Proyecciones Journal of Mathematics Vol. 29, N^o 2, pp. 123-135, August 2010. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172010000200005

COUNTABLE COMPACTNESS AND THE LINDELOF PROPERTY IN L-FUZZY TOPOLOGICAL SPACES *

RUN - XIANG LI BEIJING INSTITUTE OF TECHNOLOGY, CHINA and FU - GUI SHI BEIJING INSTITUTE OF TECHNOLOGY, CHINA Received : April 2010. Accepted : May 2010

Abstract

In this paper, the concepts of L-fuzzy countable compactness and the L-fuzzy Lindelöf property are introduced in L-fuzzy topological spaces, where L is a completely distributive DeMorgan algebra. An L-fuzzy compact L-fuzzy set is L-fuzzy countably compact and has the L-fuzzy Lindelöf property. An L-fuzzy set having the L-fuzzy Lindelöf property is L-fuzzy countably compact if and only if it is L-fuzzy compact. Many characterizations of L-fuzzy countable compactness and the L-fuzzy Lindelöf property are presented.

Keywords : *L*-fuzzy topology, *L*-fuzzy countable compactness, the *L*-fuzzy Lindelöf property.

2000 Mathematics Subject Classification : 05C50, 15A03, 52B40.

^{*}The project is supported by the National Natural Science Foundation of China (10971242).

1. Introduction

In 1976, the concept of fuzzy compactness was introduced in [0, 1]-topological spaces by R. Lowen [5]. Subsequently its characterization was given by G.J. Wang in terms of α -net in [12]. In 1988, it was extended to *L*-topological spaces [13], where *L* is a completely distributive DeMorgan algebra. In [9], a new definition of fuzzy compactness was presented by means of open *L*-sets and their inequality in *L*-topological spaces. When *L* is a completely distributive DeMorgan algebra, it is equivalent to the notion of fuzzy compactness in [4, 7, 13]. Recently the concept of *L*-fuzzy compactness was introduced by Shi and Li [10] in *L*-fuzzy topological spaces.

In this paper, our aim is to continue the research of L-fuzzy countable compactness and the L-fuzzy Lindelöf property of L-fuzzy sets.

2. Preliminaries

Throughout this paper $(L, \bigvee, \bigwedge, ')$ is a completely distributive DeMorgan algebra, X is a nonempty set. L^X is the set of all L-fuzzy sets on X. The smallest element and the largest element in L^X are denoted respectively by \perp and \perp . An L-fuzzy set is briefly written as an L-set. We often do not distinguish a crisp subset A from its characteristic function χ_A .

The set of nonunit prime elements in L is denoted by P(L). The set of nonzero co-prime elements in L is denoted by M(L). The set of nonzero co-prime elements in L^X is denoted by $M(L^X)$. The set all L-fuzzy points x_{λ} (i.e., an L-fuzzy set $A \in L^X$ such that $A(x) = \lambda \neq 0$ and A(y) = 0 for $y \neq x$) is denoted by $pt(L^X)$.

The binary relation \prec in L is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [1]. In a completely distributive DeMorgan algebra L, each member b is a sup of $\{a \in L \mid a \prec b\}$. In the sense of [4, 13], $\{a \in L \mid a \prec b\}$ is the greatest minimal family of b, denoted by $\beta(b)$, and $\beta^*(b) = \beta(b) \cap M(L)$. Moreover for $b \in L$, define $\alpha(b) = \{a \in L \mid a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$.

For $a \in L$ and $A \in L^X$, we define $A_{[a]} = \{x \in X \mid A(x) \ge a\}$.

