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Abstract

Let Σ be a bilinear control system on R2 whose matrices generate
the Lie algebra sl(2) of the Lie group Sl(2) : the group of order two
real matrices with determinant 1. In this work we focus on the ex-
tremals of a quadratic cost optimal problem for the angle system PΣ
defined by the projection of Σ onto the real projective line P1. It has
been proved in [2] that through the Cartan-Killing form the cotangent
bundle of P1 can be identified with a cone C in sl(2). Via the Pontrya-
gin Maximum Principle, we explicitly show the extremals by using the
mentioned identification and the special form of the trajectories asso-
ciated with the lifting of vector fields on PΣ. We analyze both: the
controllable case and when the system bfPΣ give rise to control sets.
Some examples are shown.
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1. Introduction

Optimal control problems with quadratic cost have already been analyzed
with great success for linear control systems, see [6]. However, a great
number of applications are modelled by bilinear dynamics. For instance,
different classes of biological and chemical processes has been analyzed in
[5], [8]. On the other hand, the state of the art of this theory is far from a
sufficient understanding and require new approaches to meet the challenges
in this field, see [4] for a nice exposition of control systems on fiber bundles.
This paper analyze the quadratic cost optimal problem for a class of systems
induced by a bilinear one.

Let Σ be a bilinear control system on R2 whose matrices generate the
Lie algebra sl(2) of the Lie group Sl(2) : the group of order two real matrices
with determinant 1. Precisely, Σ is determined by the family of differential
equations:

Σ : ẋ(t) = (A+ uB)x(t), t ∈ R, x(t) ∈ R2(1.1)

Here, A, B ∈ sl(2), and u is an element of the admissible restricted controls
class U={u : R→ [−1, 1] , u locally integrable} .In this work we focus on
the extremals of the quadratic cost optimal problem

J = min
u(·)∈[−1,1]

1

2

Z T

0
u2dt(1.2)

for the angle system PΣ defined by the projection of Σ onto the real pro-
jective line P1, as follows

PΣ : ṡ(t) = h(A, s(t)) + u(t)h(B, s(t)), s ∈ P1(1.3)

The projected dynamics on the sphere is induced by the formula

h(X, s) = (X − (s>X s)Id)s

with Id the identity matrix, u an element of the restricted admissible control
set and s>X s corresponds to the radial component of the vector field Xs
and ()

>
denotes transpose.

In other words, given two points p and q in P1 our aim is to find a
trajectory of PΣ starting on p and ending on q minimizing the functional
J over all such a curves.
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It has been proved in [2] that through the Cartan-Killing form, the
cotangent bundle of P1 can be identified with a cone C in sl(2). Via the
Pontryagin Maximum Principle, we explicitly show the extremals by using
the mentioned identification and the special form of the trajectories associ-
ated with the lifting of vector fields on PΣ to the cone. We analyze both:
the controllable case and when the system PΣ give rise to control sets.

Since the projective real line is a compact manifold, it follows that given
any two arbitrary points in P1 there exists an optimal path connecting
them.

Through the paper we assume that Σ satisfy the Lie algebra rank con-
dition, (LARC), which means that the Lie algebra generated by A and
B coincides with sl(2). Furthermore, we follow the references [1] and [3]
which give an algebraic and geometric condition to the controllability of
PΣ, respectively.

The paper is organized as follows. Section 2 contains the Hamilto-
nian formalism on the cone in sl(2) and the trajectories associated with
the lifting of vector fields on PΣ. In Section 3 we describe the associated
Hamiltonian and the explicitly form of the optimal control. In Section 4
we analyze the synthesis of the problem. We also give examples.

2. Hamiltonian Formalism and Trajectories on C

In order to have an appropriated frame for the understanding of our prob-
lem, we first recall some results established by the authors in [2].

Let G be a Lie group and H ⊂ G a closed Lie subgroup. We consider
the homogeneous space G/H = {zH : z ∈ G}. Denotes by g and h the Lie
algebras of G and H respectively. Each X ∈ g induces a vector field eX on
G/H and its flow is given by eXt (x) = exp (tX)x, x ∈ G/H.

