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Abstract

In this paper, we study the flows of nonzero left invariant vector
fields on Lie groups with respect to topological conjugacy. Using the
fundamental domain method, we are able to show that on a simply
connected nilpotent Lie group any such flows are topologically conju-
gate. Combining this result with the Iwasawa decomposition, we find
that on a noncompact semisimple Lie group the flows of two nilpotent
or abelian fields are topologically conjugate. Finally, for affine groups
G = HV , V ∼= n, we show that the conjugacy class of a left invariant
vector field does not depend on its Euclidean component.
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1. Introduction

Consider two flows Φ and Ψ on topological spaces M and N . In a wider
context, topological conjugacy aims to establish conditions on these flows
to find a homeomorphism betweenM and N that maps Φ-trajectories to Ψ-
trajectories preserving the parametrization by time. For linear autonomous
differential equations, stability theory and classification with respect to
topological conjugacy are classical topics in the theory of differential equa-
tions; see, e.g., Robinson [7], Hirsch, Smale, and Devaney [4]. In the con-
text of classification, one classical result says that in case of hyperbolicity,
two linear autonomous differential equations are topologically conjugate if
and only if the dimensions of the stable subspaces coincide. More specif-
ically, take two equations ẋ = Ax, ẋ = Bx with A,B ∈ gl(d,R) and
x ∈ Rd. Recall that the linear flows eAtx and eBtx are said to be topolog-
ically conjugate if there exists a homeomorphism h : Rd → Rd such that
h(eAtx) = eBth(x) for all x ∈ Rd and t ∈ R. To prove the above clas-
sical result, the existence of homeomorphic fundamental domains, one for
eAtx and another one for eBtx, is essential to construct the conjugation h.
More generally, Ayala, Colonius, and Kliemann [1] introduced concepts of
conjugacy for linear flows on control systems, the control flows, and using
concepts and techniques from topological dynamics classified these linear
flows. Recently, Colonius and Santana (see [2] and [3]) generalized the
study of topological conjugacy to affine autonomous differential equations
and to inhomogeneous bilinear control systems. They proved, in [3], that
hyperbolic affine flows are topologically conjugate to their linear parts pro-
vided that an additional continuity property holds, hence the topological
conjugacy between two hyperbolic affine flows depends on the topological
conjugacy between their linear parts.

Recalling that gl(d,R) is the Lie algebra of the Lie group Gl(d,R) and
knowing the relation between hyperbolic elements and Iwasawa decompo-
sition of semisimple Lie groups, it is natural ask about the above result in
the case of a semisimple Lie group. Considering the semisimple Lie group
G, the main result of this paper establishes that the flows on G of two
hyperbolic or nilpotent fields are topologically conjugate. The technique
used in the proof consists in showing the existence of transversal sections
in G, associated to such fields.

In Section 2, we introduce the notion of a transversal section for a flow
on a topological space, which is a special kind of fundamental domain for
the action (see, e.g., Katok and Hasselblatt [5] and Robinson [7]). For
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group actions, a fundamental domain is a subset of the space on which
the group acts such that this subset contains exactly one point of each
orbit. For a flow (an R-action) this is not exactly the same as our notion of
transversal sections which are subsets of the state space that intersect each
trajectory at exactly one time t, which for instance forbids fixed points. In
this section, we prove that two flows on a space X, having homeomorphic
transversal sections, are topologically conjugate. Moreover, we show that a
transversal section of a flow Φ on a spaceM lifts to a transversal section of
a flow eΦ on M ×P if the two flows are related by the canonical projection
π :M × P →M .

In Subsection 3.1, we show that the flow of a nonzero left invariant vec-
tor field on a simply connected nilpotent Lie group always has a transver-
sal section, and two such transversal sections are always homeomorphic.
Hence, we obtain the result that two such flows are topologically conjugate.
In particular, this holds for abelian Lie groups. Subsection 3.2 is devoted
to the study of semisimple Lie groups. Using the Iwasawa decomposition
of a semisimple Lie group and the results of Section 2 and Subsection 3.1,
we are able to show that two flows on G induced by nilpotent or abelian
elements of the associated Lie algebra are topologically conjugate.