Definition 2.1 ([2, 3, 6, 11]). An *L*-fuzzy topology on a set X is a map $\mathcal{T}: L^X \to L$ such that

- (1) $\mathcal{T}(\underline{\top}) = \mathcal{T}(\underline{\perp}) = \top;$
- (2) $\forall U, V \in L^X, \mathcal{T}(U \wedge V) \geq \mathcal{T}(U) \wedge \mathcal{T}(V);$

(3) $\forall U_j \in L^X, j \in J, \mathcal{T}(\bigvee_{j \in J} U_j) \ge \bigwedge_{j \in J} \mathcal{T}(U_j).$

 $\mathcal{T}(U)$ can be interpreted as the degree to which U is an open set. $\mathcal{T}^*(U) = \mathcal{T}(U')$ will be called the degree of closedness of U. The pair (X, \mathcal{T}) is called an L-fuzzy topological space.

A mapping $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ is said to be L-fuzzy continuous if $\mathcal{T}(f_L^{\leftarrow}(B)) \geq \mathcal{U}(B)$ holds for all $B \in L^Y$, where f_L^{\leftarrow} is defined by $f_L^{\leftarrow}(B)(x) = B(f(x))$ [6].

Theorem 2.2 ([14]). Let (X, \mathcal{T}) and (Y, \mathcal{U}) be *L*-fuzzy topological spaces. Then $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ be *L*-fuzzy continuous if and only if $\forall a \in M(L)$, $f : (X, \mathcal{T}_{[a]}) \to (Y, \mathcal{U}_{[a]})$ be *L*-continuous.

Definition 2.3 ([8, 9]). Let $a \in L \setminus \{T\}$ and $G \in L^X$. A subfamily U in L^X is said to be

(1) an a-shading of G if for any $x \in X$, it follows that $G'(x) \vee \bigvee_{A \in \mathcal{U}} A(x) \not\leq a$.

(2) a strong a-shading of G if $\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \not\leq a$.

Definition 2.4 ([8, 9]). Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{P} in L^X is said to be

(1) an a-remote family of G if for any $x \in X$, it follows that $G(x) \wedge \bigwedge_{B \in \mathcal{P}} B(x) \geq a$.

(2) a strong a-remote family of G if $\bigvee_{x \in X} \left(G(x) \land \bigwedge_{B \in P} B(x) \right) \not\geq a$.

Definition 2.5 ([8, 9]). Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{U} in L^X is called

(1) a β_a -cover of G if for any $x \in X$, it follows that $a \in \beta \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right)$.

(2) a strong β_a -cover of G if for any $x \in X$, it follows that $a \in \beta \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right) \right).$ **Definition 2.6 ([8, 9]).** Let $a \in L \setminus \{\bot\}$ and $G \in L^X$. A subfamily \mathcal{U} in L^X is called a Q_a -cover of G if $a \leq \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{A \in \mathcal{U}} A(x) \right)$.

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . $2^{[\Phi]}$ denotes the set of countable subfamilies of Φ .

Definition 2.7 ([8]). Let (X, \mathcal{T}) be an L-topological space. $G \in L^X$ is said to be countably compact if for every countable family $\mathcal{U} \subseteq L^X$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \le \bigvee_{V \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right).$$

Definition 2.8 ([8]). Let (X, \mathcal{T}) be an L-topological space. $G \in L^X$ is said to have the Lindelöf property if for every family $\mathcal{U} \subseteq L^X$, it follows that

$$\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \le \bigvee_{V \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right).$$

Definition 2.9 ([10]). Let (X, \mathcal{T}) be an *L*-fuzzy topological space. $G \in L^X$ is said to be *L*-fuzzy compact if for every family $\mathcal{U} \subseteq L^X$, it follows that

$$\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F) \land \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right).$$

3. L-fuzzy countable compactness

Definition 3.1. Let (X, \mathcal{T}) be an *L*-fuzzy topological space. $G \in L^X$ is said to be *L*-fuzzy countably compact if for every countable family $\mathcal{U} \subseteq L^X$, it follows that

$$\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F) \land \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \right) \le \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right).$$

Obviously *L*-fuzzy compactness implies *L*-fuzzy countable compactness. Let (X, \mathcal{T}) be an *L*-topological space. Let $\chi_{\mathcal{T}} : L^X \to L$

$$\chi_{\mathcal{T}} = \begin{cases} 1, & A \in \mathcal{T}, \\ 0, & A \notin \mathcal{T}. \end{cases}$$

.

