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Abstract

Let (g, [·, ·]) be a Lie algebra with an integrable complex structure
J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic
to the algebra (g, [∗]J) with bracket [X ∗ Y ]J = 1

2 ([X,Y ]− [JX, JY ]).
We consider here the case where these subalgebras are nilpotent and
prove that the original (g, [·, ·]) Lie algebra must be solvable. We con-
sider also the 6-dimensional case and determine explicitly the possible
nilpotent Lie algebras (g, [∗]J). Finally we produce several examples
illustrating different situations, in particular we show that for each
given s there exists g with complex structure J such that (g, [∗]J) is
s-step nilpotent. Similar examples of hypercomplex structures are also
built.
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1. Introduction

Given a real Lie algebra (g, [·, ·]) with a complex structure J , we can write
gC = g1,0 ⊕ g0,1, where g1,0 and g0,1 are eigen— spaces of J corresponding
to the eigenvalues i and −i, respectively. These eigenspaces are subalgebras
of gC if and only if J is an integrable complex structure.

In this paper we consider such complex structures for which the eigenspaces
are nilpotent subalgebras of gC. Our main result of general nature states
that the Lie algebra g is solvable if g1,0 (or equivalently g0,1) is a nilpotent
subalgebra (see Theorem 3.2). The proof of this fact relies on a result which
goes back to Goto [10], namely, that a semi-simple Lie algebra cannot be
written as the sum of two nilpotent subalgebras.

In another direction we apply the classification Salamon [13] to de-
termine those 6-dimensional solvable Lie algebras admitting an integrable
complex structure with nilpotent g1,0.

Complex structures on solvable and nilpotent Lie algebras have been ex-
tensively studied recently (see Dotti-Fino [6], [7], [8], [9], Barberis-Dotti [2]
and Salamon [13] and references therein). In particular, abelian structures
where considered in [8], where it is proved that abelian complex structures
occur only on solvable Lie algebras, and in [2] where a characterization of
solvable Lie algebras admiting abelian complex structures is given.

Before proceeding we remark that Cordero-Fernández-Gray-Ugarte [5],
defined the concept of nilpotent complex structure by asking that the as-
cending series of ideals al(J) defined inductively by a0(J) = {0} and

al(J) = {X ∈ g; [X,g] ⊂ al−1(J) and [JX,g] ⊂ al−1(J)}

ends in g. We remark that if J is nilpotent then the Lie algebra g is
also nilpotent. Hence this concept is stronger than the nilpotence of the
eigenspaces g1,0 and g0,1.

We describe now the contents of the paper. In Section 2 we follow Bar-
tolomeis [3] and define a new Lie bracket [∗]J on g that is given [X ∗ Y ]J =
1
2 ([X,Y ]− [JX, JY ]). This bracket satisfies the Jacobi identity if and only
if J is integrable. In this case we denote the Lie algebra obtained by
g∗. It turns out that g∗ is a complex Lie algebra (with complex struc-
ture J) isomorphic to both g1,0 and g0,1. We remark that these alge-
bras are also isomorphic to the Lie algebra in g given by the bracket
[X,Y ]J =

1
2 ([JX, Y ] + [X,JY ]).

In Section 3 we prove that g is solvable if g∗ is nilpotent. As mentioned
above the proof is based on a lemma of [10], whose proof we reproduce here
with some modifications.
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In Section 4 we consider the 6-dimensional solvable Lie algebras g with
complex structure J such that g∗ is s-step nilpotent. It turns out that in
this case that either s = 1 (that is, g∗ is abelian) or s = 2 and in this
case there exists a basis {f1, . . . , f6} of g such that the non-zero brackets
of (g, [∗]J) are given by

[f1 ∗ f3] = [f4 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6.

Hence, there are exactly two possibilities for g∗ in dimension 6. We note
that 6 is the first low dimensional case where we can have nonabelian g∗,
since in dimension 4 is abelian if it is nilpotent.

Finally Section 5 is devoted to the construction of examples of Lie al-
gebras g with complex structure J for which g∗ is s-step for each given s.
Similar examples of hypercomplex structures are also built.

