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Abstract

In this paper, we consider a non-linear system of differential equa-
tions of third order with variable delay. We discuss the globally asymp-
totic stability/uniformly stability, boundedness and uniformly bound-
edness of solutions for the considered system. The technique of proofs
involves defining an appropriate Lyapunov functional. The obtained
results include and improve the results in literature.
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1. Introduction

In the last years, there is a good amount of interest in the qualitative
behaviors of ordinary and functional differential equations of third order
without and with delay, see the book of Reissig et al. [1] as a good sur-
vey for the works done by 1974 and the papers of Ademola and Arawomo
([2], [3], [4],[5]), Ademola et al. [6], Afuwape and Castellanos [7], Afuwape
and Omeike [8], Ahmad and Rama Mohana Rao [9], Bai and Guo [10],
Ezeilo [11], Ezeilo and Tejumola [12], Graef et al. ([13], [14]), Graef and
Tunc [15], Korkmaz and Tunc [16], Mahmoud and Tunc [17], Ogundare
[18], Ogundare et al. [19], Olutimo [20], Omeike [21], Qian [22], Remili and
Oudjedi [23], Sadek [24], Swick [25], Tejumola and Tchegnani [26], Tunc
([27]-[44]), Tunc and Ates [45], Tunc and Gozen [46], Tunc and Mohammed
[47], Tunc and Tunc [48], Zhang and Yu [49], Zhu [50] and theirs references.
However, to the best of our knowledge from the literature, by this time,
no attention was given to the investigation of the globally asymptotic sta-
bility/uniformly stability, boundedness and uniformly boundedness in the
systems of nonlinear functional differential equations of third order with
variable delay, except the recent work of Omeike [21].

Besides, it is well known that differential equations of third order play
extremely important and useful roles in many scientific areas such as atomic
energy, biology, chemistry, control theory, economy, engineering, informa-
tion theory, mechanics, medicine, physics, etc.. Indeed, we can find appli-
cations such as nonlinear oscillations in Afuwape et al. [51], Andres [52],
Fridedrichs [53], physical applications in Animalu and Ezeilo [54], non- res-
onant oscillations in Ezeilo and Onyia [55], prototypical examples of com-
plex dynamical systems in a high-dimensional phase space, displacement
in a mechanical system, velocity, acceleration in Chlouverakis and Sprott
[56], Eichhorn et al. [57], Linz [58], the biological model and other models
in Cronin-Scanlon [59], problems in biomathematics in Chlouverakis and
Sprott [56], electronic theory in Rauch [60], and etc. Further, we refer the
readers to the book of Smith [61] for some important applications of delay
differential equation in sciences, biomathematics, engineering, and etc..

In 2015, Omeike [21] investigated the stability and boundedness of non-
linear differential system of third order with variable delay, τ(t) :

X
000
+AX

00
+BX

0
+H(X(t− τ(t))) = P (t).(1.1)

In this paper, we consider nonlinear differential system of the third
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order with variable delay, τ(t) :

X
000
+AX

00
+G(X

0
(t− τ(t))) +H(X(t− τ(t))) = F (t,X,X

0
,X

00
),

(1.2)

where X ∈ Rn, t∈ [0,∞), R+ = [0,∞), τ(t) is a continuous differentiable
function such that 0 ≤ τ(t) ≤ τ0 is a positive constant and τ 0(t) ≤ τ1,
(0 < τ1 < 1), A is an n× n− constant symmetric matrix, G,H : Rn → Rn

are continuous differentiable functions with G(0) = H(0) = 0 such that
the Jacobian matrices JG(X

0
) and JH(X) exist and are symmetric and

continuous, that is,

JG(X
0
) =

µ
∂gi
∂x

0
j

¶
, JH(X) =

³
∂hi
∂xj

´
, (i, j = 1, 2, ..., n),

exist and are symmetric and continuous, where (x1, x2, ..., xn), (x
0
1, x

0
2, ..., x

0
n),

(gi) and (hi) are components of X, X
0
, G and H, respectively, F : R+ ×

Rn ×Rn ×Rn → Rn is a continuous function and the primes in Eq. (1.2)
indicate differentiation with respect to t, t ≥ t0 ≥ 0.