Obviously, $(X, \chi_{\mathcal{T}})$ is a special *L*-fuzzy topological spaces. So we can easily prove the following theorem.

Theorem 3.2. Let (X, \mathcal{T}) be an *L*-topological space and $G \in L^X$. *G* is *L*-fuzzy countably compact in $(X, \chi_{\mathcal{T}})$ if and only if *G* is countably compact [8] in (X, \mathcal{T}) .

From Definition 2.1 we easily obtain the following theorem by simply using quasi-complement.

Theorem 3.3. Let (X, \mathcal{T}) be an *L*-fuzzy topological space. $G \in L^X$ is *L*-fuzzy countably compact if and only if for every countably family $\mathcal{P} \subseteq L^X$ it follows that

$$\bigvee_{F \in \mathcal{P}} \mathcal{T}'(F') \lor \left(\bigvee_{x \in X} (G(x) \land \bigwedge_{F \in P} F(x))\right) \ge \bigwedge_{\mathcal{H} \in 2^{(P)}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{F \in H} F(x)\right).$$

By Definition 2.1 and Theorem 2.2 and analogous to [8] we immediately obtain the following result.

Theorem 3.4. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. Then the following conditions are equivalent to each other.

- (1) G is L-fuzzy countably compact.
- (2) For any $a \in M(L)$, each countable strong a-remote family \mathcal{P} of G with $\bigwedge_{F \in P} \mathcal{T}^*(F) \not\leq a'$ has a finite subfamily \mathcal{H} which is a (strong) a-remote family of G.
- (3) For any $a \in M(L)$, and any countable strong a-remote family \mathcal{P} of G with $\bigwedge_{F \in \mathcal{P}} \mathcal{T}^*(F) \not\leq a'$, there exists a finite subfamily \mathcal{H} of \mathcal{P} and $b \in \beta^*(a)$ such that \mathcal{H} is a (strong) b-remote family of G.
- (4) For any $a \in P(L)$, each countable strong a-shading \mathcal{U} of G with $\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F) \not\leq a$ has a finite subfamily \mathcal{V} which is a (strong) a-shading of G.
- (5) For any $a \in P(L)$ and any countable strong a-shading \mathcal{U} of G with $\bigwedge_{F \in U} \mathcal{T}(F) \not\leq a$, there exists a finite subfamily \mathcal{V} of \mathcal{U} and $b \in \alpha^*(a)$ such that \mathcal{V} is a (strong) b-shading of G.

- (6) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each countable Q_a -cover \mathcal{U} of G with $\mathcal{T}(F) \geq a \; (\forall F \in \mathcal{U})$ has a finite subfamily \mathcal{V} which is a Q_b -cover of G.
- (7) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each countable Q_a -cover \mathcal{U} of G with $\mathcal{T}(F) \geq a \; (\forall F \in \mathcal{U})$ has a finite subfamily \mathcal{V} which is a (strong) β_b -cover of G.

Theorem 3.5. Let (X, \mathcal{T}) be an *L*-fuzzy topological space and $G \in L^X$. If $\beta(c \wedge d) = \beta(c) \cap \beta(d) \ (\forall c, d \in L)$, then the following conditions are equivalent to each other.

- (1) G is L-fuzzy countably compact.
- (2) For any $a \in M(L)$, each countable strong β_a -cover \mathcal{U} of G with $a \in \beta\left(\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F)\right)$ has a finite subfamily \mathcal{V} which is a (strong) β_a -cover of G.
- (3) For any $a \in M(L)$ and any countable strong β_a -cover \mathcal{U} of G with $a \in \beta\left(\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F)\right)$, there exists a finite subfamily \mathcal{V} of \mathcal{U} and $b \in M(L)$ with $a \in \beta^*(b)$ such that \mathcal{V} is a (strong) β_b -cover of G.

Now in order to research properties of L-fuzzy countably compactness, we introduce the following definition.