Acknowledgment: The authors wish to thank I. Dotti, A. Fino and
Laercio Santos for helpful discussions.

2. Complex structures on Lie algebras

Recall that a complex structure on a real Lie algebra (g, [·, ·]) is an endo-
morphism J of g such that J2 = −I. We assume throughout that J is in
integrable, that is, NJ = 0, where NJ is the Nijenhuis tensor of J :

NJ(X,Y ) = J [X,Y ]− [JX, Y ]− [X,JY ]− J [JX, JY ].

Given a complex structure J on g, its complexification to gC = g⊕ ig
gives a splitting gC = g1,0 ⊕ g0,1, where

g1,0 = {X ∈ gC;JX = iX} and g0,1 = {X ∈ gC;JX = −iX}

are the ±i-eigenspaces of J . It is well known (and easy to prove) that J is
integrable if and only if the g1,0 and g0,1 are complex subalgebras of gC.

To study J we define in g a new Lie bracket [∗]J , such that the realifi-
cation of both g1,0 and g0,1 are Lie algebras isomorphic to (g, [∗]J).

Definition 2.1. Let (g, [, ]) be a Lie algebra with a complex structure J .
Define [∗]J : g × g −→ g by
[X ∗ Y ]J = 1

2 ([X,Y ]− [JX, JY ]) .

It is easy to see that [∗]J is bilinear skew-symmetric and the annihilation
of NJ implies the Jacobi identity of [∗]J (for general J the cyclic permuta-
tion of [X ∗ [Y ∗ Z]] equals the cyclic permutation of 1

4
[JX,NJ (JY,Z)]).
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In the sequel we denote by g∗ the Lie algebra obtained by endowing g
with the bracket [∗].

In general the brackets [·, ·] and [∗] highly different. Clearly, [·, ·] = [∗]
if and only if [X,Y ] = −[JX, JY ] for all X,Y ∈ g and this happens if and
only if g is already a complex Lie algebra with complex structure given by J .
In fact, recall that J is said to be adapted to (g, [·, ·]) if [X,JY ] = J [X,Y ]
for all X,Y ∈ g. In this case g becomes a complex Lie algebra where J is
multiplication by i.

It is easy to see that [X,Y ] = − [JX, JY ] for allX,Y ∈ g if J is adapted,
so that in this case the Lie algebras g∗ and g coincide. Conversely, we check
next that g∗ is complex with respect to J , so that if [·, ·] = [∗] then g is
complex.

Proposition 2.2. Let (g, [·, ·]) be a Lie algebra with a complex structure
J . Then J is adapted to (g, [∗]J). Hence g∗ is a complex Lie algebra.

Proof: Given X,Y ∈ g we have J[X ∗ Y ]J = 1
2(J([X,Y ] − [JX, JY ])) =

1
2([JX, Y ] + [X,JY ])
= 1

2([JX,Y ]− [JJX, JY ]) = [JX ∗ Y ]J .
2

It is easy to see that J also satisfies the integrability condition with
respect to [∗]J . Hence the above proposition implies that [X ∗ ∗Y ]J =
[X ∗ Y ]J where

[X ∗ ∗Y ]J =
1

2
([X ∗ Y ]J − [JX ∗ JY ]J)

is the ∗-algebra of g∗.
Remark: The above discussion shows that the condition NJ = 0 together
with [X,Y ] = −[JX, JY ] is equivalent to J be adapted. If G is a Lie
group with Lie algebra g the integrability condition NJ = 0 means that
J can be extended to a complex structure on G which is left invariant,
that is, the left translations are holomorphic maps. The extra condition
[X,Y ] = −[JX, JY ] is the missing one for J to be bi-invariant in G.
Remark: One can build form J another Lie algebra structure on g, namely

[X,Y ]J =
1

2
([JX, Y ] + [X,JY ]) .

Again [·, ·]J satisfies the Jacobi identity if and only if J is integrable (w.r.t.
the original bracket). However the Lie algebra obtained this way is isomor-
phic to g∗. In fact, a straightforward computation using NJ = 0 shows
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that −J [X ∗ Y ]J = [−JX,−JY ]J , so that −J is an isomorphism between
[∗]J and [·, ·]J .

