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Abstract

A generalized gamma (GG) distribution of four parameters was
first introduced by Amoroso 1925, and since then, different distribu-
tions emerged as subclasses of this model. This model is commonly
used to model lifetime data or data with a right skewed unimodal den-
sity function. In this article, we use a reparameterization of the GG
distribution that is compared with other usual two-parameter distribu-
tions, Weibull, generalized exponential (Gupta and Kundu 1999), and
gamma, using a real data set with a high coefficient of asymmetry and
kurtosis (Valenzuela M. 2009). Akaike’s information criterion and
Bayesian information criterion indicates that our reparametrization
of the gamma distribution is better. Besides a Monte Carlo simulation
study, shows the behavior of five estimation methods: least squared,
weighted least squared, moments, probability weighted moments and
maximum likelihood methods.

Keywords : Gamma distribution, Maximum likelihood estimators,
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1. Introduction

Environmental pollution, especially water pollution, in the last decades has
become more serious all over the world. Non-point source pollution has be-
come increasingly important for the study of water quality and pollutant
transport processes within river watersheds. The dominant process leading
to the spatial redistribution of pollutants and contamination of water bod-
ies is surface flow. In data from the watersheds, one problem is to determine
a probability distribution model of pollutants in water and soil to provide
reliable features closer to the real data set. Few studies concerning with
the distribution of pollution were carried out for the distribution of rainfall-
runoff driven pollution. Hydrologic data are typically skewed, and so are
soil contaminant concentration data from sites which behavior is rain-fall
dependent. The presence of one or more outliers is the rule rather the ex-
ception in a data set which appears to come from this area. The impact of
outliers values can be as powerful that some of them can completely domi-
nate the estimate of the interesting quantities such as mean contamination
levels at various areas of a polluted site. The modeling problem becomes
more complex when a small number of high concentration of pollutants is
observed.

In order to solve the above problem we propose a reparameterization
of the GG distribution. This reparameterization leads to a gamma dis-
tribution with two parameters that is compared with the known gamma
distribution, Weibull distribution, and generalized exponential (GE) dis-
tribution, our proposed appears to be the most appropriate for our data
set.

We begin by describing the two-parameter gamma distribution or sim-
ply gamma distribution, it has been used as a universal statistical law for
various complex stochastic events in various fields, such as, physical, chemi-
cal and biological systems, among others. This distributions can be written
as

f(x;α, β) =
xα−1

βα Γ(α)
e−x/β , x > 0(1.1)

where Γ(z) =
R∞
0 yz−1 e−zdy is the gamma function at z > 0, and α, β are

positive parameters, the notation of this distribution will use X ∼ G(α, β).

The gamma distribution, which covers a wide range of skewness, has
been tried. It is seen that a gamma probability model shows a good fit
to the rainfall-related variables, for example; in the article of Mooley and
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Appa Rao (1971), is examined the adjustment of gamma distribution to
the annual precipitations in India covering several climatic regimes. They
demonstrated that annual precipitation adjusted to a gamma distribution,
in another example, mean and maximum rainfall associated to cyclonic
storms of the Bay of Bengal striking the two sections of the east coast of
India were studied by Mooley and Mohile (1986) examining the rainfall dis-
tributions along the coast on both sides of a point P at which the storms
struck the coast at a right angle during the period 1877—1980. The distri-
bution is highly skewed and Suhaila 1998 have used this distribution to fit
rainfall intensity for Peninsular Malaysia using hourly rainfall data.

Recently, new releases have emerged as competitors to the gamma dis-
tribution, for example the GE distribution or exponentiated exponential
distribution, has been introduced and studied quite and extensively by
Gupta and Kundu (1999) and Gupta and Kundu (2001).We consider a
subclass of the family of Suzuki (1964) distribution that is different to the
two-parameter gamma distribution and different to the three-parameter
gamma distribution proposed by Stacy (1962) and is not incorporated in
the list of Crooks (2010).

The objective of the present article is to develop based-likelihood infer-
ence for the parameters of the reparametirized gamma distribution which
yield reliable estimates of parameters from data sets in the presence of
outliers, and also to compare the performances of various estimation pro-
cedures. The five different estimation methods for the distribution param-
eters considered, are maximum likelihood estimators, method of moment
estimators, weighted least squares estimators, least squares and probabil-
ity weighted moment estimators. These procedures have not been exten-
sively studied for this reparameterized gamma distribution, to which we
aim to assess its ability to explain the pollution data observed in response
to rainfall-runoff phenomena from watersheds.