If X is a vector field on a differentiable manifold N , there exists a lifting
X∗ of X on the cotangent bundle T ∗N. Moreover, X∗ is a Hamiltonian
vector field and the corresponding Hamiltonian function HX∗ : T

∗N → R
is defined by

HX∗ (α) = α (X (π (α))) , α ∈ T ∗N.

Here, π : T ∗N → N, α 7−→ π(α) is the fiber bundle projection.

As has been showed in [2], the elements of the cotangent bundle T ∗ (G/H)
can be represented by elements of T ∗G. We specialize this identification to
semisimple Lie groups. Through the Cartan-Killing form K the Lie algebra
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g of G is identified with its dual g∗ (see [10]). Let X ∈ g and eX its induced
vector field on the homogeneous space G/H. We have

Proposition 2.1. Let g be a semisimple Lie algebra and h ⊂ g the Lie
algebra of H. Then, the lifted vector field eX∗ on T ∗ (G/H) induced by
X ∈ g is given by

eX∗ (Y ) = ad (X) (Y ) with flow eX∗
t (Y ) = Ad (exp tX)Y.

On the other hand, it is well known that in the semisimple Lie algebra
sl (2) , the form K is a multiple of the trace form. Precisely,

K(X,Y ) = k tr (XY ) = k hX,Y i

where k 6= 0 is a constant. In [1] is showed that the zeros set

C = {X ∈ sl (2) : Q (X) = 0}

of the corresponding quadratic form Q (X) = hX,Xi = tr(X2) is a cone
with respect to the basis

H =

Ã
1 0
0 −1

!
, S =

Ã
0 1
1 0

!
, R =

Ã
0 −1
1 0

!
(2.1)

of sl (2). In fact, in the (z1, z2, z3)-coordinates the equation of C with
respect to (2.1) is given by z21 + z22 = z23 .

The set C − {0} has two connected components, we distinguish them
by putting C+ and C− for the one which contains the matrixÃ

0 1
0 0

! Ã
0 0
−1 0

!
,

respectively. Just observe that the rotation group turns around C+ while
the group of diagonal matrices is transitive along the ray of upper triangular
matrices in C+. Thus, Sl (2) acts transitively on C+. Furthermore, the action
of Sl (2) into the set [C+] of rays of C+ is equivalent to the action of Sl (2)
in the projective line P1. We denote by C+int, C+ext the regions of R3 inside
and outside the cone, respectively. In [2] an algebraic picture of the cone
is given as follows
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Proposition 2.2. The entire cone C is identified with the cotangent bundle
T ∗(P1).

For P ∈ C+ the tangent plane TP C+ of C+ at P is

TP C+ = {W ∈ sl (2) : hP,W i = 0}.
Notice that any Z ∈ sl (2) defines, through the linear application ad Z in

sl (2) , a linear differential equation in sl (2) , explicitly given by
.
P= [Z,P ],

P ∈ sl (2), whose trajectories are

exp (t adZ)P = Ad(exp tZ)(P ), with P ∈ sl (2) and t ∈ R.

In particular, Z ∈ sl (2) induces also a differential equation on C+. Just
observe that < P = [Z,P ] > = 0.In the sequel, we will describe these
trajectories in C+ as the intersections of C+ with the planes

Z⊥ = {P ∈ C+ : hP,Zi = c}

orthogonal to Z with respect to the trace form.

Remark 2.1. In practice, with respect to the trace form, the plane or-
thogonal to any matrix of trace zero can be seen with the aid of the inner
product (· , ·) in sl (2) which is defined by

(P,W ) = hP,W ti = tr
³
PW>

´
.

Actually, if we denote by Z(⊥) the orthogonal plane to Z with respect to

(· , ·) , then Z⊥ =
³
Z(⊥)

´>
. On the other hand, transposition is obtained

by a reflection through the plane s of symmetric matrices. Therefore, Z⊥ is
the reflection through s of the plane orthogonal to Z with respect to (· , ·).
The authors in [1] give the following description of the trajectories on C.

