Proyecciones Journal of Mathematics Vol. 30, N^o 2, pp. 189-199, August 2011. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172011000200005

Difference sequence spaces defined by a sequence of modulus functions

KULDIP RAJ SHRI MATA VAISHNO DEVI UNIVERSITY, INDIA and SUNIL K. SHARMA SHRI MATA VAISHNO DEVI UNIVERSITY, INDIA Received : March 2011. Accepted : May 2011

Abstract

In the present paper we study difference sequence spaces defined by a sequence of modulus functions and examine some topological properties of these spaces.

Subjclass[2000] :40A05, 40C05, 46A45.

Keywords : Paranorm space, Difference sequence space, Modulus function.

1. Introduction and Preliminaries

A modulus function is a function $f: [0,\infty) \to [0,\infty)$ such that

- 1. f(x) = 0 if and only if x = 0,
- 2. $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- 3. f is increasing,
- 4. f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{x}{x+1}$, then f(x) is bounded. If $f(x) = x^p$, 0 , then the modulus <math>f(x) is unbounded. Subsequentially, modulus function has been discussed in ([1], [7], [8]) and many others.

Let X be a linear metric space. A function $p: X \to \mathbf{R}$ is called paranorm, if

- 1. $p(x) \ge 0$, for all $x \in X$,
- 2. p(-x) = p(x), for all $x \in X$,
- 3. $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n - x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n - \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [9], Theorem 10.4.2, P-183).

Let w be the set of all sequences, real or complex numbers and l_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$, normed by $||x|| = \sup_k |x_k|$, where $k \in \mathbf{N}$, the set of positive integers.

Let $\Lambda = (\lambda_n)$ be a non decreasing sequence of positive reals tending to infinity and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$. The generalized de la Vallee-Poussin means is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$. A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number l if $t_n(x) \to l$ as $n \to \infty$ (see[5]). If $\lambda_n = n$, (V, λ) -summability and strong (V, λ) -summability are reduced to (C, 1)-summability and [C, 1]summability, respectively.

In [4], Kizmaz defined the sequence spaces

$$X(\Delta) = \left\{ x = (x_k) : (\Delta x_k) \in X \right\}$$

for $X = l_{\infty}$, c or c_0 , where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$ for all $k \in \mathbf{N}$. Et and Colak [2] generalized the above sequence spaces to the sequence spaces

$$X(\Delta^m) = \left\{ x = (x_k) : (\Delta^m x_k) \in X \right\}$$

for $X = l_{\infty}$, c or c_0 , where $m \in \mathbf{N}$, $\Delta^0 x = (x_k)$, $\Delta x = (x_k - x_{k+1})$,

$$\Delta^m x = (\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}) \text{ for all } k \in \mathbf{N}.$$

The generalized difference operator has the following binomial representation,

$$\Delta^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+v}$$

for all $k \in \mathbf{N}$.

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = H$, $D = \max(1, 2^{H-1})$ then

(1.1)
$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}$$

for all k and $a_k, b_k \in \mathbf{C}$. Also $|a|^{p_k} \leq \max(1, |a|^H)$ for all $a \in \mathbf{C}$.

Let E be a Banach space, we define w(E) to be the vector space of all E-valued sequences that is

$$w(E) = \{ x = (x_k) : x_k \in E \}.$$

Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be a bounded sequence of positive real numbers. Then we define the following sequence spaces :

$$[V,\lambda,F,p]_1(\Delta^m,E,u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k \left(||\Delta^m u_k x_k - Le|| \right) \right]^{p_k} \\ = 0, \text{ for some } L \right\},$$
$$[V,\lambda,F,p]_0(\Delta^m,E,u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k \left(||\Delta^m u_k x_k|| \right) \right]^{p_k} = 0 \right\}$$

and

$$[V,\lambda,F,p]_{\infty}(\Delta^m,E,u) = \left\{ x \in w(E) : \sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k \left(||\Delta^m u_k x_k|| \right) \right]^{p_k} < \infty \right\},$$

where $e = (1, 1, 1, \cdots)$.

If u = e and $f_k = f$, then these spaces reduce to those which were studied by Et, M., Altin, Y. and Altinok, H. [3].