This paper is organized as follows. In Section 2, we define the proposed
reparametrization for the distribution of Suzuki (1964) and its properties.
In Section 3, we introduce five different estimation methods for the pa-
rameter of the distribution considered. Section 4 describes the asymptotic
inference of parameters via likelihood function. In Section 5, we present a
study via simulation comparing the performance of the different estimation
methods. Section 6 illustrates the Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC) for the Weibull distribution, GE dis-
tribution, gamma two parameter and the proposed distribution considering
a real data set. Finally, we draw some conclusions in section 7. The ap-
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pendix shows the tables of the statistics mean and variance coefficient for
the variable following the proposed distribution.

2. The Model

A original form of probability density function (pdf) of the GG distribution
of three positive parameters a, d and p, is given by

f(x; a, d, p) =
p xd−1

adΓ(d/p)
e−(x/a)

p
, x ≥ 0(2.1)

with their cumulative distribution function, which does not have a
closed formula, is given by

F (x; a, d, p) =

Z x

0
f(y; a, d, p)dy =

γ((x/a)p, d/p)

Γ(d/p)
,(2.2)

where γ(s, x) =
R x
0 ts−1 e−t dt denotes the incomplete gamma function, see

Stacy (1962) and Johnson et. al. (1994). If a random variable X has a pdf
as in the equation (2.2), ... then will be denoted as X ∼ GG1(a, d, p).

A particular parametrization the pdf in (2.2), leads to the well-known
density function proposed by Suzuki (1964), this parametrization is done
by the following transformation δ = p, ν = d and η = 1/ap, then we have

f(x; η, ν, δ) =
δ ην/δ xν−1

Γ(ν/δ)
e−ηx

δ
, x > 0.(2.3)

We use the following notation GG2(η, ν, δ) for the distribution given by
(2.3), that satisfies GG2(η, ν, δ) := GG1(1/η

1/δ, ν, δ).
Stacy andMihram (1965) manages the estimation of parameters through

method moments of logX incorporating the transformation k = d/p. On
the other hand we obtain another form commonly used in practice making
the parametrization in (2.2) ; k = d/p, β = a and ψ = p, so

f(x; k, β, ψ) =
ψ xkψ−1

βkψΓ(k)
e−(x/β)

ψ
, x > 0.(2.4)

For the distribution given by the pdf in (2.4) we use the notation
GG3(k, β, ψ), and therefore we have GG3(k, β, ψ) := GG2(1/β

ψ, kψ, ψ) :=
GG1(β, kψ, ψ). Moreover using the notations above we can write GG2
in terms of GG3 as GG2(η, ν, δ) := GG3(ν/δ, 1/η

1/δ, δ). The cumulative
function distribution of GG2(η, ν, δ) evaluated at x, F (x; η, ν, δ), can be
written as F (x; η, ν, δ) = γ(ηxδ, 1/δ)/Γ(ν/δ).
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As discussed above, different parameterizations of the function (2.2)
have been carried out, we will use a new parametrization given by η = 1/ρ,
ν = 1, and δ = 1/α. This parametrization allows us fix a parameter, so
the pdf of Suzuki (1964) becomes a function of density of two parameters
GG2(1/ρ, 1, 1/α), where the pdf is given by

f(x; η, ν, δ) =
1

αΓ(α)
e−x

1/α/ρ, x > 0.(2.5)

The cumulative function distribution of GG2(1/ρ, 1, 1/α) evaluated at
x, can be written as F (x; ρ, α) = γ(x1/α/ρ, α)/Γ(α).

We will compare this distribution with distributions of two parameters
such as Weibull, G(α, β) and GE distribution. The properties of the new
density function generated by this parametrization will be discussed in
Section 4. For purposes of simplicity, all properties will be described under
the pdf of Suzuki i. e. we will use the density function GG2(η, ν, δ).

2.1. Properties

In this section we will study the particular case of the parametrization
proposed by Suzuki, hence we will consider the form (2.3) to study the
properties of GG2 utilizing the relation

R∞
0 xpe−βx

q
= Γ(m)/(qβm), with

m = (p + 1)/q in Gradshteyn and Ryzhik (2007) and the power series of
the function g(z) = ez we obtain the moment generating function

M(t) = E{etX} = 1

Γ(ν/δ)

∞X
k=0

tk

k!

