for

kxk∞ ≤ 1 and k ≥M . Hence, if k ≥M , then¯̄̄̄
¯̄ ∞X
j=1

(xj , y
k
j )

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄N−1X
j=1

(xj , y
k
j )

¯̄̄̄
¯̄+

¯̄̄̄
¯̄ ∞X
j=N

(xj , y
k
j )

¯̄̄̄
¯̄ < 2�
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when kxk∞ ≤ 1. Fix k ≥ M and pick x0j ∈ X 0 such that
°°°x0j°°° = 1 and¯̄̄

(x0j , y
k
j )
¯̄̄
=
°°°ykj °°° Then x =

P∞
j=1 e

j ⊗ x0j ∈ l∞(X 0), kxk∞ ≤ 1, so¯̄̄̄
¯̄ ∞X
j=1

D
Pjx, y

k
E¯̄̄̄¯̄ =

¯̄̄̄
¯̄ ∞X
j=1

(x0j , y
k
j )

¯̄̄̄
¯̄ = ∞X

j=1

°°°ykj °°° = °°°yk°°°
1
< 2�

for k ≥M .
A result for vector measures like that in Theorem 36 can also be ob-

tained from Theorem 34.

Example 37. Let B(Σ) be the space of all bounded, Σ measurable func-
tions defined on S with the sup-norm, k·k∞ and let ca(Σ,X) be the space
of all countably additive set functions ν : Σ→ X with the complete norm
kνk = sup{kν(A)k : A ∈ Σ} (there is an equivalent norm using the semi-
variation of ν; see [6]IV.10.4). Then (B(Σ), ca(Σ,X) : X) forms an ab-
stract triple under the pairing hf, νi =

R
S fdν (see [6]IV.10 for integration

of scalar functions with respect to vector measures and particularly The-
orem IV.10.8(c) where bounded measurable functions are integrable). Let
{Aj} ⊂ Σ be pairwise disjoint and define projections Pj : B(Σ) → B(Σ)
by Pjf = χAjf so (B(Σ), ca(Σ, X) : X) is a triple with projections when

B(Σ) has the sup-norm. Note B(Σ)β = ca(Σ, X) by the countable addi-
tivity of the elements of ca(Σ, X). We show that (B(Σ), ca(Σ, X) : X) has
SGHP. Suppose {fk} is a bounded subset of B(Σ) and {Ik} is an increasing
sequence of intervals. For convenience set Bk = ∪j∈IkAj so PIkf = χBk

f .
The series

P∞
k=1 PIkfk =

P∞
k=1 χBk

fk converges pointwise to a function
f which is bounded and measurable and so belongs to B(Σ). We claim
the series

P∞
k=1 PIkfk is w(B(Σ), ca(Σ, X)) convergent to f . For this let

ν ∈ ca(Σ, X). Then

∞X
k=1

PIkfk · ν =
∞X
k=1

Z
Bk

fkdν =

Z
S
fdν

by the Bounded Convergence Theorem (see Theorem IV.10.10 of [6]) justi-
fying the claim.

From Theorem 34 and Example 37, we can obtain an improvement in
the conclusion of the Nikodym Convergence Theorem ([6]IV.10.6).

Theorem 38. Let {νk} ⊂ ca(Σ,X) be such that limk νk(A) = ν(A) exists
for every A ∈ Σ. If B ⊂ B(Σ) is bounded, then the family of vector
measures H = {

R
· fdνk : k ∈N, f ∈ B} is uniformly countably additive.
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Proof. We claim that limk

R
S fdνk exists for every f ∈ B(Σ). Let

f ∈ B(Σ), � > 0 and pick a simple function g such that kf − gk∞ < � and
choose n such that k ≥ n implies k

R
S gdνk −

R
S gdνk < �. By the Nikodym

Convergence Theorem ν is countably additive and by the Nikodym Bound-
edness Theorem, sup{kνkk : k ∈ N} = M <∞ ([6]IV.10.6, IV.9.8). Using
the inequalities in IV.10.4 and IV.10.8(c) of [6], if k ≥ n, we have°°°°Z

S
fdνk −

Z
S
fdν

°°°° ≤ °°°°Z
S
(f − g)dνk

°°°°+ °°°°Z
S
(f − g)dν

°°°°+ °°°°Z
S
gdνk −

Z
S
gdν

°°°°
≤ 4 kf − gk∞ (M + kνk) +

°°°°Z
S
gdνk −

Z
S
gdν

°°°°
< �(4(M + kνk) + 1)

justifying the claim. The result now follows from Theorem 34 and Example
37. 2

In the classical Nikodym Convergence Theorem ([6]IV.10.6) the uniform
countable additivity is for the measures {νk} and in the result above the
uniform additivity is for the indefinite integrals over bounded subsets of
B(Σ). For an application of uniform countable additivity in this setting,
see [6]IV.13.22.