A glance at the definition of [∗] shows that the subalgebras g1,0 and g0,1
are commuting ideals of the complexification gC∗ . Actually these ideals are
isomorphic to g∗:

Proposition 2.3. Let J be a complex structure on (g, [·, ·]). Then the
complex Lie algebras (g, [∗]J), g1,0 and g0,1 are isomorphic.

Proof: Observe that g1,0 = {X − iJX;X ∈ g}. Then a straightfor-
ward computation (using that NJ = 0) shows that ϕ : g → g1,0 given
by ϕ(X) = 1

2 (X − iJX) is an isomorphism between (g, [∗]J) and g1,0.
Analogously g0,1 = {X + iJX;X ∈ g} and ψ(X) = 1

2 (X + iJX) is an
isomorphism between (g, [∗]J) and

¡
g0,1

¢
. Note that for every X ∈ g we

have ϕ (JX) = iϕ (X) and ψ (JX) = iψ (X), so that ϕ and ψ are complex
linear maps. 2

This proposition implies at once that g∗ is nilpotent if g is nilpotent.
Also, if g is solvable then g∗ is solvable as well. The converse to both these
statements is not true. In fact, there are examples where g∗ is nilpotent
and g is solvable and not nilpotent and where g∗ is solvable and g simple.
In any case it will be proved below that g is solvable if g∗ is nilpotent.

For later reference we write explicitly the lower central series of g∗: We
have, inductively g0∗ = g and

gk∗ = span
n
[X,Y ]− [JX, JY ] ;X ∈ g, Y ∈ gk−1∗

o
.

In particular, g∗ is abelian if and only if

[JX, JY ] = [X,Y ] for all X, Y ∈ g.(2.1)

According to [2] a complex structure J in the Lie algebra (g, [·, ·]) is
said to be abelian if condition (2.1) is satisfied. It is easy to see that
this condition implies automatically the vanishing of the Nijenhuis tensor.
Inspired by this we say that a complex structure J on g s-step nilpotent it
is integrable and g∗ is s-step nilpotent. We note that this different from
the concept of nilpotent complex structure of [5].

3. g is solvable if g∗ is nilpotent

In [8], Proposition 3.1, it was shown that abelian complex structures only
occur in solvable Lie algebras. Our purpose in this section is to generalize
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that result by showing that if g∗ is nilpotent then g is solvable.
Our proof is based in a lemma of Goto [10]. For the sake of completeness

we present here a modified proof of it. Before stating the lemma define some
notation. Let g be a complex semi-simple Lie algebra and h ⊂ g is a Cartan
subalgebra of g. Denote by Π the corresponding root system and let Π+ be
the set of positive roots with respect to a choice of a lexicographic ordering
in h. Put n+ =

P
α∈Π+ gα where gα is the root space corresponding to α.

Then
g = h⊕ n+ ⊕ n−,

where n− =
P

α∈Π+ gα and Π
− = −Π+. Also, b = h ⊕ n+ is a Borel

subalgebra of g and as is well known every solvable subalgebra of g is
conjugate by an inner automorphism of g to a subalgebra of b (see [4], [15]
or [11]).

Lemma 3.1. Let g be a semi-simple Lie algebra over an algebraically
closed field of zero characteristic. Put d = dimg and let l = dimh be
the rank of g. Suppose that n ⊂ g is a nilpotent subalgebra. Then

dimn ≤ d− l

2
= dimb− l

where b is a Borel subalgebra.

Proof: Since b = h⊕n+ is a Borel subalgebra of g we can assume without
loss of generality that n ⊂ b.

Denote by a the set all semi-simple elements in n. If A ∈ a its adjoint
ad(A) is a semi-simple linear transformation on g. Since ad(A), restricted
on n is nilpotent, we have ad (A) = 0 on n. Hence a is and ideal contained
in the center z (n) of n.