It is more convenient to consider not Eq. (1.2) itself, but rather the
system

X
0
1 = X2,X

0
2 = X3,

X
0
3 = −AX3 −G(X2)−H(X1) +

R t
t−τ(t) JG(X2(s))X3(s)ds

+

Z t

t−τ(t)
JH(X1(s))X2(s)ds+ F (t,X1,X2,X3).(1.3)

System (1.3) is obtained from Eq. (1.2) by setting X = X1, X
0
= X2 and

X
00
= X3.

The continuity of the functions τ,H,G and F is a sufficient condition
to guarantee the existence of solutions of Eq. (1.2). Besides, we assume
that the functions H,G and F satisfy a Lipschitz condition with respect to
their respective arguments, like X,X

0
and X

00
. In this case, the uniqueness

of solutions of Eq. (1.2) is guaranteed.

The motivation of this paper comes from the results established by
Omeike [21], the mentioned books, papers and theirs references. The main



320 Cemil Tunc

purpose of this paper is to get new the globally asymptotic stability /uni-
formly stability, boundedness and uniformly boundedness results in Eq.
(1.2) by defining a suitable new Lyapunov functional. By this paper, we
extend and improve the stability and boundedness results of Omeike [21],
and we give additional two results to that in Omeike [21], like uniformly
stability and uniformly boundedness results. It follows that if we choose
G(X

0
(t − τ(t))) = BX

0
(t), B is an n× n-constant symmetric matrix, and

F (t,X,X
0
,X

00
) = P (t) in Eq. (1.2), then Eq. (1.2) reduces to Eq. (1.1),

which is discussed by Omeike [21]. This means that instead of the linear
term BX

0
(t) in Eq. (1.1), we take the non-linear term G(X

0
(t − τ(t)))

which includes a variable delay τ(t), and we also take a nonlinear general-
ization of the term P (t) in Eq. (1.1) like F (t,X,X

0
,X

00
). Probably, these

cases seem as similarity of Eq. (1.1) and Eq. (1.2).

However, till now, throughout all the papers published in the literature,
no author discussed the stability and boundedness of the solutions when we
take the possible second term in Eq. (1.1), G(X

0
) or BX

0
(t) as a non-linear

term with a deviating argument like G(X
0
(t − τ(t))). To the best of our

knowledge, it is not easy to discuss the topic for Eq. (1.2). The possible
reason is that the construction or definition of a suitable Lyapunov function
or functional for higher differential systems remains as an open problem in
the literature by this time. This case is more difficult for the functional
differential systems of higher order with variable delay. The choice of the
second term in Eq.(1.2) as G(X

0
(t− τ(t))) is important and the discussion

of the problems for this case is some hard. This means that, in view of the
whole mentioned discussion, it is worth to discuss the globally asymptotic
stability /uniformly stability, boundedness and uniformly boundedness to
Eq. (1.2).

Besides, this paper may be useful for researchers working on the qual-
itative behaviors of solutions of third differential equations and completes
that in the literature. These cases show the novelty and originality of the
present paper.

Consider general delay differential system

ẋ = f(xt), xt = x(t+ θ),−r ≤ θ < 0, t ≥ 0.

Let C = C([−r, 0],Rn) denote the space of continuous function from
[−r, 0] into Rn and assume that f : C → Rn is continuous function. We
say that V : C → R is a Lyapunov function on a set G ⊂ C relative to f if
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V is continuous on Ḡ, the closure of G, V̇ is defined on G and V̇ ≤ 0 on G.