Proposition 2.3. According to the location of Z respect to the cone, the
trajectories of

.
P= [Z,P ] in C+ are:

1. Ellipses around C+, if Z ∈ Cint

2. Points in the ray of C+ orthogonal to Z or the parabolas {hZ,P i =
c} ∩ C+, if Z ∈ C+

3. The two rays in Z⊥∩C+\{0} or the semi-hyperbolas {hZ,P i = c}∩C+,
if Z ∈ Cext.
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3. The Hamiltonian and the Optimal Control

In this section, we establish the Pontryagin Maximum Principle (PMP) for
the angle system PΣ on P1 determined by a bilinear control system Σ in
the plane. From the principle, we characterize the optimal control for the
quadratic cost.

The dynamic here described is determined by the bilinear control sys-
tem (1.1), where A and B are two matrices of trace zero, with running cost
(1.2) and bounded control | u |≤ 1.

For our purposes, the suitable version of the PMP provided in [7], gives
a first order necessary conditions for the optimality of quadratic control
problems. In our particular case the principle reads:

Theorem 3.1. If u∗ is an optimal control and x∗ is the associated trajec-
tory of PΣ on P1, there exists a constant λ0 ≥ 0 and an absolutely continu-
ous function λ : [0, T ] −→ T ∗P1 , such that for almost every t ∈ Dom(x∗),
(λ, λ0) never vanishing and the adjoint equation,

λ̇ = − λ(A+ u∗B)(3.1)

is satisfied. Furthermore, the optimal control u∗(t) minimizes the Hamil-
tonian

H = λ(A+ uB)x+
1

2
λ0u

2

on [−1, 1], through the curve (λ(t), x∗(t)).

The pair (u∗, x∗) is called extremal pair if u∗ is an admissible control and
the corresponding trajectory x∗ satisfy the PMP conditions. We normalize
λ0 to 1.

By Proposition 2.2, the form of the Hamiltonian H and by using the
invariance of the Cartan-Killing form K, it turns out that the equation (3.1)
can be rewritten as

dP (t)

dt
= [A+ uB, P (t)] , P (t) ∈ C+.(3.2)

An admissible constant control u induces the vector fieldXu = A+uB ∈
g. On the other hand, since that the cotangent bundle T ∗P1 is identified
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with the cone C, each curve [0, T ] −→ T ∗zHP
1 given by the PMP is identified

with a curve in C+. We obtain: the Hamiltonian for the quadratic optimal
control problem

H eXu : C+ → R is defined by

HeXu(P ) = hP,A+ uBi+ 1
2
u2, P ∈ C+

where eXu is the lifted vector field on C+ induced by Xu on P1, u(·) ∈
[−1, 1].

The Hamiltonian H is strictly convex in the control u and its minimum
over [−1, 1] is attained with

ϕ(t) = − hP (t), Bi.(3.3)

In particular, the optimal control u∗ minimizing H over [−1, 1] is deter-
mined by

u∗(t) =

⎧⎪⎨⎪⎩
1 if ϕ(t) ≥ 1
ϕ(t) if ϕ(t) ∈ (−1, 1)
−1 if ϕ(t) ≤ −1

We call the function ϕ(t) the switching function of the control. Thus,
the application of the PMP to any control system lead controls belonging
to the interior or to the boundary of the control range [−1, 1].

4. The Quadratic Optimal Control Synthesis

In this section we analyze, on the real projective line, the extremals for the
quadratic cost. These trajectories are obtained by the radial projection of
the extremals in C+ defined by the adjoint system (3.2). Precisely, given p
and q two arbitrary points on P1 our goal is to find the extremals of the
quadratic cost connecting these two points. Since in our case, the number
of extremals are finite, it turns out that it is possible to find the optimal
path in a closed analytic form. In future research, we hope to apply nu-
merical algorithms to approach the optimal solutions.

We identify P1 with the ordered circle
n
eiψ : −π/2 < ψ ≤ π/2

o
. Ac-

cording to the shape of the optimal controls determined by the PMP we
need to consider the planes hP,Bi = 0, hP,Bi = ±1 and the intersection
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of these planes with C+. We have the following relative positions. Namely,

The synthesis of the optimal control will be established by considering
the following cases

Case 1 hP,Bi = 0 doesn´t meet the cone. In this case, hP,Bi = 1 or hP,Bi =
−1 intersects C+int but no both.

