
Difference sequence spaces defined by a sequence
of modulus functions

KULDIP RAJ
SHRI MATA VAISHNO DEVI UNIVERSITY, INDIA

and
SUNIL K. SHARMA

SHRI MATA VAISHNO DEVI UNIVERSITY, INDIA
Received : March 2011. Accepted : May 2011

Proyecciones Journal of Mathematics
Vol. 30, No 2, pp. 189-199, August 2011.
Universidad Católica del Norte
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Abstract

In the present paper we study difference sequence spaces defined by
a sequence of modulus functions and examine some topological prop-
erties of these spaces.

Subjclass[2000] :40A05, 40C05, 46A45.

Keywords : Paranorm space, Difference sequence space, Modulus
function.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172011000200005

http://dx.doi.org/10.4067/S0716-09172011000200005


190 Kuldip Raj and Sunil K. Sharma

1. Introduction and Preliminaries

A modulus function is a function f : [0,∞)→ [0,∞) such that

1. f(x) = 0 if and only if x = 0,

2. f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,

3. f is increasing,

4. f is continuous from right at 0.

It follows that f must be continuous everywhere on [0,∞). The mod-
ulus function may be bounded or unbounded. For example, if we take
f(x) = x

x+1 , then f(x) is bounded. If f(x) = xp, 0 < p < 1, then the
modulus f(x) is unbounded. Subsequentially, modulus function has been
discussed in ([1], [7], [8]) and many others.

Let X be a linear metric space. A function p : X → R is called
paranorm, if

1. p(x) ≥ 0, for all x ∈ X,

2. p(−x) = p(x), for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is
a sequence of vectors with p(xn − x)→ 0 as n →∞, then p(λnxn −
λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known
that the metric of any linear metric space is given by some total paranorm
(see [9], Theorem 10.4.2, P-183).

Let w be the set of all sequences, real or complex numbers and l∞, c
and c0 be respectively the Banach spaces of bounded, convergent and null
sequences x = (xk), normed by ||x|| = sup

k
|xk|, where k ∈ N, the set of

positive integers.
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Let Λ = (λn) be a non decreasing sequence of positive reals tending to
infinity and λ1 = 1 and λn+1 ≤ λn+1. The generalized de la Vallee-Poussin
means is defined by

tn(x) =
1

λn

X
k∈In

xk,

where In = [n−λn+1, n]. A sequence x = (xk) is said to be (V, λ)-summable
to a number l if tn(x)→ l as n→∞ (see[5]). If λn = n, (V, λ)-summability
and strong (V, λ)-summability are reduced to (C, 1)-summability and [C, 1]-
summability, respectively.

In [4], Kizmaz defined the sequence spaces

X(∆) =

½
x = (xk) : (∆xk) ∈ X

¾
for X = l∞, c or c0, where ∆x = (∆xk) = (xk − xk+1) for all k ∈ N.
Et and Colak [2] generalized the above sequence spaces to the sequence
spaces

X(∆m) =

½
x = (xk) : (∆

mxk) ∈ X

¾
for X = l∞, c or c0, where m ∈ N, ∆0x = (xk), ∆x = (xk − xk+1),

∆mx = (∆mxk) = (∆
m−1xk −∆m−1xk+1) for all k ∈ N.

The generalized difference operator has the following binomial repre-
sentation,

∆mxk =
mX
v=0

(−1)v
Ã

m
v

!
xk+v

for all k ∈N.

The following inequality will be used throughout the paper. If 0 ≤ pk ≤
sup pk = H, D = max(1, 2H−1) then

(1.1) |ak + bk|pk ≤ D{|ak|pk + |bk|pk}

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|H) for all a ∈ C.
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Let E be a Banach space, we define w(E) to be the vector space of all
E-valued sequences that is

w(E) = {x = (xk) : xk ∈ E}.

Let F = (fk) be a sequence of modulus functions and p = (pk) be a bounded
sequence of positive real numbers. Then we define the following sequence
spaces :

[V, λ, F, p]1(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
fk
³
||∆mukxk − Le||

´ipk
= 0, for some L

¾
,

[V, λ, F, p]0(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
fk
³
||∆mukxk||

´ipk
= 0

¾
and

[V, λ, F, p]∞(∆
m, E, u) =

½
x ∈ w(E) : sup

n

1

λn

X
k∈In

h
fk
³
||∆mukxk||

´ipk
<∞

¾
,

where e = (1, 1, 1, · · ·).
If u = e and fk = f , then these spaces reduce to those which were studied
by Et, M., Altin, Y. and Altinok, H. [3].