Lemma 1(Hale [62]). Suppose f(0) = 0. Let V be a continuous functional
defined on CH = C with V (0) = 0 and let u(s) be a function, non-negative
and continuous for 0 ≤ s < ∞, u(s) → ∞ as s → ∞ with u(0) = 0. If for
all ϕ ∈ C, u(|φ(0)|) ≤ V (φ), V̇ (ϕ) ≤ 0, then the zero solution of ẋ = f(xt)
is stable.

If we define Z = {ϕ ∈ CH : V̇ (ϕ) = 0}, then the zero solution of
ẋ = f(xt) is asymptotically stable, provided that the largest invariant set
in Z is O

¯
= 0.

Besides, we consider the general non-autonomous delay differential sys-
tem

ẋ = g(t, xt), xt = x(t+ θ),−r ≤ θ < 0, t ≥ 0,

where g : [0,∞) × Cρ → Rn is a continuous mapping, g(t, 0) = 0, and we
suppose that G takes closed bounded sets into bounded sets of Rn. Here
(C, k.k) is the Banach space of continuous function φ : [−r, 0] → Rn and
for φ ∈ C, kφk = sup−r≤θ≤0|φ(θ)|, r > 0, Cρ is the open ball in C of radius
ρ;Cρ := {ϕ ∈ C([−r, 0],Rn) : kϕk < ρ}.

Theorem A(Yoshizawa [63 pp.191]). Assume that there is a Lyapunov
functional V0(t, x) for ẋ = g(t, xt), and wedges satisfying;

(i) W1(|φ(0)|) ≤ V0(t, φ) ≤ W2(kφk), (where W1(r) and W2(r) are
wedges),

(ii) V̇0(t, φ) ≤ 0.

Then the zero solution of ẋ = g(t, xt) is uniformly stable.

Let S be the set of φ ∈ C such that ||ϕ|| > ρ, denote by S∗ the set of
all functions φ ∈ C such that |φ(0)| ≥ ρ, where ρ may be large (Yoshizawa
[63, pp.202]).

Theorem B (Yoshizawa [63, pp.202]). Suppose that there exists a contin-
uous Lyapunov functional V0(t, φ) defined for all t ∈ R+ and φ ∈ S∗ which
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satisfies the following conditions;

(i) a(|φ (0)|) ≤ V0(t, φ) ≤ b1(|φ(0)|) + b2(kφk),
where a(r), b1(r), b2(r) ∈ CI, (CI denotes the families of continuous in-
creasing functions), and are positive for r > H and a(r) − b2(r) → ∞ as
r →∞,

(ii) V̇0(t, φ) ≤ 0. Then the solutions of ẋ = g(t, xt) are uniformly bounded.

Lemma 2. (Bellman [64, pp.288]). Let M be a real symmetric n × n
-matrix. Then for any X ∈ Rn

δMkXk2 ≤ hMX,Xi ≤ ∆M ||X||2,

where δM and ∆M are, respectively, positive and simple, the least and
greatest eigenvalues of the matrix M .

2. Stability

We introduce some basic assumptions needed in the proofs.
(A1) A is an n× n- symmetric constant matrix,

δa ≤ λi(A) ≤ 4a,

where δa and 4a are positive constants.
(A2) H(0) = 0, JH exists and is an n× n-symmetric matrix,

H(X1) 6= 0, when X1 6= 0,

δh ≤ λi(JH(X1)) ≤ 4h for X1 ∈ Rn,

where δh and 4h are positive constants.
(A3) G(0) = 0, JG exists and is an n× n- symmetric matrix,

δb ≤ λi(JG(X2)) ≤4b for X2 ∈ Rn,

where δb and 4b are positive constants, and the matrices JG and JH com-

mute with each other.
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Let F (.) ≡ 0. The stability result of this paper is given by the following
theorem.