Case 2 hP,Bi = 0 is tangent to the Cone C+. As the previous case, just one
plane will meet the cone

Case 3 hP,Bi = 0 divides the Cone C+ in two regions. So, the planes
hP,Bi = ±1 meet C+int, see Figure 4.1.

Figure 4.1: Intersection planes hP,Bi = 0,±1 with the cone C+

According to the proposition 2.3, if Z ∈ C+ext the trajectories of the
adjoint equation (3.2) are the rays in Z⊥ ∩ C+ \ {0} or the hyperbolas
{hZ,P i = c}∩C+. Recall that the rays are determined by the corresponding
eigenvectors of the matrices.

We denote by l++1 and l−+1 the rays of Z = A + B and by l−−1 and l+−1
those for Z = A−B. The intersection between C+ and the orthogonal plane
to B are two lines denoted for l10 and l20. On P

1 the projections of l−+1, l
+
+1,

l−−1, l
+
−1, l

1
0 and l

2
0 are denoted by q

−
+1, q

+
+1, q

−
−1, q

+
−1, q

1
0 and q

2
0 respectively.

Here q−+1 and q−−1 are attractors and q++1, q
+
−1 repellers. Without loss of

generality, through the whole paper we assume q−−1 < q+−1. The case q
+
−1

< q−−1 is analogous.
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For Z ∈ sl (2) , the linear differential equation Ṗ = [Z,P ] on sl (2) in-
duces a vector field on C+. Proposition 2.3 gives the form of the trajectories
on C+ and their projection on P1 are as follows: Ellipses onto the circle,
points onto singularities, parabolas onto segments, lines onto singularities
and semi-hyperbolas onto segments.

Via the adjoint action of Sl(2,R) on the cone, any rotation on C+ is
conjugated to the matrix

R =

Ã
0 −1
1 0

!
.

In particular, they move in the counterclockwise direction.
In the next sections the synthesis of the optimal problem is estab-

lished according to the relative position of the planes hP,Bi = 0,±1 and
hP,A±Bi = 0.

4.1. The Controllable Case

Through this section we assume that the projected control system (1.3) is
controllable. Since the projective real line is a compact manifold, it follows
that given any two arbitrary points in P1 there exists an optimal path
connecting them and this path is coming from the Pontryagin Maximum
Principle.

Theorem 5.2 in [1] gives an algebraic characterization of the controlla-
bility property of (1.1). From a geometric point of views, this result says
that the bilinear control system is controllable in R2 \{0} if and only if the
segment

A+ uB : −1 ≤ u ≤ 1, intercepts C+int.(4.1)

Of course, if (1.1) is controllable then the projected control system (1.3)
is also controllable, see for instance [9].

Proposition 4.1. If B ∈ C+int and the system Σ is controllable then A +
B ∈ C+int.

Proof: Since the system Σ is controllable, from Theorem 5.2 in [1] it
follows that the segment A + uB : −1 ≤ u ≤ 1, intercepts C+int. So, there
exists u0 ∈ [−1, 1] such that A + u0B belong to C+int. Hence, the segment
A+B ∈ C+int because B ∈ C+int. 2
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Remark 4.1. If Σ is controllable and −B ∈ C+int according to Proposition
4.1 A−B ∈ C+int and the synthesis is analogous.

4.1.1. Case 1. hP,Bi = 0 does not meet C+

Let us assume B ∈ C+int. We follows the synthesis by the relative position
of the planes hP,Bi = ± 1 with the cone.

Suppose the plane hP,Bi = 1 intersect the cone C+.

We obtain two regions, the lower and the upper region. See Figure 4.2

L =
©
Z ∈ C+ | 0 < hZ,Bi < 1

ª
, U =

©
Z ∈ C+ | hZ,Bi > 1

ª
.