Theorem 38 also gives an improvement to the Vitali-Hahn-Saks Theo-
rem ([6]IV.7.2). If each of the measures νk is µ-continuous with respect to a
positive measure µ, then each indefinite integral in H is µ continuous so the
family of indefinite integrals in H is uniformly µ continuous by Theorem
38 and Theorem 3.14.1 of [17] ( if ν ∈ ca(Σ,X) is µ continuous and g is
simple, then clearly

R
· gdν is µ continuous, and if f ∈ B(Σ), then

R
· fdν

is the pointwise limit of a sequence
R
· gkdν of indefinite integrals of simple

functions gk so
R
· fdν is µ continuous by the Vitali-Hahn-Saks Theorem

([6]IV.7.2)).
We can also obtain a result similar to Theorem 38 for operator valued

measures and vector valued functions. LetX,Y be Banach spaces, B(Σ,X)
the space of all bounded, X valued, Σ measurable functions with the sup-
norm, λ : Σ→ [0,∞) a finite measure, and ca(Σ, L(X,Y ) : λ) the space of
all ν : Σ → L(X,Y ) which are countably additive and λ continuous. The
space ca(Σ, L(X,Y ) : λ) is given the (operator) semi-variation norm kνk
(see [1]1). Then (B(Σ,X), ca(Σ, L(X,Y ) : λ) : Y ) forms an abstract triple
under the continuous bilinear map (f, ν) →

R
S fdν (for the integration of

vector valued functions with respect to operator valued measures and their
properties, see Bartle ([1])) and projections Pj can be defined as above.
Under these assumptions, the integral is countably additive, bounded mea-
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surable functions are integrable and the Bounded Convergence Theorem
holds for the integral. Hence, the proof of Example 37 can be repeated
to show that the triple (B(Σ,X), ca(Σ, L(X,Y ) : λ) : Y ) has SGHP and
Theorem 34 gives a result like Theorem 38.

Theorem 39. Let {νk} ⊂ ca(Σ, L(X,Y ) : λ) be such that limk
R
S fdνk

exists for every f ∈ B(Σ,X). If B ⊂ B(Σ,X) is bounded, then the family
of Y valued measures H = {

R
· fdνk : k ∈N, f ∈ B} is uniformly countably

additive.

Finally, we consider spaces of integrable functions with respect to a
measure with values in a locally convex space. Assume G is a sequentially
complete Hausdorff locally convex space and ν : Σ → G is a countably
additive vector measure. A Σ measurable function f : S → R is scalarly
integrable with respect to ν if f is x0ν integrable for every x0 ∈ G0 and
f is ν integrable if f is scalarly ν integrable and for every A ∈ Σ there
exists xA ∈ G such that

R
A fdx0ν = x0(xA); we write

R
A fdν = xA. (For

the integral and for properties of the integral, we refer to [8]; see also, [13].)
Let L1(ν) be the space of all ν integrable functions. We will describe the
topology of L1(ν). Let P be a family of semi-norms which generate the
topogy of G and if p ∈ P , let Up = {x ∈ G : p(x) ≤ 1} and U0p be the polar
of Up. Define a semi-norm bp on L1(ν) by

bp(f) = {Z
S
|f | d

¯̄
x0ν

¯̄
: x0 ∈ U0p};

the topology of L1(ν) is defined to be the topology generated by the semi-
norms {bp : p ∈ P}. Since G is sequentially complete, the product of
bounded measurable functions and ν integrable functions are ν integrable
([8] Theorem II.3.1) and we can define an abstract triple (B(Σ), L1(ν) : G)
under the integration map (f, g) →

R
S fgdν when B(Σ) has the sup-norm

and this bilinear map is continuous since p(
R
S fgdν) ≤ kfk∞ bp(g). The

Dominated Convergence Theorem holds for the integral ([8] Theorem II.4.2)
so the proof in Example 35 shows that the triple (B(Σ), L1(ν) : G) with
the projections defined as before has SGHP and a weak convergence result
as in Theorem 36 holds for the space L1(ν).

Corollary 40. Suppose {fk} ⊂ L1(ν) is such that limk
R
S fkgdν exists for

every g ∈ B(Σ) and B ⊂ B(Σ) is bounded. Then the family of vector
measures H = {

R
· fkgdν : k ∈N, g ∈ B} is uniformly countably additive.
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Dually, consider the triple (L1(ν), B(Σ) : G) under the integration map.
Since the indefinite integral is countably additive, the proof in Example 24
shows that the triple is monotone and, therefore, has WGHP. We also
consider the 0-GHP for the triple. In order to do this we first establish an
abstract result for triples and then apply the result to (L1(ν), B(Σ) : G).

Theorem 41. Let (E,F : G) be an abstract triple with projections {Pj}
and E a complete, metrizable locally convex space whose topology is gen-
erated by the semi-norms p1 ≤ p2 ≤ .... Assume that pl(PIx) ≤ pl(x) for
every l ∈N and finite I ⊂ N. Then E has 0-GHP.

Proof. Let xk → 0 in E and {Ik} be an increasing sequence of intervals.
Pick an increasing sequence of integers {nk} such that pnk(xj) < 1/2k for
j ≥ nk. Consider the series

P∞
k=1 PInkxnk . We claim the series is absolutely

convergent in E. Fix l ∈ N. Then by hypothesisX
{k:nk≥l}

pl(PInkxnk) ≤
X

{k:nk≥l}
pnk(PInkxnk) ≤

X
{k:nk≥l}

pnk(xnk) ≤
X

{k:nk≥l}
1/2k

so the series is absolutely convergent and, therefore, convergent to some
x in E since E is complete. Hence, the series

P∞
k=1 PInkxnk is w(E,F )

convergent to x and E has 0-GHP. 2
If G is sequentially complete, metrizable, then L1(ν) is complete (see [8]

IV4.1 and IV.7.1 for this result) and the projections satisfy the condition
that bp(PIf) ≤ bp(f) for f ∈ L1(ν) and I finite. Thus, the theorem above
applies and the triple (L1(ν), B(Σ) : G) has 0-GHP and a weak convergence
result as in Theorem 27 holds in this case.

Corollary 42. Suppose {gk} ⊂ B(Σ) is such that limk

R
S fgkdν exists for

every f ∈ L1(ν). If fk → 0 in L1(ν), then the family of vector measures
H = {

R
· flgkdν : k, l ∈N} is uniformly countably additive.
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