We claim that a is contained in a Cartan subalgebra of b. To see this
recall that the Cartan subalgebras of g are exactly the maximal abelian
subalgebras consisting of semi-simple elements (see [15], Chapter III). This
characterization works for the Cartan subalgebras of b as well. In fact,
h is a also a Cartan subalgebra of b hence any Cartan subalgebra h1 of
b is maximal abelian and consists of semi-simple elements, because h1 is
conjugate to h by an inner automorphism of b. Conversely, if h2 is maximal
abelian and consists of semi-simple elements then h2 is a Cartan subalgebra
of g and hence of b. Now, a is abelian and its elements are semi-simple
hence a is contained in a Cartan subalgebra of b.

Therefore we can assume without loss of generality that

a ⊂ h ⊂ b.
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Furthermore, any element of a is semi-simple, we have

n ∩ h = a.

Let Θ = {α ∈ Π+ : α (H) = 0 for all H ∈ a} and put m1 = h ⊕P
α∈Θ gα. Clearly, m1 is the centralizer of a in b, so that h + n ⊂ m1.

Hence

dimm1 ≥ dimn+ dimh− dimn ∩ h = dimn+ l − k(3.1)

where k = dima.
On the other hand, if we put m2 =

P
α∈Π+\Θ gα then b = m1 ⊕m2.

We claim that dimm2 ≥ k.
In fact,
let Σ be the simple system of roots contained in Π+. It is a basis of

the dual h∗ of h. Hence there exists at least k roots α1, . . . , αs ∈ Σ, s ≥ k,
which do not belong to Θ. Hence the root spaces gαi , i = 1, . . . , s, are
contained in m2 showing that dimm2 ≥ k.

Combining this inequality with (3.1) we have

dimb = dimm1 + dimm2 ≥ dimn+ l

showing that dimn ≤ dimb− l, as required. 2

Now we can prove the main result of this section.

Theorem 3.2. Let g be a Lie algebra with complex structure, such that
g∗ is nilpotent. Then g is solvable.

Proof: We write the complexification gC of g as the direct sum of two
nilpotent subalgebras:

gC = g1,0 ⊕ g0,1.
Suppose that gC is not solvable and let r

³
gC
´
be its solvable radical. The

Lie algebra s = gC/r
³
gC
´
is semi-simple (or {0}). Let n1 and n2 be the

respective projections of g1,0 and g0,1 onto s. Clearly, s = n1+n2. However
both subalgebras n1 and n2 of s are nilpotent, hence by Lemma 3.1 their
dimension is < 1

2 dim s. This is a contradiction unless s = {0}, that is g is
solvable. 2

In view of the above result it is natural to get results relating the degree
of nilpotence of g∗ with the degree of solvability of g. In this direction we
mention that it was proved recently by Andrada-Barberis-Dotti-Ovando [1]
(see also [12]) that g is 2-step solvable if it is sum of two abelian subalgebras.
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4. 6-dimensional Lie algebras

The purpose of this section is to determine which nilpotent 6-dimensional
Lie algebras are g∗ for some integrable complex structure. We observe first
that the 4-dimensional case is completely clear. In fact, if g∗ is nilpotent
then it is abelian since it is a 2-dimensional complex Lie algebra. In the 6-
dimensional case g1,0, g0,1 and g∗ are 3-dimensional complex subalgebras,
and hence at most 2-step nilpotent. Despite this fact be known, we want
to leave here a proof.

Lemma 4.1. If g is a 3-dimensional nilpotent Lie algebra, then g is at
most 2-step nilpotent. In particular, either g is abelian or g is isomorphic
to Heisenberg Lie algebra.