Finally, in Section 4, we consider semidirect products G = HV , where
H is an arbitrary Lie group and V is isomorphic to Rn. Here again we
use the lifting result from Section 2 to show that the topological conjugacy
class of a flow on G induced by an element (A, b) of the Lie algebra g = hV
does not depend on b.

2. General case

Considering several approaches to topological conjugacy, we emphasize the
concept that we use in this paper. Let M be a smooth manifold and
X(M) the space of smooth vector fields on M . Let X1,X2 ∈ X(M) be
complete vector fields and Φ1 and Φ2 their associated flows (or dynamical
systems). The flows Φ1 and Φ2, or the vector fields X1,X2, are called
topologically conjugate if there exists a homeomorphism h :M →M such
that h(Φ1(t, x)) = Φ2(t, h(x)) for all x ∈ M and t ∈ R, and h is called
a topological conjugacy. If h is a Ck-diffeomorphism, then Φ1 and Φ2 are
said to be Ck-conjugate.

The flows considered here are associated with complete vector fields on
a differentiable manifold, more precisely with left invariant vector fields on
Lie groups. We analyze, in particular situations, combinations of flows that
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come from the exponential of elements in the Lie algebra associated with
the Lie group.

An immediate case of conjugation between flows is taking similar ma-
trices. In this case, the associated flows are conjugate by a linear (and
hence differentiable) map, namely the similarity transformation of the cor-
responding matrices. More specifically, for two linear flows Φ and Ψ in
Rd, associated with ẋ = Ax and ẋ = Bx, respectively, we have: Φ and
Ψ are Ck-conjugate for k ≥ 1 if and only if A and B are similar, i.e.,
A = TBT−1 for some T ∈ Gl(d,R). Each of these statements implies that
A and B have the same eigenvalue structure and (up to a linear transfor-
mation) the same generalized real eigenspace structure. In particular, the
Ck-conjugacy classes are exactly the real Jordan canonical form equivalence
classes in gl(d,R).

Due to this fact, the more interesting situation here is conjugation by
a homeomorphism instead of a diffeomorphism. In this context, the ex-
istence of homeomorphic transversal sections (related to the flows) gives
general results. One particular case is the known result: Given two hy-
perbolic matrices A,B ∈ gl(d,R) whose stable subspaces have the same
dimension it follows that the flows eAtx and eBtx are topologically conju-
gate. In the proof of this result, the existence of spheres, corresponding to
adapted norms, such that the respective flows cross these spheres just once
is essential.

Motivated by this we give the following definition:

Definition 1. Consider a topological space M and a flow Φ : R×M −→
M . A transversal section of Φ is a pair (Z, τ) where Z is a subset of M
and τ : M → R is a continuous map such that for all x ∈ M it holds that
Φ(t, x) ∈ Z if and only if t = τ(x).

Remark 2. Note that the existence of a transversal section is a very re-
strictive property for a flow. For example, assume that the flow Φ :
R×M →M has an equilibrium x ∈M . Then obviously for any transversal
section (Z, τ), the set Z must contain x. But this implies Φ(t, x) = x ∈ Z
for all t ∈ R, which contradicts the definition of a transversal section. Simi-
larly, one sees that Φ cannot have any periodic trajectories. More generally,
the existence of a transversal section implies that all α- and ω-limit sets of
the corresponding flow are empty. Indeed, assume that Φ(tn, x) converges
to y ∈M for some x ∈M and a sequence tn →∞. Then

τ(Φ(tn, x)) = τ(x)− tn → −∞,
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which contradicts continuity of τ at y. So, in particular, flows on compact
metrizable spaces do not admit transversal sections.

Now, the existence of homeomorphic transversal sections provides the
following general result:

Theorem 3. Let Φi, i = 1, 2, be two flows on a topological space M
with respective transversal sections (Zi, τi), i = 1, 2. Suppose that Z1 is
homeomorphic to Z2. Then Φ1 and Φ2 are topologically conjugate.

Proof. Define h : M → M by h(x) := Φ2(−τ1(x), h0(Φ1(τ1(x), x))),
where h0 : Z1 → Z2 is a homeomorphism. We prove that h is a topological
conjugacy.

We begin proving that the conjugacy equation holds. First note that if
x ∈M , t ∈ R, and s = τ1(Φ1(t, x)), then Φ1(s,Φ1(t, x)) = Φ1(s+t, x) ∈ Z1.
This implies s+ t = τ1(x), hence s = τ1(Φ1(t, x)) = τ1(x)− t.