Definition 3.6. Let (X, \mathcal{T}) be an *L*-topological space, $a \in M(L)$ and $G \in L^X$. *G* is said to be countably *a*-compact if and only if $\forall b \in \beta(a)$, each countable Q_a -open cover \mathcal{U} of *G* has a finite subfamily \mathcal{V} which is a Q_b -open cover of *G*.

Theorem 3.7. Let (X, \mathcal{T}) be an *L*-topological space. $G \in L^X$ is countably compact if and only if $\forall a \in M(L)$, G is countably a-compact.

Theorem 3.8. Let (X, \mathcal{T}) be an *L*-fuzzy topological space and $G \in L^X$. *G* is *L*-fuzzy countably compact in (X, \mathcal{T}) if and only if $\forall a \in M(L)$, *G* is countably *a*-compact in $(X, \mathcal{T}_{[a]})$. Proof. (Necessity) Since G is L-fuzzy countably compact in (X, \mathcal{T}) , by Definition 2.1 we know that for every countable family $\mathcal{U} \subseteq L^X$, it follows that

$$\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F) \wedge \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \right) \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right).$$

Hence $\forall a \in M(L)$ and for every countable family $\mathcal{U} \subseteq \mathcal{T}_{[a]}$, we have that

$$a \leq \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \Rightarrow a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right).$$

Thus $\forall b \in \beta(a)$, there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $b \leq \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right)$, i.e., $\forall a \in M(L), \forall b \in \beta(a)$, each countable Q_a -cover \mathcal{U} of G in $(X, \mathcal{T}_{[a]})$ has a finite subfamily \mathcal{V} which is a Q_b -cover of G. Therefore $\forall a \in M(L), G$ is countably *a*-compact in $(X, \mathcal{T}_{[a]})$.

(Sufficiency) Suppose that $\forall a \in M(L), G$ is countably a-compact in $(X, \mathcal{T}_{[a]})$. Let $\mathcal{U} \subseteq L^X$ (\mathcal{U} is countable family) and $a \leq \bigwedge_{F \in U} \mathcal{T}(F) \land$ $\left(\bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{F\in\mathcal{U}} F(x)\right)\right). \text{ Then } \mathcal{U}\subseteq\mathcal{T}_{[a]} \text{ and } a \leq \bigwedge_{x\in X} \left(G'(x) \lor \bigvee_{F\in\mathcal{U}} F(x)\right).$ Thus $\forall b \in \beta(a)$, there exists $\mathcal{V} \in 2^{(\mathcal{U})}$ such that $b \leq \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right)$.

Hence $a \leq \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right)$. Therefore G is L-fuzzy countably compact in (X, \mathcal{T}) . \Box

Analogous to Shi's proof in [8], we can obtain the following Lemma 2.7.

Lemma 3.9. Let (X, \mathcal{T}) be an L-topological space, $a \in M(L)$ and $G \in$ L^X . If G is countably a-compact, then $G \wedge H$ is countably a-compact for each $H \in \mathcal{T}'$.

Theorem 3.10. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. If G is L-fuzzy countably compact, then for each $H \in L^X$ with $\mathcal{T}^*(H) = \top$, $G \wedge H$ is L-fuzzy countably compact.

 $\forall a \in M(L)$, since G is L-fuzzy countably compact in (X, \mathcal{T}) , by Proof. Theorem 2.6, G is countably a-compact in $(X, \mathcal{T}_{[a]})$. By $\mathcal{T}^*(H) = \top$, we know that $H \in \mathcal{T}'_{[a]}$. Further by Lemma 2.7, $G \wedge H$ is countably *a*-compact in $(X, \mathcal{T}_{[a]})$. Then by Theorem 2.8, $G \wedge H$ is *L*-fuzzy countably compact in (X, \mathcal{T}) . \Box

Analogous to Shi's proof in [8], we can obtain the following Lemma 2.9.

Lemma 3.11. Let (X, \mathcal{T}) be an L-topological space, $G, H \in L^X$ and $a \in M(L)$. If G and H are countably a-compact, then $G \vee H$ is countably a-compact as well.