Proof: If dimg1 = 0, then g is abelian. If dimg1 = 1, then either
g2 = {0}, that is, g is 2-step nilpotent, or g2 = g1, what contradicts the
fact that g is nilpotent. If dimg1 = 2, then either g1 is abelian or there
exists a basis {X,Y } of g1 such that [X,Y ] = Y . In this last case Y ∈ gk,
for all k, what contradicts the fact that g is nilpotent. Thus g1 is abelian.
Now, take X ∈ g \ g1. Then ad(X)g1 ⊂ g1, and since ad (X) restricted
to g1 is nilpotent there exists a basis {Y,Z} of g1 such that [X,Y ] = 0,
[X,Z] = Y and [Y,Z] = 0. But this contradicts the fact that dimg1 = 2.
Therefore g is 2-step nilpotent. 2

We consider a 6-dimensional real Lie algebra 6-dimensional g with com-
plexa structure J , such that g∗ is nilpotent, but not abelian. Then g1,0 is
the Heisenberg Lie algebra because g1,0 is 3-dimensional and note abelian.
Consequently there exists a basis

{ω1 = e1 − iJe1, ω2 = e2 − iJe2, ω3 = e3 − iJ3} of g1,0,

where {e1, e2, e3, Je1, Je2, J3} is a basis of g, such that the non-zero bracket
is

[ω1, ω3] = ω2.

Therefore,

[e1 − iJe1, e3 − iJe3] = e2 − iJe2.

Developing these equalities we obtain

[e1, e3]− [Je1, Je3] = e2 and [e1, Je3] + [Je1, e3] = Je2.
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Hence,

[e1 ∗ e3] =
1

2
e2 and [e1 ∗ Je3] =

1

2
Je2.

Now, by Proposition 2.2 J is adapted to g∗. Therefore,

[Je1 ∗ Je3] = −
1

2
e2 and [Je1 ∗ e3] =

1

2
Je2.

The other brackets of g∗ are zero because [ω1, ω2] = [ω2, ω3] = 0. We
observe that g∗ is isomorphic the Lie algebra h, with non-zero brackets

[f1 ∗ f3] = [f4 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6,(4.1)

where {f1, f2, f3, f4, f5, f6} is a basis of h. Formally, we have following
Theorem

Theorem 4.2. Let g be a 6-dimensional Lie algebra with a non-abelian
complex structure J. If J is s-step nilpotent, then s = 2 and there exists a
basis {f1, f2, f3, f4, f5, f6} of g, such that the non-zero brackets of (g, [∗]J)
are

[f1 ∗ f3] = [f4 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6.(4.2)

Now, we exhibit a typical example.

Example 1. Let g be the Lie algebra with non-zero brackets

[e1, e2] = −e3 [e1, e3] = −e4 [e2, e3] = −e5 [e1, e4] = [e2, e5] = −e6,

where {e1, e2, e3, e4, e5, e6} is a basis of g. Let J be the complex structure
given by

Je1 = −e2 Je4 = −e5 Je3 = −e6.

We have

h = g
(1,0)
J = span {ω1 = e1 − iJe1, ω2 = e4 − iJe4, ω3 = e3 − iJ3} .

Now,

[ω1, ω2] = 0 [ω1, ω3] = ω2 [ω2, ω3] = 0.

Therefore, h1 = span {w2} , h2 = 0 and J is 2-step nilpotent.
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In the example 1 we have

[e1 ∗ e3]J = [e6 ∗ e2]J = −
1

2
e4 [e2 ∗ e3]J = [e1 ∗ e6]J = −

1

2
e5.

We can easily see that this Lie algebra is isomorphic to Lie algebra h, with
non-zero brackets

[f1 ∗ f3] = [f4 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6,

where {f1, f2, f3, f4, f5, f6} is a basis h.
We can also prove the Theorem 4.2 without the use of the Lemma 4.1,

just using the classification given by Salamon. In fact, the subspaces gk∗
have even dimension since they are J-invariant. In our case we can rule
out dimg1∗ = 6 and dimg1∗ = 0 because g∗ is nilpotent and not abelian.
We consider separately the cases dimg1∗ = 4 and dimg

1
∗ = 2 and apply the

classification given in [13].

Suppose that dimg1∗ = 4. By Theorem 3.1 in [13], there exists a basis
{fi, 1 ≤ i ≤ 6} of g, such that the non-zero brackets of (g, [∗]J) are

[f1 ∗ f2] = −f3, [f1 ∗ f3] = −f4, [f2 ∗ f3] = −f5, [f1 ∗ f4] = [f2 ∗ f5] = −f6.