For $f_k(x) = x$, we have $[V, \lambda, p]_1(\Delta^m, E, u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[||\Delta^m u_k x_k - Le|| \right]^{p_k} = 0,$ for some $L \right\},$

$$[V,\lambda,p]_0(\Delta^m, E, u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[||\Delta^m u_k x_k|| \right]^{p_k} = 0 \right\}$$

and

$$[V,\lambda,p]_{\infty}(\Delta^m, E, u) = \left\{ x \in w(E) : \sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[\left| |\Delta^m u_k x_k| \right| \right]^{p_k} < \infty \right\}.$$

For $p_k = 1$, we have

$$[V,\lambda,F]_1(\Delta^m, E, u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k \left(||\Delta^m u_k x_k - Le|| \right) \right] = 0,$$
for some $L \right\},$

$$[V,\lambda,F]_0(\Delta^m,E,u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k \left(||\Delta^m u_k x_k|| \right) \right] = 0 \right\}$$

and

$$[V,\lambda,F]_{\infty}(\Delta^m,E,u) = \bigg\{ x \in w(E) : \sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \Big[f_k \Big(||\Delta^m u_k x_k|| \Big) \Big] < \infty \bigg\}.$$

For $f_k(x) = x$ and $p_k = 1$ for all $k \in \mathbf{N}$, we have

$$[V,\lambda]_1(\Delta^m, E, u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[||\Delta^m u_k x_k - Le|| \right] = 0,$$

for some $L \right\},$

$$[V,\lambda]_0(\Delta^m, E, u) = \left\{ x \in w(E) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[||\Delta^m u_k x_k|| \right] = 0 \right\}$$

and

$$[V,\lambda]_{\infty}(\Delta^m, E, u) = \bigg\{ x \in w(E) : \sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \Big[||\Delta^m u_k x_k|| \Big] < \infty \bigg\}.$$

Throughout this paper, X will denote any one of the notations $0, 1 \text{ or } \infty$.

In this paper we study some topological properties and inclusion relations between above defined sequence spaces.

2. Main Results

Theorem 2.1 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be a bounded sequence of positive real numbers. Then the sequence spaces $[V, \lambda, F, p]_1(\Delta^m, E, u)$, $[V, \lambda, F, p]_0(\Delta^m, E, u)$ and $[V, \lambda, F, p]_{\infty}(\Delta^m, E, u)$ are linear spaces.

Proof. Let $x, y \in [V, \lambda, F, p]_0(\Delta^m, E, u)$ and $\alpha, \beta \in \mathbb{C}$. Then there exist positive number M_α and N_β such that $|\alpha| \leq M_\alpha$ and $|\beta| \leq N_\beta$. Since f_k is subadditive and Δ^m is linear, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k \Big(||\Delta^m (\alpha u_k x_k + \beta u_k y_k)|| \Big) \right]^{p_k}$$

$$\leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k (|\alpha| ||\Delta^m u_k x_k||) + f_k (|\beta| ||\Delta^m u_k y_k) \right]^{p_k}$$

$$\leq D(M_\alpha)^H \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k (||\Delta^m u_k x_k) \right]^{p_k} + D(N_\beta)^H \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k (||\Delta^m u_k y_k||) \right]^{p_k}$$

$$\to 0 \text{ as } n \to \infty.$$

This proves that $[V, \lambda, F, p]_0(\Delta^m, E, u)$ is a linear space. Similarly we can prove that $[V, \lambda, F, p]_1(\Delta^m, E, u)$ and $[V, \lambda, F, p]_{\infty}(\Delta^m, E, u)$ are linear spaces in view of the above proof.

Theorem 2.2 Let $F = (f_k)$ be a sequence of modulus functions. Then $[V, \lambda, F, p]_0(\Delta^m, E, u) \subset [V, \lambda, F, p]_1(\Delta^m, E, u) \subset [V, \lambda, F, p]_\infty(\Delta^m, E, u).$

Proof. The first inclusion is obvious. For the second inclusion, let $x \in [V, \lambda, F, p]_1(\Delta^m, E, u)$. Then by definition, we have $\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k||) \right]^{p_k}$

$$= \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k - Le + Le) \right]^{p_k}$$

$$\leq D \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} + D \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||Le||) \right]^{p_k}.$$

Now, there exists a positive number A such that $||Le|| \leq A$. Hence we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k||) \right]^{p_k} \le \frac{D}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} + \frac{1}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k} \le \frac{D}{\lambda_n} \left[f_k(||\Delta^m u_k x_k - Le||) \right]^{p_k}$$

$$\frac{D}{\lambda_n} \Big[A \Big]^H \sum_{k \in I_n} [f_k(1)]^H.$$

Since $x \in [V, \lambda, F, p]_1(\Delta^m, E, u)$ we have $x \in [V, \lambda, F, p]_{\infty}(\Delta^m, E, u)$. Therefore,

$$[V,\lambda,F,p]_1(\Delta^m,E,u) \subset [V,\lambda,F,p]_{\infty}(\Delta^m,E,u).$$

This completes the proof.