Theorem 3.12. Let (X, \mathcal{T}) be an L-fuzzy topological space and $H, G \in L^X$. If G and H are L-fuzzy countably compact, then $G \vee H$ is L-fuzzy countably compact as well.

Proof. Since both G and H are L-fuzzy countably compact in (X, \mathcal{T}) , by Theorem 2.6, $\forall a \in M(L)$, we know that both G and H are countably a-compact in $(X, \mathcal{T}_{[a]})$. By Lemma 2.9, $G \vee H$ is countably a-compact in $(X, \mathcal{T}_{[a]})$. So $G \vee H$ is L-fuzzy countably compact in (X, \mathcal{T}) . \Box

Analogous to Shi's proof in [8], we can obtain the following Lemma 2.11.

Lemma 3.13. Let (X, \mathcal{T}) , (Y, \mathcal{U}) be two *L*-topological spaces and $a \in M(L)$. If *G* is countably *a*-compact in (X, \mathcal{T}) and $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ is an *L*-continuous mapping, then $f_{L}^{\to}(G)$ is countably *a*-compact in (Y, \mathcal{U}) .

Theorem 3.14. Let (X, \mathcal{T}) , (Y, \mathcal{U}) be two *L*-fuzzy topological spaces, and $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ be an *L*-fuzzy continuous mapping. If $G \in L^X$ is *L*-fuzzy countably compact in (X, \mathcal{T}) , then so is $f_L^{\to}(G)$ in (Y, \mathcal{U}) .

Proof. Since G is L-fuzzy countably compact in (X, \mathcal{T}) , by Theorem 2.6, $\forall a \in M(L)$, G is countably a-compact in $(X, \mathcal{T}_{[a]})$. By Theorem 1.2, $f : (X, \mathcal{T}_{[a]}) \to (Y, \mathcal{U}_{[a]})$ is an L-continuous mapping. Hence $f_L^{\to}(G)$ is countably a-compact in $(Y, \mathcal{U}_{[a]})$. Therefore $f_L^{\to}(G)$ is L-fuzzy countably compact in (Y, \mathcal{U}) . \Box

4. The *L*-fuzzy Lindelöf property

Definition 4.1. Let (X, \mathcal{T}) be an *L*-fuzzy topological space. $G \in L^X$ is said to have the *L*-fuzzy Lindelöf property if for every family $\mathcal{U} \subseteq L^X$, it

follows that

$$\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F) \land \left(\bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{U}} F(x) \right) \right) \le \bigvee_{\mathcal{V} \in 2^{[\mathcal{U}]}} \bigwedge_{x \in X} \left(G'(x) \lor \bigvee_{F \in \mathcal{V}} F(x) \right)$$

Obviously we have the following theorem.

Theorem 4.2. Let (X, \mathcal{T}) be an *L*-fuzzy topological space and $G \in L^X$ has the *L*-fuzzy Lindelöf property. Then *G* is *L*-fuzzy compact if and only if it is *L*-fuzzy countably compact.

Analogous to L-fuzzy countable compactness, we have the following results.

Theorem 4.3. Let (X, \mathcal{T}) be an L-topological space and $G \in L^X$. G has the L-fuzzy Lindelöf property in $(X, \chi_{\mathcal{T}})$ if and only if G has the Lindelöf property in (X, \mathcal{T}) .

Theorem 4.4. Let (X, \mathcal{T}) be an *L*-fuzzy topological space. $G \in L^X$ has the *L*-fuzzy Lindelöf property if and only if for every family $\mathcal{P} \subseteq L^X$, it follows that

$$\bigvee_{F \in \mathcal{P}} \mathcal{T}'(F') \lor \left(\bigvee_{x \in X} (G(x) \land \bigwedge_{F \in P} F(x))\right) \ge \bigwedge_{\mathcal{H} \in 2^{[P]}} \bigvee_{x \in X} \left(G(x) \land \bigwedge_{F \in H} F(x)\right).$$

Theorem 4.5. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. Then the following conditions are equivalent to each other.