In this case, g1∗ = span {f3, f4, f5, f6} ,
g2∗ = span {f4, f5, f6} , what contradicts the fact that dimg2∗ is even. There-
fore, we can assume dimg1∗ 6= 4.

In case dimg1∗ = 2 we have by Theorem 3.3 in [13] five possibilities.
In fact, there exists a basis {fi, 1 ≤ i ≤ 6} of g, such that the non-zero
brackets of (g, [∗]J) are one of the following

1. [f1 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f5] = −f6.

2. [f1 ∗ f2] = −f5, [f1 ∗ f3] = −f6.

3. [f1 ∗ f3] = [f4 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6.

4. [f1 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6.

5. [f1 ∗ f2] = −f5, [f3 ∗ f4] = −f6.

By our Example 1 there exists a Lie algebra g, with 2-step complex
structure J , such that (g, [∗]J) is isomorphic to algebra given in the third
line above. We prove now that the other cases cannot happen.
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In the first case, g1∗ = span {f5, f6} ,
gk∗ = span {f6} , which contradicts the fact that dimg2∗ is even, ruling out
this case.

In the other cases ((2), (4) and (5)) we have g1∗ = span {f5, f6} ,
g2∗ = {0} . To get rid of case (2) we suppose that [f1 ∗ f2] = −f5, [f1 ∗ f3] =
−f6. Since g1∗ is J-invariant we can write Jf5 = af5 + bf6,
Jf6 = cf5 + df6,

Jfi =
6X

j=1

aijfj , 1 ≤ i ≤ 4. But J2 = −I implies that a = −d. Moreover,

by Proposition 2.2 we have

−(af5 + bf6) = −Jf5 = J [f1 ∗ f2] = [Jf1 ∗ f2] = −a11f5.

Hence b = 0 and a = a11, and this contradicts the fact that J
2 = −I.

Now we suppose that [f1 ∗ f2] = −f5, [f1 ∗ f4] = [f2 ∗ f3] = −f6 (case
(4)). Taking J as above and applying Proposition 2.2 again we get

−(cf5 − af6) = −Jf6 = J [f2 ∗ f3] = [Jf2 ∗ f3] = −a22f6.

Thus, c = 0 and a = −a22, what contradicts the fact that J2 = −I.
Finally suppose that [f1 ∗ f2] = −f5, [f3 ∗ f4] = −f6. Writing J as

above we obtain b = 0 and a = a11. Again this contradicts the fact that
J2 = −I. This finishes the cases completing the proof of the theorem.

5. Examples

In this section we produce some examples of complex and hypercomplex
structures on solvable Lie algebras.

We start by applying Theorem 4.2 to produce examples relating the
g and g∗ structures on 6-dimensional solvable Lie algebras. This requires
some preparations.

Let {f1, f2, f3, f4, f5, f6} be a basis of g∗ with bracket relations given
by (??). Our objective is to get information about the complex structure
J and the original bracket [·, ·]. For this we write

Jfi =
6X

j=1

aijfj , 1 ≤ i ≤ 4

and Jf5 = af5 + bf6
Je6 = cf5 + df6. This is possible because g

1
∗ is J-invariant. From J2 = −I

we have the restriction a = −d.
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Now, by Proposition 2.2, we have J [f1 ∗ f2]J = [Jf1 ∗ f2]J . Therefore,
0 =[a11f1 + a21f2 + a31f3 + a41f4 + a51f5 + a61f6 ∗ f2]J
= a31 [f3 ∗ f2]J + a41 [f4 ∗ f2]J
= a31f6 − a41f5, and consequently a31 = a41 = 0. Also, J [f1 ∗ f3]J =
[Jf1 ∗ f3]J . Hence, J(−f5) = [Jf1 ∗ f3]J so that

J(f5) = a11f5 + a21f6 = af5 + bf6,

which implies that a11 = a and a21 = b. Applying J [f1 ∗ f3]J = [Jf1 ∗ f3]J
to the other brackets in (??) and using J2 = −I, we obtain a = d = 0,
a11 = a31 = a41 = 0, a22 = a32 = a42 = 0, a13 = a23 = a33 = 0,
a14 = a24 = a44 = 0, a43 = −a34 = b, b2 = 1, a54 = a63, a64 = −a53,
a52 = a61 and a62 = −a51. In summary, Jf1 = bf2 + a51f5 + a61f6
Jf2 = −bf1 + a61f5 − a51f6
Jf3 = bf4 + a53f5 + a63f6
Jf4 = −bf3 + a63f5 − a53f6
Jf5 = bf6
Jf6 = −bf5.