Figure 4.2: Intersection of the plane hP,Bi = 1 with the cone C+

We claim: given two arbitrary points p, q ∈ P1 show an optimal path
connecting them. In fact,

We have the possibilities:

1. A+B ∈ C+int and A−B ∈ C+ext
The trajectories of the adjoint system (3.2) on C+ induced by the bang

control u∗(t) = 1 are ellipses which we denote by ε+. Denote by βϕ the
trajectories of the adjoint system for u∗(t) = ϕ(t) ∈ (−1, 1).
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Let p ∈ P1 and ζ0 an arbitrary point of the fiber of p, i.e., π(ζ0) = p,
where π denotes the radial projection from C+ to P1. According to the
PMP, the synthesis state as follows:

1.1. If ζ0 ∈ π−1(p) lies on a ellipse ε+ contained in U the initial con-
dition ζ0 moves under the influence of u∗ = 1 (counterclockwise) until the
intersection of ε+(ζ0) with the fiber of π

−1(q). So, π(ε+) is the optimal
path.

1.2. Assume ζ0 ∈ U belongs to ε+ which intersects the plane hP,Bi = 1.
Let us assume that the fiber of π−1(q) intersects ε+ at the point ξ

a) If ξ ∈ clU, and the control u = 1 connect ζ0 with ξ. Then, as in the
previous case the projection of the dynamic determined by u∗ = 1 gives the
optimal path.

b) If ξ ∈ L, then ζ0 moves under the influence of u∗ = 1 up to the
intersection with the plane hP,Bi = 1. From this intersection point, it
follows the trajectory corresponding to the differential equation induced by
the control ϕ(t) = − hP (t), Bi moving on L until intersects the fiber of
q. The projection of βϕ ◦ ε+ gives rise the optimal path connecting them,
starting on p and ending on q.

c) If ξ ∈ clU, and the control u = 1 connect ξ with ζ0, we follows the
path βϕ ◦ε+ up to the second intersection with the plane hP,Bi = 1. After
that we use again u = 1 to reach ζ0. So, the projection of the absolutely
continuous curve ε+ ◦ βϕ ◦ ε+.

1.3. If we start on ζ0 ∈ cl(L),

a) Let ξ ∈ cl(L). Eventually, we could reach q from p as follows: through
the projection of the differential equation determined by the optimal control
ϕ(t) = − hP (t), Bi ∈ (−1, 1) with initial condition ζ0 and ending point ξ.
Or, starting with the control ϕ(t) = − hP (t), Bi up to the curve meets
the plane hP,Bi = 1 at the point η, to continue with a particular class of
ellipses ε+. Depending on the class, η could be move towards L or U . In
fact, in the first case, the curve will reach ξ inside of L,i.e., the positive
direction of the ellipses (derivative at the point η point out towards L).
In the second case, the curve will continue with the ellipse up to meet the
fiber of q. The projection of the last two mentioned curves will give other
extremals.

b) If ξ ∈ U, we first need to meet the plane hP,Bi = 1 at η with an
appropriate βϕ. Then, to continue with the class of ellipses which carry on
η up to ξ. Just observe that the other class of ellipses will not be useful for
our purposes.

We notice that in the previous analysis the plane hP,Bi = 1 intersect



156 V. Ayala, J. C. Rodríguez and L. A. B. San Martín

the cone C+ and A−B ∈ C+ext determine two singularities on the projective
line. Fortunately, we do not need to care about. In fact, the optimal control
given by the PMP consider u∗(t) = 1 or u∗(t) = −hP (t), Bi or combinations
of these controls.

2. A−B ∈ C+int and A+B ∈ C+ext
According to Remark 4.1, this situation is analogously to the case 1.
3. A+B, A−B ∈ C+int
a) If ζ0, ξ ∈ cl(U) the projection of any ellipse inside of U starting on

ζ0 and ending in ξ will do the job
b) The case ζ0 ∈ cl(U) and ξ ∈ L is analogous to 1.2 (b)
c) The case ζ0 ∈ L and ξ ∈ cl(L) ∪ U is analogous to 1.3 (a) and (b).

Suppose the plane hP,Bi = −1 intersect the cone C+.

The optimal paths coming from the PMP just consider u∗ = −1 or
u∗ = ϕ(t). We define L and U

L =
©
Z ∈ C+ | −1 < hZ,Bi < 0

ª
, U =

©
Z ∈ C+ | hZ,Bi < −1

ª
.