- (1) G has the L-fuzzy Lindelöf property.
- (2) For any $a \in M(L)$, each strong *a*-remote family \mathcal{P} of G with $\bigwedge_{F \in \mathcal{P}} \mathcal{T}^*(F) \not\leq a'$ has a countable subfamily \mathcal{H} which is a (strong) *a*-remote family of G.
- (3) For any $a \in M(L)$, and any strong a-remote family \mathcal{P} of G with $\bigwedge_{F \in \mathcal{P}} \mathcal{T}^*(F) \not\leq a'$, there exists a countable subfamily \mathcal{H} of \mathcal{P} and $b \in \beta^*(a)$ such that \mathcal{H} is a (strong) b-remote family of G.
- (4) For any $a \in P(L)$, each strong *a*-shading *U* of *G* with $\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F) \not\leq a$ has a countable subfamily \mathcal{V} which is a (strong) *a*-shading of *G*.

- (5) For any $a \in P(L)$ and any strong *a*-shading \mathcal{U} of G with $\bigwedge_{F \in U} \mathcal{T}(F) \not\leq a$, there exists a countable subfamily \mathcal{V} of \mathcal{U} and $b \in \alpha^*(a)$ such that \mathcal{V} is a (strong) *b*-shading of G.
- (6) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each Q_a -cover \mathcal{U} of G with $\mathcal{T}(F) \geq a \; (\forall F \in \mathcal{U})$ has a countable subfamily \mathcal{V} which is a Q_b -cover of G.
- (7) For any $a \in M(L)$ and any $b \in \beta^*(a)$, each Q_a -cover \mathcal{U} of G with $\mathcal{T}(F) \geq a \; (\forall F \in \mathcal{U})$ has a countable subfamily \mathcal{V} which is a (strong) β_b -cover of G.

Theorem 4.6. Let (X, \mathcal{T}) be an *L*-fuzzy topological space and $G \in L^X$. If $\beta(c \wedge d) = \beta(c) \cap \beta(d) \ (\forall c, d \in L)$, then the following conditions are equivalent to each other.

- (1) G has the L-fuzzy Lindelöf property.
- (2) For any $a \in M(L)$, each strong β_a -cover \mathcal{U} of G with $a \in \beta\left(\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F)\right)$ has a countable subfamily \mathcal{V} which is a (strong) β_a -cover of G.
- (3) For any $a \in M(L)$ and any strong β_a -cover \mathcal{U} of G with $a \in \beta\left(\bigwedge_{F \in \mathcal{U}} \mathcal{T}(F)\right)$, there exists a countable subfamily \mathcal{V} of \mathcal{U} and $b \in M(L)$ with $a \in \beta^*(b)$ such that \mathcal{V} is a (strong) β_b -cover of G.

Definition 4.7. Let (X, \mathcal{T}) be an *L*-topological space, $a \in M(L)$ and $G \in L^X$. *G* has the *a*-Lindelöf property if and only if $\forall b \in \beta(a)$, each Q_a -open cover \mathcal{U} of *G* has a countable subfamily \mathcal{V} which is a Q_b -open cover of *G*.

Theorem 4.8. Let (X, \mathcal{T}) be an L-topological space. Then $G \in L^X$ has the Lindelöf property if and only if $\forall a \in M(L)$, G has the a-Lindelöf property.

Theorem 4.9. Let (X, \mathcal{T}) be an L-fuzzy topological space and $G \in L^X$. Then G has the L-fuzzy Lindelöf property in (X, \mathcal{T}) if and only if $\forall a \in M(L)$, G has the a-Lindelöf property in $(X, \mathcal{T}_{[a]})$.

Lemma 4.10. Let (X, \mathcal{T}) be an L-topological space, $a \in M(L)$ and $G \in L^X$. If G has the a- Lindelöf property, then $G \wedge H$ has the a-Lindelöf property for each $H \in \mathcal{T}'$.