In particular, let us take b = 1 and a51 = a61 = a53 = a63 = 0 so that
-e5 = [e1 ∗ e3]J = 1

2([e1, e3]− [Je1, Je3]
= 1

2([e1, e3] − [e2, e4]). In a similar way, we get the brackets [e1, e3] =
[e2, e4]− 2e5
[e1, e4] = − [e2, e3]− 2e6
[e1, e5] = [e2, e6]
[e1, e6] = − [e2, e5]
[e3, e5] = [e4, e6]
[e3, e6] = − [e4, e5] .

Observing these equalities we can construct an example where (g, [∗]J)
is nilpotent but (g, [·, ·]) is not nilpotent.

Example 2. Let g be a 6-dimensional vector space and {f1, f2, f3, f4, f5, f6}
a fixed base of g. Then (g, [·, ·]) is a Lie algebra if the non-zero brackets
are given by

[f1, f2] = f1, [f2, f4] = 2f5, [f2, f3] = −2f6.

Moreover, the endomorphism J : g −→ g given by

Jf1 = f2, Jf3 = f4, Jf5 = f6

is a complex structure on g. We have g1 = span {f1, f5, f6} and gk =
span {f1}, for all k ≥ 2. This shows that (g, [·, ·]) is not nilpotent. However,
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the non-zero brackets of (g, [∗]J) are given by

[f1 ∗ f3]J = [f4 ∗ f2]J = −f5, [f1 ∗ f4]J = [f2 ∗ f3]J = −f6.

Thus (g, [∗]J) is 2-step nilpotent.

Remark: In the example 1 we have a nilpotent Lie algebra with complex
strucuture. Already in the example 2 we have a non nilpotent Lie alge-
bra with another complex structure. Hence this are non isomorphics Lie
algebras. However, the bracket * gives us isomorphics Lie algebras.

Next we provide examples proving that for any s ≥ 1 there exists a
nilpotent Lie algebra g with a complex structure J such that g∗ is s-step
nilpotent. As in [2] we work with certain affine Lie algebras aff (A) and
natural complex structures on them.

Proposition 5.1. For any s ≥ 1 there exists a s-step nilpotent complex
structure.

Proof: We first work out in detail the case s = 3. Let A be the space of
4 × 4 upper triangular real matrices with zeros on the diagonal. Clearly,
A is an associative and noncommutative algebra and in general ABC 6= 0
and ABCD = 0 for A,B,C,D ∈ A.

We denote Ak = span {A1A2 · · ·Ak; Aj ∈ A}. Let aff (A) be the Lie
algebra A⊕A with bracket given by

[(A,B), (C,D)] = (AC − CA,AD −CB) ,∀ A,B,C,D ∈ A.

The algebra aff (A) is the semidirect product of A (considered as Lie
subalgebra of gl(A), that is, for each A ∈ A, A 3 B 7→ AB ∈ A) and A
(considered as an abelian Lie algebra), with canonical representation, that
is, the inclusion.

If B and C are two subsets ofA, we denote (B, C) = {(B,C) ;B ∈ B,C ∈ C}.
Let J be the endomorphism of aff (A) defined by

J(A,B) = (B,−A), ∀ A,B ∈ A.