Now we can prove that h is conjugation. In fact,

h(Φ1(t, x)) = Φ2(−τ1(Φ1(t, x)), h0(Φ1(τ1(Φ1(t, x)),Φ1(t, x))))
= Φ2(t− τ1(x), h0(Φ1(τ1(x)− t,Φ1(t, x))))

= Φ2(t− τ1(x), h0(Φ1(τ1(x), x)))

= Φ2(t,Φ2(−τ1(x), h0(Φ1(τ1(x), x)))) = Φ2(t, h(x)).

To see that h is injective, suppose that h(x1) = h(x2). Take τ := τ1(x1).
In this case

h(Φ1(τ, x1)) = Φ2(τ, h(x1)) = Φ2(τ, h(x2)) = h(Φ1(τ, x2)).

Then

h(Φ1(τ, x1)) = h(Φ1(τ, x2)) ∈ Z2, since Φ1(τ1, x1) ∈ Z1 and h(Z1) = Z2.

Since h maps only Z1 to Z2, it follows that Φ1(τ, x2) ∈ Z1. Hence, by
uniqueness, τ = τ1(x1) = τ1(x2). Now using that

h0(Φ1(τ, x1)) = h(Φ1(τ, x1)) = h(Φ1(τ, x2)) = h0(Φ1(τ, x2))

and knowing that h0 is injective, we have

Φ1(τ, x1) = Φ1(τ, x2), therefore x1 = x2.
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To show that h is surjective, take y ∈ M . Then Φ2(τ2(y), y) ∈ Z2. Hence,
there exists z ∈ Z1 such that h0(z) = Φ2(τ2(y), y). Let x := Φ1(−τ2(y), z).
Using that τ1(x) = τ2(y), it is not difficult prove that h(x) = y.

The map h is continuous, since it is given by compositions of continuous
maps. Finally, exchanging the roles of Φ1 and Φ2 we see that also h−1 is
continuous. 2

Let M and P be topological spaces and π :M × P →M the canonical
projection. If Φ is a flow on M × P , which is semiconjugate to a flow eΦ
on M via the map π, then a transversal section of eΦ lifts to a transversal
section of Φ. This gives the following result:

Corollary 4. Let M and P be topological spaces and π : M × P → M
the canonical projection. Assume that eΦ1 and eΦ2 are flows on M , and Φ1
and Φ2 flows on M ×P such that the diagram, given by Φi(t, ·) :M ×P →
M × P, π :M × P →M and eΦi(t, ·) :M →M , commutes for every t ∈ R.
Suppose that there exist transversal sections (fWi, eτi) for the flows eΦi such
that fW1 is homeomorphic to fW2. Then Φ1 is topologically conjugate to Φ2.

Proof. Denote by eh : fW1 → fW2 the homeomorphism between the
transversal sections and let Wi := π−1(fWi), i = 1, 2. Then define

h :W1 →W2, h(x, y) :=
³eh(x), y´ .

It is clear that h is a homeomorphism. Now, define τi : M × P → by
τi := eτi ◦ π, i = 1, 2. Then

Φi(t, (x, y)) ∈Wi ⇔ π(Φi(t, (x, y))) ∈ fWi

⇔ eΦi(t, x) ∈ fWi

⇔ t = eτi(x) = eτi(π(x, y)) = τi(x, y).

This proves that (Wi, τi) is a transversal section for the flow Φi, which
implies the result. 2

3. Lie group case

We begin this section giving necessary notation and background results
about Lie groups and their associated Lie algebras.

Denote by G a connected noncompact Lie group and let g be its Lie
algebra, that is, the tangent space of G at the identity element e ∈ G, TeG.
Recall that if we consider the set Xe(G) of left invariant vector fields on
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G with the Lie bracket of vector fields, then Xe(G) can be identified with
TeG.

Consider a right invariant vector field X on G and let Φt denote its
flow, that is, the solution of the differential equation ġ = X(g). Then X
is a complete vector field, i.e., all solutions Φt(g) extend for all t ∈ R.
With these trajectories we define the exponential map exp(tX) = Φt(e)
and obtain that exp : g → G is a diffeomorphism between a neighborhood
of 0 ∈ g and a neighborhood of e ∈ G.