Γ(ν+kδ )

αη k/δ
.(2.6)

From (2.6) the not central moments, until order r, are given by

µr := E{Xr} = 1

ηr/δ
Γ((ν + r)/δ)

Γ(ν/δ)
,(2.7)

with r ∈ Z+.
Therefore, the calculation of mean and variance follow immediately from

the formula (2.7)

E{X} = 1

η1/δ
Γ((ν + 1)/δ)

Γ(ν/δ)
,

Var{X} = 1
η2/δΓ(v/δ)

£
Γ ((v + 2) /δ)− Γ2 ((v + 1) /δ) /Γ (v/δ)

¤
(2.8)
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We observed that, if X = Y/η1/δ, with Y ∼ GG2(ν, 1, δ), then∙
E{Y }/E{X}

¸δ
= η.(2.9)

The coefficient of variation of X is given by

CV {X} =
q
Γ(ν/δ)

s
Γ((ν + 2)/δ)

Γ2((ν + 1)/δ)
− 1

Γ(ν/δ)
.(2.10)

with
Γ((ν + 2)/δ) > Γ2((ν + 1)/δ)/Γ(ν/δ), for δ > 0.

The skewness, β1 = µ•3/µ
•3/2
2 and kurtosis β2 = µ•4/µ

•2
2 coefficients,

where the symbol “•” denotes the moment centered around the mean, which
can be calculated as

β1 =
µ3 − 2µ1µ2 + 2µ21
(µ2 − µ21)

3/2
, β2 =

(µ4 − µ1(4µ3 − 6µ1µ2 + 3µ31))
(µ2 − µ21)

2
,

where µi, i = 1, 2, 3, 4 are the first, second, third and fourth moments given
in relation (2.9).

IfX ∼ GG3(k, β, ψ), the stochastic representation of Y ∼ GG3(k, β
ψ, 1)

in function of X can be obtained following the relation Y = Xψ, and for
V ∼ GG3(k, 1, 1), the standard gamma distribution, in function of X, can
be written as V = (X/β)ψ. So, the generation of a simple sample random
of finite size from X = GG3(k, β, ψ) may be obtained from GG3(k, β

ψ, 1),
as X = Y 1/ψ or from GG3(k, 1, 1) as X = β V 1/ψ. On the other hand, in
the case of our parametrization, if we have X ∼ G(1/η, ν/δ) the stochas-
tic representation of Y ∼ GG2(η, ν, δ) in function of X can be obtained
following the relation Y = X1/δ. So any feature of interest for Y can be
obtained from X with a usual two-parameter gamma distribution, specif-
ically a = 1/η and d = ν/δ. The algorithm to compute pseudo random
number from GG3(k, 1, 1), GG3(k, β

ψ, 1) or G(1/η, ν/δ) is been developed
on different statistics softwares.

3. Estimation methods

In this section we study the behavior of the five appropriate estimate
methods that can be apply to us distributions with a highly skewed real
data set. Such as; moments, least squares, weighted least squares, prob-
ability weighted moment and maximum likelihood, under the particular
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GG2(η, ν, δ) distributions. We expect that these robust procedures, as
weighted least squares, and probability weighted moment, have a better
performance that moments method, least square and maximum likelihood.

3.1. Moment estimation method

The moments estimation method can be obtained from the no-central mo-
ments of X ∼ GG2(η, ν, δ) given in the equations (2.9), solving for ν, η and
δ, besides we used the equations of Konn and Lomdahl (2004) to obtain,

µ21
µ2
=

Γ2(ν+1δ )

Γ(νδ )Γ(
ν+2
δ )

,
µ31
µ3
=

Γ3(ν+1δ )

Γ2(νδ )Γ(
ν+3
δ )

, µ1η
1/δ =

Γ(ν+1δ )

Γ(νδ )
.

(3.1)

So it could be used to estimate the initial point to obtain the least
squares, weighted least squares, probability weighted moment method and
estimators maximum likelihood estimation, which are described in the next
subsection.