Clearly, J2 = −I, so it defines a complex structure on aff (A). Moreover,
we have 2[(A,B) ∗ (C,D)] = [(A,B), (C,D)]− [(B,−A), (D,−C)]
= (AC − CA,AD −CB)− (BD −DB,−BC +DA)
= (AC − CA+DB −BD,AD −DA+BC − CB) . This shows that J is
not an abelian complex structure.
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If we put (X,Y ) = (AC − CA+DB −BD,AD −DA+BC − CB),
we can see that

[(E,F ) , (X,Y )]− [J (E,F ) , J (X,Y )] ∈
³
A3,A3

´
and this bracket is in general not zero. By a similar computation, we obtain

g3∗ ⊂
³
A4,A4

´
= {(0, 0)} .

Therefore J is a 3-step nilpotent complex structure on aff (A).
In general we let A be the space of (s+ 1) × (s+ 1) upper triangular

real matrices with zeros on the diagonal. Again A is an associative and
noncommutative algebra. We take the bracket and J as above. By a sim-
ilar computation we get gs−1∗ ⊂ (As,As) and gs−1∗ is not zero. Moreover,
gs∗ ⊂

¡
As+1,As+1

¢
= {(0, 0)}. Therefore J is a s-step nilpotent complex

structure on aff (A). 2

We give now examples of hypercomplex structures. By lemma 3.1 of
[8] we have that if J1, J2 are anticommuting complex structures and J1
is abelian then J2 is also abelian. Also by Proposition 3.1 of [7] an 8-
dimensional nilpotent Lie algebra which admits a hypercomplex structure
is 2-step nilpotent. Since g2∗ ⊂ g2 = {0}, it follows that each Ji is s-step
nilpotent and s ≤ 2. Moreover, if one of the complex structures is 2-step
nilpotent, then by Lemma 3.1 of [8] the other is 2-step nilpotent as well.

In general we say that hypercomplex structure given by a pair {J1, J2}
of anticommuting complex structure is s-step nilpotent if both J1 and J2
are s-step nilpotent for the same s.

We present a example of 2-step nilpotent hypercomplex structure.

Example 3. Let n be the 8-dimensional Lie algebra with non-zero brackets
given by

[e1, e2] = [e3, e4] = −e6 [e1, e3] = − [e2, e4] = −e7 [e1, e4] = [e2, e3] = −e8,

where {e1, e2, e3, e4, e5, e6, e7, e8} is a basis of n. Let {J1, J2} be the hyper-
complex structure on n given by J1e1 = e2 J1e3 = e4 J1e5 =
e6 J1e7 = e8
J2e1 = e3 J2e2 = −e4 J2e5 = e7 J2e6 = −e8 We have

h = n
(0,1)
J2

= span {ωj = ej + iJ2ej , 1 ≤ j ≤ 8}
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Now, [ω1, ω2] = ω4 [ω1, ω3] = 0 [ω1, ω4] = 0
[ω2, ω3] = 0 [ω2, ω4] = 0 [ω3, ω4] = 0 Therefore, h

1 = span {ω4} and
h2 = {0}. Thus J2 is 2-step nilpotent. As remarked above we have that
{J1, J2} is a 2-step nilpotent hypercomplex structure.

Theorem 3.1 in [9] says that the hypercomplex structure of a HKT struc-
ture on any 2-step nilpotent Lie algebra is abelian. Thus the hypercomplex
structure {J1, J2} in the above example is not a hypercomplex structure of
a HKT structure.

In [2], Proposition 3.5, for any positive integer k is presented a k-step
nilpotent Lie algebra carrying an abelian hypercomplex structure. Our
purpose is to build a s-step nilpotent hypercomplex structure for each s ≥ 1.

Similar to Proposition 5.1 let A be the space of (s+ 1) × (s+ 1) up-
per triangular complex matrices with zeros on the diagonal. Define an
endomorphism K of aff (A) by

K(A,B) = (−iA, iB),∀ A,B ∈ A.

Is is easy to see that K is a complex structure on aff (A) and that KJ =
−JK, where J is defined as in the proof of Proposition 5.1. A straightfor-
ward computations shows that

2 [(A,B) ∗ (C,D)] = (2AC − 2CA, 0),

so that K also is s-step nilpotent on aff (A). Combining this remark with
previous Proposition 5.1 we deduce:

Proposition 5.2. For any s ≥ 1 there exists a s-step nilpotent hypercom-
plex structure.
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