Now suppose that G is a semisimple Lie group. As g is semisimple, we
have the Iwasawa decomposition, that is, it is known that g is decomposed
as g = k⊕ a⊕n+, where k is the compact subspace associated to a Cartan
involution, a is the maximal abelian subalgebra in s, n+ =

P
α∈Π+ gα and

gα stands for the α-root space. Here, Π is the set of roots of the pair (g, a)
and Π+ is the set of positive (respectively simple) roots. Now consider
the connected subgroups K, A and N generated, respectively, by expk,
expa and expn+. The map (k, a, n) ∈ K × A × N 7→ kan ∈ KAN is a
diffeomorphism between K × A × N and G, and the decomposition G =
KAN is called general Iwasawa decomposition.

3.1. Nilpotent and abelian case

In the case of a simply connected abelian Lie group any two flows are topo-
logically conjugate. In fact, any isomorphism that relates two left invariant
vector fields is a topological conjugacy between the corresponding flows.
This idea can not be used in the case of a nilpotent Lie group. But using
results of the previous section we show in this section that any two flows
of nonzero left invariant vector fields on a simply connected nilpotent Lie
group are topologically conjugate. We do this by constructing transversal
sections for the corresponding flows.

Let N be a simply connected nilpotent Lie group. It is known that N
is isomorphic to its Lie algebra n, via the exponential map, provided with
the Campbell-Hausdorff product. The Campbell-Hausdorff series of n is a
finite sum. We can write the Campbell-Hausdorff product of X,Y ∈ n as

X ∗ Y = X + Y +R2 +R3 + · · ·+Rk,

where Ri is given by the brackets of X,Y and Ri ∈ ni, where 0 = nk+1 ⊂
nk ⊂ · · · ⊂ n2 ⊂ n is the descending central series of n.

Identifying N with (n, ∗), via the exponential map, the flow Φ(t,X)
associated with A ∈ n is the map Φ(t,X) = tA ∗ X, where t ∈ R and
X ∈ n.
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Proposition 1. In a simply connected nilpotent Lie group N , every flow
induced by a nonzero element of the associated Lie algebra n has a transver-
sal section.

Proof. Take A ∈ n with A 6= 0. Then there exists a transversal section
in n of Φ(t,X) = tA ∗ X, which is shown as follows: Let j be a positive
integer such that A ∈ nj but A 6∈ nj+1. Consider a hyperplane h of n
containing nj+1 and such that A 6∈ h. If X ∈ n and t ∈ R, knowing that
A ∈ nj it follows that any bracket of tA and X is contained in nj+1 ⊂ h.
Hence, tA ∗ X ∈ h if and only if tA + X ∈ h. As h is a hyperplane not
containing A, there exists an unique t ∈ R such that tA + X ∈ h. Now
define τ : n→ R by τ(X) = t if and only if tA+X ∈ h. It is clear that τ is
continuous and therefore (h, τ) is a transversal section of the flow of A. 2

Theorem 2. Any two flows on a simply connected nilpotent Lie group N
induced by nonzero elements of the Lie algebra are topologically conjugate.

Proof. Take nonzero A,B ∈ n. Consider hyperplanes hA, hB ⊂ n that
are transversal to A and B, respectively. As hA and hB are homeomorphic,
the result follows from Theorem 3. 2

The following corollary is immediate.

Corollary 3. Any two flows on a simply connected abelian Lie group in-
duced by nonzero elements of the Lie algebra are topologically conjugate.

Example 4. On a nilpotent group which is not simply connected two
flows are not necessarily topologically conjugate. Indeed, consider the 2-
dimensional torus T 2 = R2/Z2 and an element A = (a1, a2) of its Lie
algebra 2. The corresponding flow is

ϕ(t,X + 2) = tA+X + Z2.

If A = (1, 1), then obviously every point X + Z2 ∈ T 2 is 1-periodic. If
A = (1/2, 1/2), then every point is 2-periodic, and if A = (1,

√
2), no point

is periodic. Since topological conjugacies map periodic orbits to periodic
orbits preserving the period, this proves the assertion.

3.2. Semi-simple case

Let G be a noncompact connected semisimple Lie group and g its Lie alge-
bra. In this section, we prove that the flows of two hyperbolic or nilpotent
elements of g are topologically conjugate in G.
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First we give some notation and background results about Lie groups
and Lie algebras that will be used here.