Theorem 1. We assume that assumptions (A1)− (A3) hold. If

τ0 < min

⎧⎨⎩ 2(δb − β4h)(1− τ1)

(4b +4h)(1− τ1) + (β + 1)4b
,

2(βδb − 1)(1− τ1)

β(4b +4h)(1− τ1) + (β + 1)4h

⎫⎬⎭,
then the zero solution of Eq. (1.2) is globally asymptotic stable, where τ1
and β are positive constants with 0 < τ1 < 1.

Proof. Define a functional W0 =W0(t) =W0(X1(t),X2(t),X3(t)) by

W0 = 2
R 1
0 hH(σX1),X1idσ + hAX2,X2i+ 2β

R 1
0 hG(σX2),X2idσ

+βhX3,X3i+ 2hX2,X3i+ 2βhX2,H(X1)i

+ 2λ

Z 0

−τ(t)

Z t

t+s
||X2(θ)||2dθds+ 2η

Z 0

−τ(t)

Z t

t+s
||X3(θ)||2dθds,(2.1)

where β, λ and η are positive constants, the constants λ and η will be de-
termined later in the proof.

From assumption (A3), Lemma 2 and

G(0) = 0,
∂

∂σ
G(σX2) = JG(σX2)X2

We obtain

2

Z 1

0
hG(σX2),X2idσ = 2

Z 1

0

Z 1

0
σ1hJG(σ1σ2X2)X2,X2idσ1dσ2 ≥ δb||X2||2.

Similarly, it follows from

H(0) = 0,
∂

∂σ1
H(σ1X1) = JH(σ1X1)X1

that
∂

∂σ1
hH(σ1X1),H(σ1X1)i = 2hJH(σ1X1)X1,H(σ1X1)i.
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Integrating, from σ1 = 0 to σ1 = 1, the both sides of the last estimates,
respectively, we get

H(X1) =

Z 1

0
JH(σ1X1)X1dσ1

and

hH(X1),H(X1)i = 2
Z 1

0
hJH(σ1X1)X1,H(σ1X1)idσ1.

It can also be seen that

2

Z 1

0
hH(σ1X1),X1idσ1 = 2

Z 1

0

Z 1

0
σ1hJH(σ1σ2X1)X1,X1idσ1dσ2.

Further, it is obvious that

∂

∂σ2
hH(σ1σ2X1), JH(σ1X1)X1i = hσ1JH(σ1X1)X1, JH(σ1X1)X1i.

Integrating the both sides of the last equality from σ2 = 0 to σ2 = 1,
we obtain

hH(σ1X1), JH(σ1X1)X1i =
Z 1

0
hσ1JH(σ1X1)X1, JH(σ1X1)X1idσ2.

Then, we have

hH(X1),H(X1)i = 2
Z 1

0

Z 1

0
hσ1JH(σ1X1)X1, JH(σ1X1)X1idσ1dσ2.

From (2.1), the above discussion, Lemma 2 and the assumptions of
Theorem 1, we can obtain
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2W0 ≥ 2
R 1
0 hH(σX1),X1idσ + hAX2,X2i+ βδb||X2||2

+βhX3,X3i+ 2hX2,X3i+ 2βhX2,H(X1)i

= 2
R 1
0 hH(σX1),X1idσ − βδ−1b hH(X1),H(X1)i

+β||δ
1
2
b X2 + δ

− 1
2

b H(X1)||2 + β||X3 + β−1X2||2

+h(A− β−1I)X2,X2i

≥ 2
R 1
0 hH(σX1),X1idσ − βδ−1b hH(X1),H(X1)i

+β||X3 + β−1X2||2 + h(A− β−1I)X2,X2i

≥ 2
R 1
0

R 1
0 σ1hJH(σ1σ2X1)X1,X1idσ1dσ2 + β||X3 + β−1X2||2

−2βδ−1b
R 1
0

R 1
0 hσ1JH(σ1X1)X1, JH(σ1X1)X1idσ1dσ2

+h(A− β−1I)X2,X2i

≥ (1− βδ−1b ∆h)δh)||X1||2 + β||X3 + β−1X2||2 + (δa − β−1)||X2||2.