Or finding the root, say eν and eδ for the nonlinear equation
CV {X}− SX

X
= 0.(3.2)

And then, replacing the eν and eδ at the last expression (3.1), we have
for eη

eη = exp

½eδ∙log(Γ((1 + eν)/eδ))− log(Γ(eν/eδ))− log(X)

¸¾
,(3.3)

being the moment estimator for η. Or using the relation (11), we have

eη =
⎡⎣E(eν,eδ){Y }

Xn

⎤⎦eδ(3.4)

where E
(eν,eδ) is the expectation on GG2(1, eν, eδ) distribution.
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3.2. Least squares and weighted least squares estimators

In this subsection we present the regression-based method estimators for
the unknown parameters of the GG2 distribution. The method of ordinary
least squares and the method of weighted least squares (Swain et. al., 1988)
that is defined in term of the order statistics making of it procedure a robust
alternative methods, useful for the estimation of parameters of a skewed
distribution, that is our case. The methodology is as follows:

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of X1, . . . ,Xn,
with Xi ∼ GG2(η, ν, δ). Observe that F (Xr:n) behaves like the r-th order
statistic of a sample of size n from the uniform distribution (0; 1), so Ur:n ∼
Beta(n+ 2, r + 1) and

E{Ur:n} = r/(n+ 1), V ar{Ur:n} =
r(n− r + 1)

(n+ 1)2(n+ 2)
,(3.5)

and

Cov{Ur:n, Us:n} =
r(n− s+ 1)

(n+ 1)2(n+ 2)
, for r < s.(3.6)

The weighted least squares estimators (WLSE) of the unknown parameters
(η, ν, δ) can be obtained by

(η, ν, δ) = arg minη,ν,δ

nX
r=1

wr

∙
F (Xr:n; η, ν, δ)−E{Ur:n}

¸2
.(3.7)

If wr = 1 this method is known as the least squares (LSE), in other case,
we consider 0 < wr < 1, more specifically wr = 1/V ar{F (Xr:n; η, ν, δ)}.

In term of incomplete gamma function we have for (3.7)

(η, ν, δ) = arg minη,ν,δ

nX
r=0

wr

⎡⎣γ(η xδr:n, ν/δ)
Γ(ν/δ)

− r

(n+ 1)

⎤⎦2.(3.8)

3.3. Probability weighted moment method

The Probability-weighted moments (PWM) method, which has been inves-
tigated by many researchers, was originally proposed by Greenwood et. al.
(1979), where PWM is commonly used in theoretical studies and empirical
purposes, it is an alternative estimation method for the probability distri-
butions, and it has enabled the determination of parameters that are more
stable against possible outliers in the dataset.
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The PWM method can be generally used to estimate parameters of a
distribution which inverse form cannot be expressed explicitly. The (s, r)th
PWM of X that follows a distribution with cdf F (x;β), say ws,r, is defined
by

ws,p,r(β) = E{XsSp(X;β)F r(X;β)} =
Z ∞
0

xsSp(x;β)F r(x;β)dF (x;β),

for s, p, r ∈ N and S(·;β) is the survival function of X.
An usual practical application of PWM is when s = 1 and p = 0, we

use, w1,0,r := wr. Similar notation will be use for the sample version, saybw1,0,r := bwr.
So using the practical formula we have the sample version of wr as bwr,

know as Landwerh formula, defined asbwr =
1
n

Pn
j=1Xj:nE{Ur

j:n} with E{Ur
j:n} =

B(j+r,n+1−j)
B(j,n+1−j) , r = 1, 2, 3.

Solving numerically the three non-linear equations wr(β) = bwr, r =
1, 2, 3,

we can calculate the PWM estimator for the elements of the parameter
vector β = (ν, η, δ). Moreover we make use of relation

wr(β) =

Z 1

0
Q(y;β)yrdy,(3.9)

where Q(y;β) is the quantile function of the variable X ∼ GG2(ν, η, δ),
which can be calculated using numerical procedures.

4. Inference likelihood-based

The log-likelihood function for (η, ν, δ) based on a simple random sample
{x1, . . . , xn} of size n from X ∼ GG2(η, ν, δ) defined by (2.3), is given by

l(η, ν, δ) = n

∙
ln(δ) +

ν

δ
ln(η)− ln(Γ(ν/δ))

¸
+ (ν − 1)

nX
i=1

xi − η
nX
i=1

xδi .