As before, the analyze follows by considering the cases
1. A+B ∈ C+int and A−B ∈ C+ext
In this situation, the synthesis of the extremals should be realized taking

in account the singularities of A − B which determine the regions R1 =
π−1(q−−1, q

+
−1] and R2 = π−1(P1\R1).

1.1 If p and q lies in the same region, the analysis is analogously to the
case hP,Bi = 1, (1.) .

1.2 If p and q lies in different regions, for instance, p ∈ R1 and q ∈ R2.
Recall that q−−1 is an attractor of A−B, in particular it is not possible to
cross R2 from R1 with u = −1.

a) Let ζ0 ∈ cl(L) and ξ ∈ cl(L). We just reach q from p through the
projection of the differential equation determined by the optimal control
ϕ(t) = − hP (t), Bi ∈ (−1, 1) with initial condition ζ0 and ending point ξ.

b) If ζ0 ∈ cl(L) and ξ ∈ U we start with u = − hP (t), Bi moving up
to the point ξ0 : the intersection between plane hP,Bi = −1 in R2 and the
semi-hyperbola h̄−ξ through ξ. So, the projection of h̄−ξ ◦ βϕ send p to q.

c) The case ζ0 ∈ U and ξ ∈ R2 is not possible. Actually, we can not
leave R1.

2. A−B ∈ C+int and A+B ∈ C+ext
This case is analogously to the case (1.) taking care of the singularities

of A+B.
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3. A+B, A−B ∈ C+int
Analogous to the case (1.) of hP,Bi = 1.

4.1.2. Case 2. hP,Bi = 0 is tangent to C+

In this subsection we consider two cases

1. B ∈ C+ and A ∈ sl (2). Without lost of generality we assume
A+B ∈ C+int. In particular, we get A−B ∈ C+ext.

Assume the plane hP,Bi = 1 intersect the cone C+.

Figure 4.3: Intersection of hP,Bi = 1 with hP,A−Bi = 0 on C+

We denote by

L =
©
Z ∈ C+ | 0 < hZ,Bi < 1

ª
, U =

©
Z ∈ C+ | hZ,Bi > 1

ª
.

see Figure 4.3.

We begin the analysis when the fibers of both p and q intersect the
same region. For instance, if π−1(p), π−1(q) intersect L. We have two
possibilities. The first one consider the projection of the solution with
initial condition ζ0 ∈ π−1(p) and ending state ξ ∈ π−1(q), through the
adjoint differential equation determined by u = ϕ inside of L. If we need
to scape from L, then starting on ζ0 we move first under the influence of
u = ϕ up to ξ0 : the intersection between the ϕ-integral curve and the plane
hP,Bi = 1. From the new initial condition ξ0, we move on the region U
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through the ellipse ε+ which intersect the plane hP,Bi = 1 at the point
ξ1. From ξ1 we enter inside of L by a βϕ trajectory up to reach the line
π−1(q). Therefore, by an appropriated projection of the curve βϕ ◦ ε+ ◦ βϕ
we obtain the desired extremal on the projective line.

The case π−1(p), π−1(q) ∈ cl(U) is analogous.
Finally, if the fibers of both p and q intersect different regions. For in-

stance, if π−1(p) intersect L, and π−1(q) intersect U, the analysis is similar
to the previous cases. In fact, the extremals are given by the projection of
ε+ ◦ βϕ or βϕ ◦ ε+.

Assume now the plane hP,Bi = −1 intersect the cone C+

This situation is not possible. As before

L =
©
Z ∈ C+ | −1 < hZ,Bi < 0

ª
, U =

©
Z ∈ C+ | hZ,Bi < −1

ª
.

According to the PMP, on the region L we always need to use the control
u = −1. However, the line π−1(q−−1) is an attractor of the adjoint equation.
So, the trajectory will never leave L and its projection will remains in
(q+−1, q

−
−1).

2. For −B ∈ C+ and A ∈ sl (2) the synthesis follows in the same way
as (1.) when hP,Bi = −1 . But, hP,Bi = 1 it is not possible.