It is clear all the coefficients in the last inequality are positive and hence
there exists a positive constant K such that

W0 ≥ K(||X1||2 + ||X2||2 + ||X3||2)

and

||X1||2 + ||X2||2 + ||X3||2 ≤ K−1W0.(2.2)

For the time derivative the functional W0 by a straightforward calcula-
tion from (1.3) and (2.1), we obtain
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Ẇ0(t) = −h(βA− I)X3,X3i− hG(X2),X2i+ βhJH(X1)X2,X2i

+β
R t
t−τ(t)hX3(t), JG(X2(s))X3(s)ids+

R t
t−τ(t)hX2(s), JG(X2(s))X3(s)ids

+β
R t
t−τ(t)hX3(t), JH(X1(s))X2(s)ids+

R t
t−τ(t)hX2(t), JH(X1(s))X2(s)ids

+λτ(t)||X2||2 + ητ(t)||X3||2 − λ(1− τ
0
(t))

R t
t−τ(t) ||X2(θ)||2dθ

−η(1− τ
0
(t))

R t
t−τ(t) ||X3(θ)||2dθ.

The assumptions of Theorem 1, 0 ≤ τ(t) ≤ τ0 and τ
0
(t) ≤ τ1,

0 < τ1 < 1, imply that

h(βA− I)X3,X3i ≥ (βδa − 1)||X3||2,

hG(X2),X2i =
R 1
0 hJG(σX2)X2,X2idσ

≥
R 1
0 hδbX2,X2idσ = δb||X2||2,

βhJH(X1)X2,X2i ≤ β∆hkX2k2,

β
R t
t−τ(t)hX3(t), JG(X2(s))X3(s)ids ≤ βkX3(t)k

R t
t−τ(t) kJG(X2(s))kkX3(s)kds

≤ β∆bkX3(t)k
R t
t−τ(t) kX3(s)kds

≤ 1
2β∆b

R t
t−τ(t)

(
kX3(t)k2 + kX3(s)k2

)
ds

= 1
2β∆bτ(t)kX3k2 + 1

2β∆b
R t
t−τ(t) kX3(s)k2ds

≤ 1
2β∆bτ0kX3k2 + 1

2β∆b
R t
t−τ(t) kX3(s)k2ds,
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R t
t−τ(t)hX2(t), JG(X2(s))X3(s)ids ≤ kX2(t)k

R t
t−τ(t) kJG(X2(s))kkX3(s)kds

≤ ∆bkX2(t)k
R t
t−τ(t) kX3(s)kds

≤ 1
2∆b

R t
t−τ(t)

(
kX2(t)k2 + kX3(s)k2

)
ds

= 1
2∆bτ(t)kX2k2 + 1

2∆b

R t
t−τ(t) kX3(s)k2ds

≤ 1
2∆bτ0kX2k2 + 1

2∆b

R t
t−τ(t) kX3(s)k2ds,

β
R t
t−τ(t)hX3(t), JH(X1(s))X2(s)ids ≤ βkX3(t)k

R t
t−τ(t) kJH(X1(s))kkX2(s)kds

≤ β∆hkX3(t)k
R t
t−τ(t) kX2(s)kds

≤ 1
2β∆h

R t
t−τ(t)

(
kX3(t)k2 + kX2(s)k2

)
ds

= 1
2β∆hτ0kX3k2 + 1

2βh
R t
t−τ(t) kX2(s)k2ds,R t

t−τ(t)hX2(t), JH(X1(s))X2(s)ids ≤ kX2(t)k
R t
t−τ(t) kJH(X1(s))kkX2(s)kds

≤ ∆hkX2(t)k
R t
t−τ(t) kX2(s)kds

≤ 1
2∆h

R t
t−τ(t)