(4.1)

The general assumption considered for the GG2 distribution are those
that allow inference based on likelihood until first order, calling the con-
ditions of the distribution proposal, as, conditions of regularity (Cox and
Hinkley 1974).
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4.1. Maximum likelihood method

The maximum likelihood estimator (MLE) of (η, ν, δ) can be obtained nu-
merically solving the equation of likelihood given in Kohn and Lomdahl
(2004). In the case X ∼ GG3(k, β, ψ) the procedure of Lawless (1980) can
be used, Cox et. al. (2007) and Noufaily and Jones (2009) used this pro-
cedure and concluded that they have obtained consistent estimators, even
for small sample size. If we considered the form (2.3), with ν = 1, δ = 1/α
and η = 1/ρ, that is the case of our parametrization GG2(1/ρ, 1, 1/α), the
likelihood equation become from the first derivatives in relation of α and ρ
of log-likelihood, given by

∂l

∂α
= −n

α
− n ln(ρ)− nψ(α) +

1

α2ρ

nX
i=1

x
1/α
i ln(xi)(4.2)

∂l

∂ρ
= −nα

ρ
+
1

ρ2

nX
i=1

x
1/α
i .(4.3)

From equation (4.3), we obtained the MLE of ρ as function of α, given
by

bρ(α) = 1

α

nX
i=1

x
1/α
i .(4.4)

So, if we know the α parameter, the MLE of ρ can be obtained from
(4.4). Now if both parameter are unknown, we can proceed as follows:
substitute bρ(α) at (4.2) to obtained
g(α) = l(bρ(α), ρ) = −n ln(α) + nα ln(α)− nα ln(

nX
i=1

x
1/α
i )− n ln(Γ(α))−α.

(4.5)

And using the procedure of the first derivative of g(α), the MLE of α
can be obtained, solving the equation

g0(α) = −n
α
+n ln(α)+n−n ln

⎛⎝ nX
i=1

x
1/α
i

⎞⎠+n

α

Pn
i=1 x

1/α
i ln(xi)Pn

i=1 x
1/α
i

−nΨ(α)−1 = 0.

(4.6)
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We note that (4.6) can be written as

h(α) = α(4.7)

where

h(α) =

⎡⎣1− 1
n
+ ln(α)− ln

⎛⎝ nX
i=1

x
1/α
i

⎞⎠−Ψ(α) + 1

α

Pn
i=1 x

1/α
i ln(xi)Pn

i=1 x
1/α
i

⎤⎦−1

(4.8)

and α can be resolver from a fixed point equation h(α) = α.

The Fisher’s information matrix is given by

In(α, ρ) =

"
Iαα Iαρ
Iρα Iρρ

#

where

Iαα = n

⎡⎣ψ0(α)− 1

α2
+

2

α3ρ
a1+

1

α4ρ
a2

⎤⎦, Iαρ = n

⎡⎣1
ρ
+

1

α2ρ2
a1

⎤⎦, Iρρ = n
1

ρ
,

with

E{x1/α} = αρ, a1 = E{ln(x)x1/α} <∞, a2 = E{ln2(x)x1/α} <∞,

(4.9)

and ψ0(·) is the trigamma function. Therefore, the MLE of (α, ρ), when
the size sample, n, is large, has a asymptotic distribution given by

√
n(bα− α, bρ− ρ) ∼ N2(0, I

−1
n (bα, bρ)).(4.10)
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4.2. Confidence regions and testing of hypotheses

From (4.10) we can obtain approximate confidence intervals for α and ρ.
Besides we will focus on testing hypotheses about the α and ρ parameters
in conjoint form using approximate confidence region for (α, ρ). For one-
dimensional inference for shape or scale, we do not believe, being a separate
study to review in detail the possibility of UMP test.

The problem considered is to test a simple null hypothesis for the in-
terest parameter vector (α, ρ),

H0 : α = α0, ρ = ρ0 vs H0 : α 6= α0 or ρ 6= ρ0,(4.11)

and for this, first we will use the likelihood ratio statistic test

R(α0, ρ0) = L(α0, ρ0)/L(bα, bρ)
or the log-likelihood ratio statistics test, given by

S1(α0, ρ0) = −2[l(α0, ρ0)− l(bα, bρ)]
where bα and bρ are the MLE’s of α and ρ respectively and for large size
sample, n, the distribution of S1 under H0 is approximately chi-square
with two degrees of freedom, making possible the use of S1(α0, ρ0) to test
the hypothesis (4.11).

An approximate 100(1 − γ)% likelihood-ratio-based confidence region
for (α, ρ) is the set of all values of (α, ρ) such that S1(α, ρ) < χ21−γ;2 or
R(α, ρ) > exp{−χ21−γ;2/2}.