4.1.3. Case 3. hP,Bi = 0 divides C+ in two regions.

In this subsection B ∈ C+ext. The planes hP,Bi = ±1 give rise to three
regions in C+ : the Left, Medium and Right regions. And M has two
connected components. Precisely,

L =
©
Z ∈ C+ | hZ,Bi ≤ −1

ª
,M =

©
Z ∈ C+ | −1 ≤ hZ,Bi ≤ 1

ª
,

and
R =

©
Z ∈ C+ | 1 ≤ hZ,Bi

ª
,

see Figure 4.1. In terms of those regions and according to the PMP, the
synthesis states:

1. A+B and A−B belong to C+int
a) The fiber of p and q intersect the same region. Suppose, this region

is R. We have two different kind of dynamics

ε+ or ε+ ◦ βϕ ◦ ε− ◦ βϕ ◦ ε+
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If both fibers meet L or the same connected component of M the syn-
thesis is analogous. Assume, π−1(p) and π−1(q) belong two the different
connected components of M, the possible dynamics are

βϕ ◦ ε− ◦ βϕ or βϕ ◦ ε+ ◦ βϕ

Therefore, the projections of these classes of curves give us the extremals
on P1.

b) If the fibers intersects two any different regions, the case (a) give the
way to compute the extremals.

2. If A+B or A−B belong to C+int, but not both.
Assume A + B ∈ C+int and A − B ∈ C+ext. In principle, we have two

situations
2.1. The plane hP,A − Bi = 0 intersects hP,Bi = −1 and hP,Bi = 1

on C+.
Assume π−1(q−−1) meets R and π−1(q+−1) meets L. According to the

PMP, this situation is not possible. In fact, starting from a state in R we
can not reach any element of L.

2.2. The planes hP,A − Bi = 0 , hP,Bi = −1 and hP,Bi = 1 are
parallels.

This case is also not possible. Actually, under these hypothesis it follows
that hP,Ai = 0. Then, the matrices A, B and A−B are linear dependent
which is a contradiction.

Summarizing, in the controllable case we have

Theorem 4.2. Assume that the projected control system (1.3) is control-
lable on P1. Given any two arbitrary points p and q on the real projective
line, there exists an optimal control up, q steering p to q, minimizing the
functional J (1.2). The synthesis of up, q is given through the Pontryagin
Maximum Principle, as follows

J(up, q) = min {J(u) : u ∈ U determines an extremal} .

Next, we give some examples in which the projected system (1.3) is
controllable.

Example 4.3. Let Σ be determined by A = H
2 + 2R and B = H + 2R,

see (2.1). Since, the segment A + uB with −1 ≤ u ≤ 1, intercepts C+int
the system is controllable. IN fact, B, A + B ∈ C+int belong to C+int and
A − B ∈ C+ext. Since the plane hP,Bi = 1 meet the cone. This example
corresponds to the Case 1, (1.) .
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Example 4.4. Let Σ be determined by B = R−H ∈ C+ and A = R, see
(2.1). Since, A ∈ C+int the system is controllable, (4.1). On the other hand,
A + B ∈ C+int and A − B ∈ C+ext and the plane hP,Bi = 1 meets C+. So,
this is an example of Case 2, (1).

Example 4.5. Consider Σ defined by B = H ∈ C+ext and A = 2R, see
(2.1). Thus, A + B ∈ C+int and A − B ∈ C+int. If −1 ≤ u ≤ 1 the segment
A + uB intercepts C+int then, the system is controllable. This situation
correspond to Case 3, (1).

4.2. The Non Controllable Case

In this Section do not assume the controllability property of the projected
system on the projective real line. The synthesis is established by consid-
ering the existence of two control sets of PΣ on P1.

Before proceeding we need the notion of control set (see [4], [11], [12]).

Definition 4.6. A set D ⊂ P1 is called a control set of PΣ if for each
p ∈ D

i) D ⊂ clS(p)

ii) there exists a control u ∈ U with χ(t, p, u) ∈ D for all t ≥ 0, and

iii) with respect to the set inclusion, D is maximal with the properties
(i) and (ii).