(
kX2(t)k2 + kX2(s)k2

)
ds

= 1
2∆hτ(t)kX2k2 + 1

2∆h
R t
t−τ(t) kX2(s)k2ds

≤ 1
2∆hτ0kX2k2 + 1

2∆h
R t
t−τ(t) kX2(s)k2ds,

λτ(t)kX2k2 ≤ λτ0kX2k2,

ητ(t)kX3k2 ≤ ητ0kX3k2,

−λ(1− τ
0
(t))

R t
t−τ(t) kX2(θ)k2dθ ≤ −λ(1− τ1)

R t
t−τ(t) kX2(θ)k2dθ,

−η(1− τ
0
(t))

R t
t−τ(t) kX3(θ)k2dθ ≤ −η(1− τ1)

R t
t−τ(t) kX3(θ)k2dθ.
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On gathering the obtained inequalities into Ẇ0(t), we arrive at

Ẇ0(t) ≤ −
(
δb − β∆h − 1

2(∆b +∆h + 2λ)τ0

)
kX2k2

−
(
(βδa − 1)− 1

2(β(∆b +∆h) + 2η)τ0

)
kX3k2

+

(
1
2(β + 1)∆h − λ(1− τ1)

)R t
t−τ(t) kX2(θ)k2ds

+

(
1
2(β + 1)∆b − η(1− τ1)

)R t
t−τ(t) kX3(θ)k2ds.

Let

λ =
(β + 1)∆h

2(1− τ1)

and

η =
(β + 1)∆b

2(1− τ1)
.

Hence

Ẇ0(t) ≤ −
(
δb − β∆h − 1

2

³
(∆b+∆h)(1−τ1)+(β+1)∆h

1−τ1

´
τ0

)
kX2k2

−
(
(βδb − 1)− 1

2

³
β(∆b+∆h)(1−τ1)+(β+1)∆b

1−τ1

´
τ0

)
kX3k2.

If

τ0 < min

⎧⎨⎩ 2(δb − β4h)(1− τ1)

(4b +4h)(1− τ1) + (β + 1)4b
,

2(βδb − 1)(1− τ1)

β(4b +4h)(1− τ1) + (β + 1)4h

⎫⎬⎭,
0 < τ1 < 1,

then
Ẇ0(t) ≤ −K1kX2k2 −K2kX3k2 ≤ 0

for some positive constants K1 and K2. In addition, we can easily see that

W0 (X1,X2,X3)→∞ as kX1k2 + kX2k2 + kX3k2 →∞.

Consider the set defined by

Q ≡ {(X1,X2,X3) : Ẇ0(X1,X2,X3) = 0}.
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When we apply the LaSalle’s invariance principle, we observe that
(X1,X2,X3) ∈ Q implies that X2 = X3 = 0 and hence X1 = µ, (µ 6= 0
is a constant vector). From the last estimate and system (1.3), we have
H(µ) = 0, which necessarily implies that µ = 0 since H(0) = 0. Therefore

X1 = X2 = X3 = 0.

In fact, this result implies that the largest invariant set contained in Q
is (0, 0, 0) ∈ Q. By Lemma 1, we conclude that the zero solution of system
(1.3) is asymptotically stable. Hence, the zero solution of Eq. (1.2) is the
globally asymptotic stable. This completes the proof of Theorem 1.

Theorem 2. If assumptions (A1)− (A3) and

τ0 < min

⎧⎨⎩ 2(δb − β4h)(1− τ1)

(4b +4h)(1− τ1) + (β + 1)4b
,

2(βδb − 1)(1− τ1)

β(4b +4h)(1− τ1) + (β + 1)4h

⎫⎬⎭,
hold, then the zero solution of Eq. (1.2) is uniformly stable, where τ1 and
β are positive constant with 0 < τ1 < 1.

Proof. To prove Theorem 2, our main tool is the functional W0 given by
(2.1). It is clear from the proof of Theorem 1 that the functional W0 and
its time derivative satisfy the assumptions of Theorem A, except W2(kφk);

W1(|φ(0)|) ≤W0 ≤W2(kφk), Ẇ (φ) ≤ 0.