As second procedure to test (4.11) we will use the Wald’s statistics,
given by

S2(α, ρ) = (bα− α, bρ− ρ)In(bα, bρ)(bα− α, bρ− ρ)>,(4.12)

where the asymptotic distribution for the statistics S2(α, ρ) underH0 is chi-
square with two degrees of freedom. Generating an approximate 100(1 −
γ)% likelihood-ratio-based confidence region for (α, ρ) as the set of all values
of (α, ρ) such that S2(α, ρ) < χ21−γ;2. Therefore, it can be easily checked
whether (α, ρ) is inside or outside a give contour and hence whether H0 is
accepted or rejected at a given significance level γ.

Graphically we can test the hypothesis (4.11) displaying a contour plot
of Si(α, ρ)− χ21−γ;2 = 0, i = 1or 2.

If we choose Si as statistics test, because to we want 5% significant
level to test (4.11) we should reject the hypothesis if (α, ρ) falls outside the
contour Si(α, ρ)− 5.991 = 0. We will make use of S2 statistics test.
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5. Simulation Monte Carlo Study

In this section we study empirical behavior of the five estimation methods,
these methods have been described in Section 3 and the MLE described in
the Section 4, for the parameter of the proposed distribution GG2(η, ν, δ)
with ν = 1, δ = 1/α and η = 1/ρ.

We calculated the relative bias and the square root of the mean squared
error which are denoted by (1) and (2) in the Tables respectively, the es-
timations are based in Monte Carlos study over 5,000 repetitions. For the
MOM, PWM methods we must use a numerical procedure to solve the
non-linear equation system and for the LS, WLS and ML we use numerical
procedure to do maximization (minimization). All methods were repeated
during the entire experiment for (α, ρ) ∈ {(0.5, 2), (1, 2), (2, 0.5), (2, 2)}, the
skewness (β1) and kurtosis (β2) coefficients for the vector parameter set
considered are show in the Table 1.

Table 1 : The symmetric (β1) and kurtosis (β2) coefficients for the
vector parameter set (α, ρ) ∈ {(0.5, 2), (1, 2), (2, 0.5), (2, 2)}.

The sample size, n, considered are n = 50, 100, 200, 250, 300, 350. The
initial values used for the iterative maximization procedure and solving
no-linear equation were obtained from coefficient of variation given in the
relation (2.10). Tables 2-3 display the results. Looking at these tables we
observe that:

• In general when sample size increases, the relative biases and the
MSE decrease for all the methods, excepting the ML method. As a
consequence of that, all estimators are asymptotically unbiased and
consistent of α when ρ is known.

Marisol Martínez
1
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• The behavior of the different method considered are not uniform in
relation to sample size, for example, for n = 50, 100, (α, ρ) = (0.5, 2)
the PWM is better for estimate α than ML method, while if n = 200
the opposite occurs. Fixing the mean squared error as criteria for
comparison, we obtained that for n > 50 we observed that the WLM
method is uniformly better than LM. Now if we compare the MOM
with PWM methods, we have that for n > 100 the PWM is better
that MOM in almost all parameter considered, the exception is for
(α, ρ) = (1, 2).

• The behavior of all methods considered are strongly dependent of α,
we have the same conclusion when analyzing a real data set: if we
look at ρ = 2 and move α is observed that the behavior of relative
biases to estimate ρ, by the MOM, PWM and MLE methods those are
not uniform, but the LS and WLS methods have a behavior uniform.
If we considered the behavior MSE the above conclusion is opposite.
On the same scene, but now the interest is to analyze the behavior
when estimating α, the methods that have a uniform behavior in the
relative biases and MSE are the LS and WLS.

• Moreover, if n < 100 we can say that if the interest parameter is ρ
and nuisance is α, the best method is WLS, and for n > 100 the MLE
is better.
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Table 2 : Bias (1) and square root of the mean squared error (2) The
first line displays the results for the location parameter, α, and the second
one for the scale parameter, ρ.
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Table 3 : Bias (1) and square root of the mean squared error (2) The
first line displays the results for the location parameter, α, and the second
one for the scale parameter, ρ.
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6. Application