Theorem 2.3 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be a bounded sequence of positive real numbers. Then $[V, \lambda, F, p]_0(\Delta^m, E, u)$ is a paranormed space with

$$g_{\Delta}(x) = \sup_{n} \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k||) \right]^{p_k} \right)^{\frac{1}{K}}$$

where $K = \max(1, \sup p_k)$.

Proof. Clearly $g_{\Delta}(x) = g_{\Delta}(-x)$. It is trivial that $\Delta^m u_k x_k = 0$ for x = 0. Since f(0) = 0, we get $g_{\Delta}(x) = 0$ for x = 0. Since $\frac{p_k}{K} \leq 1$, using the Minkowski's inequality, for each n, we have

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[f_k(||\Delta^m u_k x_k + \Delta^m u_k y_k||)\right]^{p_k}\right)^{\frac{1}{K}}$$

$$\leq \left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[f_k(||\Delta^m u_k x_k) + f_k(||\Delta^m u_k y_k||)\right]^{p_k}\right)^{\frac{1}{K}}$$

$$\leq \left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[f_k(||\Delta^m u_k x_k||)\right]^{p_k}\right)^{\frac{1}{K}} + \left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[f_k(||\Delta^m u_k y_k||)\right]^{p_k}\right)^{\frac{1}{K}}.$$

Hence $g_{\Delta}(x)$ is subadditive. For, the continuity of multiplication, let us take any complex number α . By definition, we have

$$g_{\Delta}(\alpha x) = \sup_{n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f_{k}(||\Delta^{m} \alpha u_{k} x_{k}||) \right]^{p_{k}} \right)^{\frac{1}{K}} \\ \leq C_{\alpha}^{H/K} g_{\Delta}(x),$$

where C_{α} is a positive integer such that $|\alpha| \leq C_{\alpha}$. Now, let $\alpha \to 0$ for any fixed x with $g_{\Delta}(x) \neq 0$. By definition for $|\alpha| < 1$, we have

(2.2)
$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\alpha \Delta^m u_k x_k||) \right]^{p_k} < \epsilon \quad \text{for } n > n_0(\epsilon)$$

Also, for $1 \leq n \leq n_0$, taking α small enough, since f_k is continuous, we have

(2.3)
$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\alpha \Delta^m u_k x_k||) \right]^{p_k} < \epsilon.$$

Now, eqn. (2.2) and (2.3) together imply that

$$g_{\Delta}(\alpha x) \to 0 \text{ as } \alpha \to 0.$$

Theorem 2.4 Let $F = (f_k)$ be a sequence of modulus functions and $m \ge 1$, then the inclusion

$$[V, \lambda, F]_X(\Delta^{m-1}, E, u) \subset [V, \lambda, F]_X(\Delta^m, E, u)$$

is strict. In general

$$[V, \lambda, F]_X(\Delta^i, E, u) \subset [V, \lambda, F]_X(\Delta^m, E, u)$$

for all $i = 1, 2, \dots, m-1$ and the inclusion is strict.

Proof. Let $x \in [V, \lambda, F]_{\infty}(\Delta^{m-1}, E, u)$. Then we have

$$\sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^{m-1} u_k x_k||) \right] < \infty.$$

By definition, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^m u_k x_k||) \right] = \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^{m-1} u_k x_k||) \right] + \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(||\Delta^{m-1} u_{k+1} x_{k+1}||) \right] \le \infty.$$

Thus $[V, \lambda, F]_{\infty}(\Delta^{m-1}, E, u) \subset [V, \lambda, F]_{\infty}(\Delta^m, E, u).$

Proceeding in this way, we have

$$[V, \lambda, F]_{\infty}(\Delta^{i}, E, u) \subset [V, \lambda, F]_{\infty}(\Delta^{m}, E, u)$$

for all $i = 1, 2, \dots, m-1$. Let $E = \mathbf{C}$ and $\lambda_n = n$ for each $n \in \mathbf{N}$. Then the sequence $x = (x^m) \in [V, \lambda, F]_{\infty}(\Delta^m, E, u)$ but does not belong to $[V, \lambda, F]_{\infty}(\Delta^{m-1}, E, u)$ for $f_k(x) = x$.