Take the Iwasawa decomposition of g, g = k⊕a⊕n+ and the respective
Iwasawa decomposition of G, G = KAN . It is not difficult to see that the
order in which the groups appear in the Iwasawa decomposition can be
changed. However, we will make a quick comment. First note that the
map g 7→ g−1 is a diffeomorphism of G. Hence, G = NAK. Now consider
a subgroup D(p) ⊂ Gl(p,R) of diagonal matrices and N(p) ⊂ Gl(p,R)
the subgroup of upper triangular matrices. Take n ∈ N(p) and a ∈ D(p).
Suppose that n = (nij), where nii = 1 and nij = 0 if i > j and suppose
also that a = diag(a1, a2, . . . , ap). Then na = an0, where n0 = (n0ij) with

n0ij =
nijaj
ai
. As n0 ∈ N(p), then N(p)D(p) = D(p)N(p). Now considering

the adjoint group Ad(G) as a closed subgroup of Gl(p,R), the commutative
property between N(p) and D(p) can be transferred to Ad(N) and Ad(A),
and hence to N and A. Therefore, NA = AN and then we conclude that
G = KAN = NAK = ANK.

Now, consider the canonical projection

π : G = ANK → ANK/NK

and identify ANK/NK with A.
Take X1,X2 ∈ a and the respective flows

Φi : R×G→ G, i = 1, 2, given by Φi(t, g) = exp(tXi)g.

The restrictions of these flows to A,

ΦAi : R×A→ A, (t, a) 7→ exp(tXi)a, i = 1, 2,

make the diagram, given by Φi(t, ·) : G→ G, π : G→ A and ΦAi (t, ·) : A→
A commute.

This follows from the identities

π(exp(tXi)g) = π(exp(tXi)| {z }
∈A

gAgNgK) = exp(tXi)gA = exp(tXi)π(g),

where g = gAgNgK is the Iwasawa decomposition of g ∈ G.
As A is abelian and simply connected, then by Proposition 1, there exist

transversal sections h1, h2 ⊂ A for X1 and X2, respectively. Moreover,
now consider π : NAK → NAK/AK, identify NAK/AK with N , and
take X1,X2 ∈ n. By similarity to the abelian case we can guarantee that
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there exist homeomorphic transversal sections h1, h2 ⊂ N for X1 and X2,
respectively. Hence, taking the lifts of these transversal sections to G, it
follows from Corollary 4 that the flows of X1 and X2 on G are topologically
conjugate:

Theorem 5. For any nonzero X1,X2 in a or n the correspondent flows are
topologically conjugate in G.

Example 6. Now we present an example showing that topological conju-
gacy in a Lie group does not imply topological conjugacy in the respective
Euclidean space: Take the following elements in sl(3, R):

X = diag(1, 0,−1) and Y = diag(3,−1,−2).

We see in the above result that the corresponding flows of X and Y are
conjugate in Sl(3, R), but the corresponding flows in R3 are not conjugate.
In fact, for a = (0, y, 0) ∈ R3 we have that exp(tX)y is constant. Then, if
h : R3 → R3 is a conjugation between the flows of X and Y , exp(tY )h(a)
should be constant for all a and for all t. But this is possible only if h(a) = 0
for all a. Therefore, h can not be conjugation.

4. Affine group case

First we need some notation and definitions. Let V be an n-dimensional real
vector space and H a Lie group that acts on V . Take the group G = HV
given by the semidirect product of H and V . Recall that the affine group
operation is defined by (g, v) ·(h,w) = (gh, v+gw) for all (g, v), (h,w) ∈ G.
Let π : G→ H be the canonical projection of the affine group onto the Lie
group H. The action of G on V , given by (g, v)·w = gw+v, with (g, v) ∈ G
and w ∈ V , is called an affine action. The natural action of π(G) = H on
V is called a linear action. Denote by g = hV the Lie algebra of G, where
h is the Lie algebra of H. Note that for simplicity we use the same product
symbol for the group and algebra. If Φ(t, g) = expG(tX)g is a flow on G,
where X = (A, b) ∈ g = hV and g ∈ G, we denote by ΦH the flow on H
given by ΦH(t, h) = expH(tA)h with h ∈ H.