6.1. Data set

One of the most frequent types of contamination in rural watersheds is
fecal pollution from different sources. Microbiological contamination is dis-
persed, sporadic, and influenced by a range of interacting environmental
factors such as the watersheds physical characteristics, climatic conditions,
and agricultural management practices. We will consider an application to
a data set, obtained from Valenzuela M. et. al. (2009), which corresponds
to the presence of Colony Forming Units (CFU) of Fecal Coliform (FC)
per 100 ml of groundwater samples. FC presence in a water sample is a
strong evidence of fecal contamination, which is useful as an indicator of
the probable presence of microorganisms capable of causing diseases in hu-
mans. The small rural watershed has an area of 10.8 km2, and is located
in the Biob́io Region, Chile. The catchment area is sparsely inhabited
by families dedicated to traditional agriculture, and is characterized by a
Mediterranean climate with a long dry season leading to water shortages
and a short wet season. The watershed soils have low permeability and
capacity to provide underground water. Moisture accumulation in the wa-
tershed takes place between April and June. The major runoff period of
the year is from July to October when the ground is saturated and almost
all the precipitation that falls in the watershed runs off. Precipitation is
scarce between November and March, with practically no base flow in the
watershed. Farmers obtain small amounts of water from private wells.

On the average, these are 7.0m deep and yield a median of 1.1 Lmin−1.
Groundwater is used as drinking water, for other domestic purposes, or-
chards, gardens, greenhouses, and livestock production. Forty-two wells
were chosen with the Stratified Random Sample (Murray 2002) and site-
location data were determined with global positioning system units (Garmin
12XL, Garmin International Inc., Kansas, USA). The sampling periods
were defined in accordance with the precipitation regime and variations in
the hydrologic levels in the wells. Based on these criteria, four sampling
seasons were established (March, June, September, and December). Water
samples were analyzed for fecal coliforms (FC). Aseptic sample collections
were taken in sterilized flasks. Samples were held at 5 oC after being col-
lected and for no more than 6 h until reaching the laboratory. Results were
expressed in colony forming units (CFU) per 100 mL. FC concentrations
were analyzed with a membrane filtration technique following standard
methods (Clesceri and Eaton 1998). Aliquots (100, 10, and 1 mL) of each
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water sample were filtered through a 0.45µ Millipore membrane filter. All
samples were tested in triplicate. Results were reported as CFU /100 ml.

Results for FC obtained in the four seasons were analyzed indepen-
dently by looking for spatial correlations using the definitions of Gearys
and Morans Index (Anselin 1988). The null hypothesis of no spatial cor-
relation between data at each station was not rejected. A seasonal trend
was identified. Concentrations of FC varied over time and showed a pattern
similar to rainfall which appeared to exert a local influence on the indicator
concentrations. Indicator counts turned out to be significantly related to
certain watershed features during specific months. Inherent well site char-
acteristics and its surroundings, as well as rainfall are the main factors that
affect groundwater quality in the watershed.

Table 4 : Summary of data set for each station.

Table 4 shows some statistical properties of data set, here eβ1 and eβ2
are the sample version of the skewness and kurtosis coefficients. From
this Table we can observed that the data set are skewness and kurtosis
coefficients more large that the case of a normal distribution.

6.2. Use of GG2(1/ρ, 1, 1/α) distribution

Applying the procedure described in the Subsection 3.1 and from the Table
7 in the Appendix we obtained the initial point for the iterative maximiza-
tion procedure to fitted the GG2 and GE distribution, moreover we use the
fitdist function of R to fit the Weibull and gamma distribution.

We have found that the GG2(1/ρ, 1, 1/α) compared to the Weibull,
gamma and GE (Gupta and Kundu, 1999) distributions, provides better
fitting for a data set corresponding to the number of bacteria of fecal col-
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iform class, measured per ml of water, which is useful as an indicator of the
presence of microorganisms capable of causing disease in humans (Valen-
zuela, et al., 2009).

Table 5 : AIC, BIC for theGG2, Weibull, gamma andGE distribution.

We can observe from Table 5 that the GG2 improved the fit for the data
set considered above.

The MLE and their standard errors (se) corresponding for α and ρ
parameters of GG2 are given in Table 6.

Table 6 : MLE of Parameters of GG2

Marisol Martínez
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Following the Section 4, we proceed to construct a confidence region to
test the null hypothesis (4.11) for (α, ρ), which arises from the asymptotic
bi-variate normal distribution, given by

√
n(bα− α, bρ− β) ∼ N2

⎧⎨⎩
"
0
0

#
,

"
1.127 −0.284
−0.284 0.073

#⎫⎬⎭
So the 95% region confidence for (α, ρ) is given by the contour plot

n(bα− α, bρ− ρ)

"
38.361 148.646
148.646 589.637

#−1 " bα− αbρ− ρ

#
− χ20.95;2 = 0

or

n(bα− α, bρ− β)

"
1.127 −0.284
−0.284 0.073

# " bα− αbρ− ρ

#
− 5.991 = 0(6.1)

Figure 1 : An approximate 95% confidence ellipse of (α, ρ), from GG2
distribution, data set of March.
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The ellipse (6.1) is provided in Figure 1, that can be used to test the
hypothesis (4.11).