Besides, subject to the assumptions of Theorem 2, it can be easily ob-
tained thatW0 ≤W2(kφk) We omit the detail of the proof. This completes
the proof of Theorem 2.

3. Boundedness

Let F (.) 6= 0. The boundedness results of this paper are given by the fol-
lowing theorems.

Theorem 3. We assume that all the assumptions of Theorem 1 hold,
except F (.) ≡ 0. Further, we suppose that there exists a non-negative and
continuous function P = P (t) such that

kF (t,X1,X2,X3)k ≤ P (t) for all t ≥ 0, max P (t) <∞ and P ∈ L1(0,∞),
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where L1(0,∞) denotes the space of Lebesgue integrable functions.
If

τ0 < min

⎧⎨⎩ 2(δb − β4h)(1− τ1)

(4b +4h)(1− τ1) + (β + 1)4b
,

2(βδb − 1)(1− τ1)

β(4b +4h)(1− τ1) + (β + 1)4h

⎫⎬⎭,
0 < τ1 < 1,

then there exists a constantM > 0 such that any solution (X1(t),X2(t),X3(t))
of system (1.3) determined by

X1(0) = X10,X2(0) = X20,X3(0) = X30

satisfies
kX1(t)k ≤M, kX2(t)k ≤M, kX3(t)k ≤M

for all t ∈ R+.

Proof. Let F (.) = F (t,X1,X2,X3). For the case of F (.) 6= 0, it can be
concluded that

Ẇ0(t) ≤ −K1kX2k2 −K2kX3k2 + hX2, F (.)i+ hβX3, F (.)i.

Then
Ẇ0(t) ≤ (kX2k+ βkX3k)kF (.)k

≤ K3(kX2k+ kX3k)kF (.)k

≤ K3(2 + kX2k2 + kX3k2)P (t)

≤ 2K3P (t) +K−1K3W0(t)P (t),
by the assumptions of Theorem 3 and (2.2), where

K3 = max{1, β}.

The integration of both sides of the last inequality, between 0 to t,
(t ≥ 0), leads that

W0(t) ≤W0(0) + 2K3

Z t

0
P (s)ds+K−1K3

Z t

0
W0(s)P (s)ds.

Let

M =W0(0) + 2K3

Z ∞
0

P (s)ds.
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Then

W0(t) ≤M +K−1K3

Z ∞
0

W0(s)P (s)ds.

By noting the Gronwall-Bellman inequality (see Ahmad and Rama Mo-
hana Rao [9, pp.41]), we can get

W0(t) ≤Mexp(K−1K3

Z ∞
0

P (s)ds).

By the estimate kX1k2 + kX2k2 + kX3k2 ≤ K−1W0 and the assump-
tion P ∈ L1(0,∞), we can conclude that all solutions of system (1.3) are
bounded. This completes the proof of Theorem 3.

Theorem 4. If the assumptions Theorem 3 and

τ0 < min

⎧⎨⎩ 2(δb − β4h)(1− τ1)

(4b +4h)(1− τ1) + (β + 1)4b
,

2(βδb − 1)(1− τ1)

β(4b +4h)(1− τ1) + (β + 1)4h

⎫⎬⎭,
hold, then the zero solution of Eq. (1.2) is uniformly bounded, where τ1 is
positive constant with 0 < τ1 < 1.

Proof. To complete the poof of Theorem 4, the main tool is the functional
W0 given by (2.1). When we benefit from the functional W0 and the as-
sumptions of Theorem 4, we can easily complete the poof of Theorem 4.
Therefore, we omit the details of the proof.

4. Conclusion

We consider a functional differential system of third order with variable
delay. We investigate the globally asymptotic stability/uniformly stabil-
ity/boundedness/ uniformly boundedness of solutions. The technique of
proofs involves defining an appropriate Lyapunov functional. Our results
include, improve and complete some recent results in the literature.
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