Now we give an idea about the motivation of this section. The main
results in [2] and [3] say that the topological conjugacy of affine systems
depends on the topological conjugacy of the linear parts. More specifi-
cally, take two affine flows Ψ and Ψ̂ and denote by Φ and Φ̂ the respective
linear parts. If Φ and Φ̂ are topologically conjugate, then Ψ and Ψ̂ are
topologically conjugate.
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Another motivation is that controllability of affine systems depends on
the controllability in the linear part. That is, let G = BV be an affine
group, where B is a semisimple Lie group that acts transitively on V −{0}.
Let S ⊂ G be a connected semigroup with nonempty interior. Suppose that
the linear action of π(S) is transitive on V − {0}. Then the affine action
of S on V is transitive. (see Rocio, Santana, and Verdi [8]). Motivated by
this, we have the following result (Proposition 2).

Lemma 1. For X = (A, b) ∈ hV , the flow Φ(t, g) = expG(tX)g on G is
given by

expG(tX) · (h, v) =
µ
expH(tA)h, expH(tA)v +

Z t

0
exp(sadA)bds

¶
.

Proof. By Theorem 3.1 in [6], the exponential map expG for a semidirect
product G = HW of arbitrary Lie groups H and W is given by

expG(η, ω) = (expH(η), E
D
W (ω)),

where ED
W is defined as follows: Let g(t) be the solution of

g0(t) = dLg(t)γ(t)(4.1)

with g(0) = eG, γ(t) = exp(tD)γ0, γ : R→ g. Define

ED
W : g → G, ED

G (γ0) := g(1).

where η is identified with (η, 0) and hence induces a derivation D = adη on
the Lie algebra of W .

Now, consider the case W = V : Here the left translations are the affine
maps Lg : x 7→ g + x. Hence, the differential equation (4.1) reduces to

g0(t) = γ(t) = exp(tD)γ.

We obtain the solution by integration:

g(t) =

Z t

0
exp(tD)γdt.

Using that adtη = tadη, we thus obtain

expG(tη, tω) =

µ
expH(tη),

Z 1

0
exp(stadη)tω

¶
=

µ
expH(tη),

Z t

0
exp(sadη)ωds

¶
.
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Now, for X = (A, b) ∈ hV we have the following flow on G:

expG(tX) · (h, v) =
µ
expH(tA)h, expH(tA)v +

Z t

0
exp(sadA)bds

¶
.

This proves the assertion. 2

Proposition 2. Consider the affine group G = HV . Let π : G → H be
the canonical projection. Take flows Φi(t, g) = exp(tXi)g, i = 1, 2, on
G and suppose that there exist homeomorphic transversal sections for the
flows ΦHi . Then Φ1 is topologically conjugate to Φ2.

Proof. Let Xi = (Ai, bi) ∈ hV for i = 1, 2. Using the preceding lemma,
for every t ∈ R we have

π(Φi(t, (h, v))) = π(expG(t(Ai, bi))(h, v)) = expH(tAi)h

= ΦHi (t, h) = Φ
H
i (t, π(h, v)).

Equivalently, the diagram, given by Φi(t, ·) : G → G, π : G → H and
ΦHi (t, ·) : H → H commutes. Hence by Corollary 4, this implies the
proposition. 2

Remark 3. As a consequence we obtain that in the case of a nilpotent or
abelian group H any two flows on G = HV are topologically conjugate. In
fact, using the same notations as above, take flows Φi(t, g) = exp(tXi)g,
i = 1, 2, on G. Then ΦHi (t, h) = expH(tAi)h with h ∈ H are flows on
H. Hence, by Subsection 3.2 there exist transversal sections for ΦHi , i =
1, 2. Therefore, by the last proposition it follows that Φ1 is topologically
conjugate to Φ2, if H is nilpotent or abelian. Now suppose that H is
semisimple and consider the Iwasawa decomposition H = ANK = NAK.
Take Xi = (Ai, bi) ∈ hV , but with Ai ∈ a or Ai ∈ n, where a and n are the
Lie algebras ofA andN , respectively. Then again by Subsection 3.2 we have
that the flows on H, ΦH1 (t, h) = expH(tA1)h and Φ

H
2 (t, h) = expH(tA2)h

are topologically conjugate. Hence, by the last proposition it follows that
these flows on G = HV are topologically conjugate.
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