For fk(x) = x, we have

[V, λ, p]1(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
||∆mukxk − Le||

ipk
= 0,

for some L

¾
,

[V, λ, p]0(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
||∆mukxk||

ipk
= 0

¾

and

[V, λ, p]∞(∆
m, E, u) =

½
x ∈ w(E) : sup

n

1

λn

X
k∈In

h
||∆mukxk||

ipk
<∞

¾
.
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For pk = 1, we have

[V, λ, F ]1(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
fk
³
||∆mukxk − Le||

´i
= 0,

for some L

¾
,

[V, λ, F ]0(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
fk
³
||∆mukxk||

´i
= 0

¾
and

[V, λ, F ]∞(∆
m, E, u) =

½
x ∈ w(E) : sup

n

1

λn

X
k∈In

h
fk
³
||∆mukxk||

´i
<∞

¾
.

For fk(x) = x and pk = 1 for all k ∈ N, we have

[V, λ]1(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
||∆mukxk − Le||

i
= 0,

for some L

¾
,

[V, λ]0(∆
m, E, u) =

½
x ∈ w(E) : lim

n

1

λn

X
k∈In

h
||∆mukxk||

i
= 0

¾
and

[V, λ]∞(∆
m, E, u) =

½
x ∈ w(E) : sup

n

1

λn

X
k∈In

h
||∆mukxk||

i
<∞

¾
.

Throughout this paper, X will denote any one of the notations 0, 1 or ∞ .

In this paper we study some topological properties and inclusion rela-
tions between above defined sequence spaces.

2. Main Results

Theorem 2.1 Let F = (fk) be a sequence of modulus functions and p =
(pk) be a bounded sequence of positive real numbers. Then the sequence
spaces [V, λ, F, p]1(∆

m, E, u), [V, λ, F, p]0(∆
m, E, u) and

[V, λ, F, p]∞(∆m, E, u) are linear spaces.
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Proof. Let x, y ∈ [V, λ, F, p]0(∆m, E, u) and α, β ∈ C. Then there exist
positive number Mα and Nβ such that |α| ≤Mα and |β| ≤ Nβ. Since fk is
subadditive and ∆m is linear, we have

1
λn

X
k∈In

h
fk
³
||∆m(αukxk + βukyk)||

´ipk
≤ 1

λn

X
k∈In

h
fk(|α| ||∆mukxk||) + fk(|β| ||∆mukyk)

ipk
≤ D(Mα)

H 1

λn

X
k∈In

h
fk(||∆mukxk)

ipk
+D(Nβ)

H 1

λn

X
k∈In

h
fk(||∆mukyk||)

ipk
→ 0 as n→∞.

This proves that [V, λ, F, p]0(∆
m, E, u) is a linear space. Similarly we

can prove that [V, λ, F, p]1(∆
m, E, u) and [V, λ, F, p]∞(∆m, E, u) are linear

spaces in view of the above proof.

Theorem 2.2 Let F = (fk) be a sequence of modulus functions. Then
[V, λ, F, p]0(∆

m, E, u) ⊂ [V, λ, F, p]1(∆m, E, u) ⊂ [V, λ, F, p]∞(∆m, E, u).

Proof. The first inclusion is obvious. For the second inclusion, let
x ∈ [V, λ, F, p]1(∆m, E, u). Then by definition, we have
1
λn

X
k∈In

h
fk(||∆mukxk||)

ipk

=
1

λn

X
k∈In

h
fk(||∆mukxk − Le+ Le)

ipk
≤ D

1

λn

X
k∈In

h
fk(||∆mukxk − Le||)

ipk
+D

1

λn

X
k∈In

h
fk(||Le||)

ipk
.

Now, there exists a positive number A such that ||Le|| ≤ A. Hence we
have

1

λn

X
k∈In

h
fk(||∆mukxk||)]pk ≤

D

λn

X
k∈In

h
fk(||∆mukxk − Le||)

ipk
+
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D

λn

h
A]H

X
k∈In

[fk(1)]
H .

Since x ∈ [V, λ, F, p]1(∆m, E, u) we have x ∈ [V, λ, F, p]∞(∆m, E, u).
Therefore,

[V, λ, F, p]1(∆
m, E, u) ⊂ [V, λ, F, p]∞(∆m, E, u).

This completes the proof.

Theorem 2.3 Let F = (fk) be a sequence of modulus functions and p =
(pk) be a bounded sequence of positive real numbers. Then [V, λ, F, p]0(∆

m, E, u)
is a paranormed space with

g∆(x) = sup
n

³ 1
λn

X
k∈In

h
fk(||∆mukxk||)

ipk´ 1
K

where K = max(1, sup pk).

Proof. Clearly g∆(x) = g∆(−x). It is trivial that ∆mukxk = 0 for x = 0.
Since f(0) = 0, we get g∆(x) = 0 for x = 0. Since pk

K ≤ 1, using the
Minkowski’s inequality, for each n, we have

³
1
λn

X
k∈In

h
fk(||∆mukxk +∆

mukyk||)
ipk´ 1

K

≤
³ 1
λn

X
k∈In

h
fk(||∆mukxk) + fk(||∆mukyk||)

ipk´ 1
K

≤
³ 1
λn

X
k∈In

h
fk(||∆mukxk||)

ipk´ 1
K +

³ 1
λn

X
k∈In

h
fk(||∆mukyk||)

ipk´ 1
K .