7. Conclusion

We fitted four model classes to a real data set, consisting in microbiolog-
ical indicator pollution levels in groundwater of a rural watershed, driven
by rainfall-runoff phenomena. We used the ML method to estimate the
parameters corresponding to GG2, gamma, Weibull and generalized expo-
nential distributions. The distribution chosen, using the AIC and BIC cri-
teria, is proposed in this paper, i.e., GG2(1/α, 1, 1/ρ) distribution, which
is not incorporated in the list of (Crooks 2010). We can say that the
GG2(1/α, 1, 1/ρ) distribution allows data with kurtosis and high asymme-
try, as was visible in the fit of our data.

From the simulation study performed, considering the square mean er-
ror, we obtained that if the interest parameter is the α and ρ the nuisance
is preferable to use the ML method. Instead, if the ρ is the interest param-
eter and α is the nuisance, the preferable method is WLS. But if we make
inferences to α and ρ together, we can use the results of Subsection 4.2
(Confidence regions and testing of hypotheses). From the semi-ellipse on
the Figure 1, we can infer that the dependence between bα and bρ is strong,
in term of the correlation, this being an ellipse with minor axis smaller
compared to the principal axis. From above, we observe that it is useful
to analyze the data using moment estimates when the coefficient kurtosis
is not very large, what can potentially serve in data sets coming from pol-
lution in watersheds, other than microorganisms, related to rainfall-runoff
processes.
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Table 7 : Table for E{Y } and CV {Y }, Y ∼ GG2(1/α, 1, 1), for differ-
ence values of α.
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438 B. Lagos Álvarez, G. Ferreira and M. Valenzuela Hube

[12] Konn, H. and Lomdahl, P. S. (2004) Stochastic Processes Having Frac-
tional Order Nonlinearity Associated with Hyper Gamma Distribution,
Journal of the Physical Society of Japan, 73(3), pp. 573-579, (2004).

[13] Lawless, J. F. Inference in the generalized gamma and log gamma
distributions. Technometrics, 22, pp. 409-419, (1980).

[14] Mooley, D. A., and Mohile, C. M., Some aspects of rainfall associated
with cyclonic storms of the Bay of Bengal, International Journal of
Climatology, 6, 149-160, (1986).

[15] Mooley, D., and Appa Rao, G., Distribution function for seasonal
and annual rainfall over India, Monthly Weather Review, 99, 796-799,
(1971).

[16] Murray, C., Sampling and data analysis for environmental microbi-
ology, in Manual of Environmental Microbiology. 2nd ed, eds. K. M.
Hurst, Crawford, and S. L.D., Washington D. C., USA: ASM Press,
(2002).

[17] Noufaily, A. and Jones, M. C. On Maximization of the Likelihood for
the Generalized Gamma Distribution,in Technical Report in Statis-
tics, Department of Mathematics and Statistics, The Open University,
(2009).

[18] Stacy, E. W. A generalization of the gamma distribution, Ann. Math.
Stat. 33, pp. 1187-1192, (1962).

[19] Stacy, E., and Mihram, G. (1965), Parameter estimation for a gener-
alized gamma distribution, Technometrics, 7, 349-358.

[20] Suzuki, E. Hyper gamma distribution and its fitting to rainfall data.
Pap. Meteor. Geophys. 15, pp. 31-51, (1964).

[21] Swain, J. , Venkatraman, S. and Wilson, J. Least squares estimation
of distribution function in Johnson’s translation system, Journal of
Statistical Computation and Simulation 29, pp. 271-297, (1988).

[22] Valenzuela Mariella., Lagos B., Claret M., Mondaca M., Parra O.
Ocurrence of faecal contamination in groundwater at a small rural wa-
tershed. Chilean Journal of Agricultural Research, 69 (2), pp. 235-243,
(2009).



A proposed reparametrization of gamma distribution for the ... 439

B. Lagos-Álvarez
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