Similarly, we can prove for the case $[V, \lambda, F]_0(\Delta^m, E, u)$ and $[V, \lambda, F]_1(\Delta^m, E, u)$ in view of the above proof.

Corollary 2.5 Let $F = (f_k)$ be a sequence of modulus functions. Then

$$[V, \lambda, F, p]_1(\Delta^{m-1}, E, u) \subset [V, \lambda, F]_0(\Delta^m, E, u).$$

Theorem 2.5 Let $F = (f_k)$, $F' = (f'_k)$ and $F'' = (f''_k)$ are sequence of modulus functions. Then we have (i) $[V, \lambda, F', p]_X(\Delta^m, E, u) \subset [V, \lambda, F \circ F', p]_X(\Delta^m, E, u),$ (ii) $[V, \lambda, F', p]_X(\Delta^m, E, u) \cap [V, \lambda, F'', p]_X(\Delta^m, E, u) \subset [V, \lambda, F+F', p]_X(\Delta^m, E, u).$

Proof. (i) Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \epsilon$ for $0 \le t \le \delta$. Write $y_k = f'_k(||\Delta^m u_k x_k||)$ and consider

$$\sum_{k \in I_n} [f_k(y_k)]^{p_k} = \sum_1 [f_k(y_k)]^{p_k} + \sum_2 [f_k(y_k)]^{p_k},$$

where the first summation is over $y_k \leq \delta$ and second summation is over $y_k \geq \delta$. Since f_k is continuous, we have

(2.4)
$$\sum_{1} [f_k(y_k)]^{p_k} < \lambda_n \epsilon^H$$

and for $y_k > \delta$, we use the fact that

$$y_k < \frac{y_k}{\delta} \le 1 + \frac{y_k}{\delta}.$$

By the definition, we have for $y_k > \delta$,

$$f_k(y_k) < 2f_k(1)\frac{y_k}{\delta}.$$

Hence

(2.5)
$$\frac{1}{\lambda_n} \sum_{2} \left[f_k(y_k) \right]^{p_k} \le \max\left(1, (2f_k(1)\delta^{-1})^H \right) \frac{1}{\lambda_n} \sum_{k \in I_n} y_k.$$

From eqn. (2.4) and (2.5), we have

$$[V,\lambda,F,p]_0(\Delta^m,E,u) \subset [V,\lambda,F \circ F',p]_0(\Delta^m,E,u).$$

This completes the proof of (i).

The proof of (ii) follows from the following inequality:

$$\left[(f'_k + f''_k)(||\Delta^m u_k x_k||) \right]^{p_k} \le D \left[f'_k(||\Delta^m u_k x_k||) \right]^{p_k} + D \left[f''_k(||\Delta^m u_k x_k||) \right]^{p_k}$$

Corollary 2.6 Let $F = (f_k)$ be a sequence of modulus functions. Then

$$[V, \lambda, p]_X(\Delta^m, E, u) \subset [V, \lambda, F, p]_X(\Delta^m, E, u).$$

References

- Bilgen, T., On statistical convergence, An. Univ. Timisoara Ser. Math. Inform. 32, pp. 3-7, (1994).
- [2] Et, M. and Colak, R., On some generalized difference sequence spaces, Soochow J. Math., 21, pp. 377-386, (1965).
- [3] Et, M., Altin, Y. and Altinok, H., On some generalized difference sequence spaces defined by a modulus functions, Filomat 17, 23-33, (2003).
- [4] Kizmaz, H., On certain sequence spaces, Cand. Math. Bull., 24, pp. 169-176, (1981).
- [5] Lindler, L., Uber de la Valle-Pousinsche Summierbarkeit Allgemeiner Orthogonal-reihen, Acta Math. Acad. Sci. Hungar, 16, pp. 375-387, (1965).

- [6] Maddox, I. J., *Elements of functional Analysis*, Cambridge Univ. Press, (1970).
- [7] Malkowsky, E. and Savas, E., Some λ -sequence spaces defined by a modulus, Archivum Mathematicum, 36, pp. 219-228, (2000).
- [8] Savas, E., On some generalized sequence spaces defined by a modulus, Indian J. pure and Appl. Math., 30, pp. 459-464, (1999).
- [9] Wilansky, A., Summability through Functional Analysis, North-Holland Math. stnd. (1984).

Kuldip Raj

School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K India e-mail : kuldeepraj68@rediffmail.com

and

Sunil K. Sharma

School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K India e-mail : sunilksharma42@yahoo.co.in