As usual, clM denotes the closure of the set M , the positive orbit S(p)
is the action of the semigroup of the angle system on the state p ∈ P1 and
χ(t, p, u) is the solution of the projected system with initial condition p and
control u. A main control set is a control set with nonvoid interior.

Since we assume that (1.1) satisfy the Lie algebra rank condition, the
semigroup S of the bilinear control system is a proper subsemigroup of
Sl (2) with int S 6= ∅, see [11], [12]. Then, Proposition 3.1 in [1], shows that
there are exactly two control sets on P1, denoted by I±. They satisfy the
following properties:

i) I− ∩ I+ = ∅, I− is closed and I+ is open

ii) I− is invariant, i.e., S(p) ⊂ I− for all p ∈ I−. On the other hand, I+

is S−1-invariant
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iii) If g ∈ S is diagonalizable then its attractor belongs to I− and its
repeller is an element of the closure of I+

As before, we consider matrices A, B with det [A,B] 6= 0. If PΣ is not
controllable on P1 then A + B and A − B must be outside of C+int. In the
sequel, we just analyze the case, B ∈ C+ext

From a dynamic point of view, the planes hP,A+ Bi = 0 and hP,A−
Bi = 0 determine the control sets on P1, as follows

I− =
h
q−+1, q

−
−1
i
, I+ =

³
q++1, q

+
−1
´
.

where the boundary point of the intervals are the singularities of A + B
and A−B as explained above.

From the optimality point of view, the planes hP,Bi = ±1 give rise
to the regions L, M and R in C+, and four intersection points on P1. All
together determines the following eight regions on the projective line, which
we describe in as in the Figure (4.4) :

∆1 = I−, ∆2 =
³
q−−1, q

2
hP,Bi=1

i
, ∆3 =

³
q2hP,Bi=1, q

2
hP,Bi= −1

i
,

∆4 =
³
q2hP,Bi= −1, q

+
+1

i
, ∆5 = I+, ∆6 =

³
q+−1, q

1
hP,Bi= −1

i
,

∆7 =
³
q1hP,Bi= −1, q

1
hP,Bi=1

i
, ∆8 =

³
q1hP,Bi=1, q

−
+1

´
.

Figure 4.4: Dynamic on P1

In terms of those regions and according to the PMP, we must apply the
control u = −1 on L, u = ϕ(t) = − hP (t), Bi on M and u = 1 inside of R.
For p < q, we get in the table 1 for the possible trajectories on the cone C+
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Here p
ext−→ q denotes an extremal path on P1 starting on p and ending

on q with p < q.

As a consequence, there exists an extremal path starting on any point
of I+ and ending on an arbitrary point in the invariant control set I−. The
optimal path is constructed using bang controls as well as controls with
values in the interior of [−1, 1]. However, this is not the case in the other
direction.

Next, we illustrate an example in the noncontrollable case

Example 4.7. Consider Σ with the basis vectorsA = S andB = H ∈ C+ext,
see (2.1). The system Σ satisfies LARC but is not controllable. The plane
B⊥ splits C+ in two regions cone∩ {z1 > 0} , and cone ∩ {z1 < 0}
and both Planes hP,A±Bi = 0 intersect to hP,Bi = ±1 on C+.

Since, A+B as well as A−B belong to C+ext. Then the control sets are
given by

I+ = (
(1,−1−

√
2)°°°(1,−1−√2)°°° , (1, 1−

√
2)°°°(1, 1−√2)°°°) and

I− =

⎡⎣ (1,
√
2− 1)°°°(1,√2− 1)°°° , (1, 1 +

√
2)°°°(1, 1 +√2)°°°

⎤⎦
where k · k denotes the usual norm for vectors in R2. (see Figure 4.4).
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Let us p, for instance, the middle point of the I+. There exists a extremal
path connecting any two point p ∈ I+ and q ∈ I− starting on p, for instance
p the middle point of the interval I+ with the point

q =

µ
2√

7−2
√
2
,
√
2−1√
7−2

√
2

¶
∈ Int I−. This extremal path is constructed,

according to the PMP using the concatenation of the controls bang-interior-
bang.
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