Theorem 4.11. Let (X, \mathcal{T}) be an *L*-fuzzy topological space and $G \in L^X$. If *G* has the *L*-fuzzy Lindelöf property, then for each $H \in L^X$ with $\mathcal{T}^*(H) = \top$, $G \wedge H$ has the *L*-fuzzy Lindelöf property.

Lemma 4.12. Let (X, \mathcal{T}) be an *L*-topological space, $G, H \in L^X$ and $a \in M(L)$. If G and H have the a-Lindelöf property, then $G \vee H$ has the a-Lindelöf property as well.

Theorem 4.13. Let (X, \mathcal{T}) be an L-fuzzy topological space and $H, G \in L^X$. If G and H have the L-fuzzy Lindelöf property, then $G \vee H$ has the L-fuzzy Lindelöf property as well.

Lemma 4.14. Let (X, \mathcal{T}) , (Y, \mathcal{U}) be two L-topological spaces and $a \in M(L)$. If G has the a-Lindelöf property in (X, \mathcal{T}) and $f : (X, \mathcal{T}) \to (Y, \mathcal{U})$ is an L-continuous mapping, then $f_L^{\rightarrow}(G)$ has the a-Lindelöf property in (Y, \mathcal{U}) .

Theorem 4.15. Let (X, \mathcal{T}) , (Y, \mathcal{U}) be two *L*-fuzzy topological spaces, and $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ be an *L*-fuzzy continuous mapping. If $G \in L^X$ has the *L*-fuzzy Lindelöf property in (X, \mathcal{T}) , then $f_L^{\to}(G)$ has the *L*-fuzzy Lindelöf property in (Y, \mathcal{U}) .

References

- P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, *Indagationes Mathematicae (Proceedings)*, 85, pp. 403-414, (1982).
- [2] U. Höhle, A.P. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, Chapter 3 in: U. Höhle, S.E. Rodabaugh (Eds), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Kluwer Academic Publishers (Boston/Dordrecht/London), 1999.
- [3] T. Kubiak, On fuzzy topologies, Ph. D. Thesis, Adam Mickiewicz, Poznan, Poland, (1985).
- [4] Y. M. Liu, M. K. Luo, Fuzzy topology, World Scientific, Singapore, (1997).

- [5] R. Lowen, Fuzzy topological spaces and fuzzy compactness. J. Math. Anal. Appl., 56, pp- 621-633, (1976).
- [6] S. E. Rodabaugh, Categorical foundations of variable-basis fuzzy topology, Chapter 4 in [2].
- [7] F.-G. Shi, A note on fuzzy compactness in L-topological spaces, Fuzzy Sets and Systems, 199, pp. 547-548, (2001).
- [8] F.-G. Shi, Countable compactness and the Lindelöf property of *L*-fuzzy sets, *Iranian Journal of Fuzzy Systems*, 1, pp. 79-88, (2004).
- [9] F. -G. Shi, A new definition of fuzzy compactness, *Fuzzy Sets and Systems*, 158, pp. 1486-1495, (2007).
- [10] F. -G. Shi, R. -X. Li, Compactness in L-fuzzy topological spaces, submitted.
- [11] A. P. Sostak, On a fuzzy toplogical structure, Suppl. Rend. Circ. Mat. Palermo Ser., 1, pp. 89-103, (1985).
- [12] G. L. Wang, A new fuzzy compactness definied by fuzzy nets, J. Math. Anal. Appl., 94, pp. 1-23, (1983).
- [13] G. J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal University Publishers, Xian, (1988). (in Chinese).
- [14] J. Zhang, F.-G. Shi and C.-Y. Zheng, On L-fuzzy topological spaces, Fuzzy Sets and Systems, 149, pp. 473-484, (2005,).

Run - Xiang Li

Department of Mathematics, School of Science, Beijing Institute of Technology, Beijing 100081, P. R. China e-mail: lirunxiang84@sina.com

and

Fu - Gui ShiDepartment of Mathematics,School of Science,Beijing Institute of Technology,Beijing 100081,P. R. Chinae-mail : fuguishi@bit.edu.cn