Hence g∆(x) is subadditive. For, the continuity of multiplication, let us
take any complex number α. By definition, we have

g∆(αx) = sup
n

³ 1
λn

X
k∈In

h
fk(||∆mαukxk||)

ipk´ 1
K

≤ CH/K
α g∆(x),



196 Kuldip Raj and Sunil K. Sharma

where Cα is a positive integer such that |α| ≤ Cα. Now, let α→ 0 for any
fixed x with g∆(x) 6= 0. By definition for |α| < 1, we have

(2.2)
1

λn

X
k∈In

h
fk(||α∆mukxk||)

ipk
< � for n > n0(�)

Also, for 1 ≤ n ≤ n0, taking α small enough, since fk is continuous, we
have

(2.3)
1

λn

X
k∈In

h
fk(||α∆mukxk||)

ipk
< �.

Now, eqn. (2.2) and (2.3) together imply that

g∆(αx)→ 0 as α→ 0.

Theorem 2.4 Let F = (fk) be a sequence of modulus functions and m ≥ 1,
then the inclusion

[V, λ, F ]X(∆
m−1, E, u) ⊂ [V, λ, F ]X(∆m, E, u)

is strict. In general

[V, λ, F ]X(∆
i, E, u) ⊂ [V, λ, F ]X(∆m, E, u)

for all i = 1, 2, · · · ,m− 1 and the inclusion is strict.

Proof. Let x ∈ [V, λ, F ]∞(∆m−1, E, u). Then we have

sup
n

1

λn

X
k∈In

h
fk(||∆m−1ukxk||)

i
<∞.

By definition, we have

1

λn

X
k∈In

h
fk(||∆mukxk||)

i
=
1

λn

X
k∈In

h
fk(||∆m−1ukxk||)

i
+

1

λn

X
k∈In

h
fk(||∆m−1uk+1xk+1||)

i
≤ ∞.

Thus [V, λ, F ]∞(∆m−1, E, u) ⊂ [V, λ, F ]∞(∆m, E, u).
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Proceeding in this way, we have

[V, λ, F ]∞(∆
i, E, u) ⊂ [V, λ, F ]∞(∆m, E, u)

for all i = 1, 2, · · · ,m − 1. Let E = C and λn = n for each n ∈ N.
Then the sequence x = (xm) ∈ [V, λ, F ]∞(∆m, E, u) but does not belong
to [V, λ, F ]∞(∆m−1, E, u) for fk(x) = x.

Similarly, we can prove for the case [V, λ, F ]0(∆
m, E, u) and

[V, λ, F ]1(∆
m, E, u) in view of the above proof.

Corollary 2.5 Let F = (fk) be a sequence of modulus functions. Then

[V, λ, F, p]1(∆
m−1, E, u) ⊂ [V, λ, F ]0(∆m, E, u).

Theorem 2.5 Let F = (fk), F
0 = (f 0k) and F 00 = (f 00k ) are sequence of

modulus functions. Then we have
(i) [V, λ, F 0, p]X(∆m, E, u) ⊂ [V, λ, F ◦ F 0, p]X(∆m, E, u),
(ii)[V, λ, F 0, p]X(∆m, E, u)∩[V, λ, F 00, p]X(∆m, E, u) ⊂ [V, λ, F+F 0, p]X(∆m, E, u).

Proof. (i) Let � > 0 and choose δ with 0 < δ < 1 such that f(t) < � for
0 ≤ t ≤ δ. Write yk = f 0k(||∆mukxk||) and considerX

k∈In
[fk(yk)]

pk =
X
1

[fk(yk)]
pk +

X
2

[fk(yk)]
pk ,

where the first summation is over yk ≤ δ and second summation is over
yk ≥ δ. Since fk is continuous, we have

(2.4)
X
1

[fk(yk)]
pk < λn�

H

and for yk > δ, we use the fact that

yk <
yk
δ
≤ 1 + yk

δ
.

By the definition, we have for yk > δ,

fk(yk) < 2fk(1)
yk
δ
.
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Hence

(2.5)
1

λn

X
2

h
fk(yk)

ipk ≤ max³1, (2fk(1)δ−1)H´ 1
λn

X
k∈In

yk.

From eqn. (2.4) and (2.5), we have

[V, λ, F, p]0(∆
m, E, u) ⊂ [V, λ, F ◦ F 0, p]0(∆m, E, u).

This completes the proof of (i).

The proof of (ii) follows from the following inequality:h
(f 0k + f 00k )(||∆mukxk||)

ipk ≤ D
h
f 0k(||∆mukxk||)

ipk
+D

h
f 00k (||∆mukxk||)

ipk
.

Corollary 2.6 Let F = (fk) be a sequence of modulus functions. Then

[V, λ, p]X(∆
m, E, u) ⊂ [V, λ, F, p]X(∆m, E, u).
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