Proyecciones Journal of Mathematics Vol. 30, N^o 3, pp. 369-399, December 2011. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172011000300008

Schauder basis in a locally K- convex space and perfect sequence spaces

 $R.\ AMEZIANE \\ UNIVERSITÉ\ SIDI\ MOHAMED\ BEN\ ABDELLAH,\ MOROCCO$

 $A.\ EL\ AMRANI$ UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH, MOROCCO and $M.\ BABAHMED$

UNIVERSITÉ MOULAY ISMAIL, MOROCCO Received : July 2010. Accepted : September 2011

Abstract

In this work, we are dealing with the natural topology in a perfect sequence space and the transfert of topologies of a locally K- convex space E with a Schauder basis $(e_i)_i$ to such Space. We are also interested with the compatible topologies on E for which the basis $(e_i)_i$ is equicontinuous, and the weak basis problem. Finally, we give some applications to barrelled Spaces and G-Spaces.

Keywords: non archimedean analysis, locally K- convex spaces, Schauder basis, the weak basis theorem, compatible topologies, perfect sequence spaces, K- barrelled spaces and G- spaces.

AMS subject class. (2000): 46S10

1. Introduction

The perfect sequence spaces on a field K have been widely studied by several authors, either in the classical case ($K = \mathbb{R}$ or $K = \mathbb{C}$) Garling [18] and [19], $K\"{o}the$ [23], ..., or in the case of K is a non-archimedean valued field Monna [25], Dorleyn [14], De Grande-De Kimpe [8], The importance of the sequence spaces lies on the fact that each space which is locally convex and having a Schauder basis is isomorphic to the sequence space. Thus, instead of studying the spaces that are locally convex and having a Schauder basis one only has to study the sequence spaces.

In this work we are going to establish a way of transforming topologies between this space and a perfect sequence space Λ , where

$$\Lambda = \left\{ (\lambda_i)_i \in \omega : \sum_{i=1}^{\infty} \lambda_i e_i \text{ converges in } (E, \tau) \right\} \text{ and } (e_i)_i \text{ is a Schauder}$$

basis of a locally K-convex space (E, τ) in question (K is a non-archimedean valuated field complete with a non trivial valuation). This study will allow us to solve the following problem:

(1) if $(e_i)_i$ is a Schauder basis of a locally K- convex space (E,τ) (lKcs), determine the compatible topologies on E for which $(e_i)_i$ is an equicontinuous Schauder basis.

This problem was studied by many Mathematcians, in particular by De Grande-De Kimpe [10]. It is also proved in ([22], 3.2. see also [32], 2.1 and [12], 2.1) that in a lKcs (E,τ) there exists the finest locally K-convex topology ν of countable type compatible with τ . The existence of this topology was also proved in ([21], proposition 2, p. 153). Thus, we are going to make, in the case of lKcs (E,τ) such that $E_{\sigma} = (E,\sigma(E,E'))$ and $E'_{\sigma} = (E',\sigma(E',E))$ are sequentially complete, this topology in relation with the original topology of E, by distinguishing the following three cases: K is local, K is spherically complete and K is not spherically complete; which will give us a complete solution of this problem, we'll give a characterization of polar toplogies for which the weak basis problem is true in the case when K is not spherically complete. We should remind that the problem of the weak basis was formulated by several ways and that's one of them ([21], p. 150)

(2) Is every weak Schauder basis for E a Schauder basis for E?

We shall say that for a $lKcs\ E$ the weak basis theorem holds if every weak Schauder basis in E is a Schauder basis .

In archimedean analysis, the weak basis theorem was first given for Banach spaces in 1932 by Banach ([3], p. 238) and extended to (F) –spaces

by Bessaga and Pełczynski [5] $(a(F)-space\ is\ a\ complete,\ metrizable$ topological vector space. McArthur [24] proved an analogue for bases of subspaces in Frechet spaces. Arsove and Edwards [1] proved that the answer is positive if E is a barrelled space. Singer shows by an example ([33], p. 153) that a weak basis need not be Schauder basis. Dubinsky and Retherford [15] observed that the answer is negative in general. Bennet and Cooper [4] proved it for strict (LF) – spaces and Floret [17] for sequentially retractive (LF) – spaces. M. De wilde [13] obtained a rather general result for bornological, sequentially complete and webbed spaces. W J. Stiles ([35], corollary 4.5, p. 413) showed that the theorem fails in non locally convex spaces l^p $(0 \prec p \prec 1)$. N. J. Kalton [20] gave a class of spaces for which this theorem is true. Joel H. Shapiro ([29], theorem 1, p. 1294) gave the following generalization of stiles' result

The weak basis theorem fails in every locally bounded non locally convex (F)—space which has a weak basis; he also gave a wide class of space which the weak basis theorem fails and proved the same for the space H^p (H^p := the linear space of functions f analytic in the open unit disc $|z| \prec 1$ such that $||f||_p^p = \sup_{0 \leq r \prec 1} \int_0^{2\pi} \left| f\left(re^{it}\right) \right|^p dt \prec \infty$). Efimova [16] proved the weak basis theorem for regular inductive limits of a sequence of normed barrelled spaces. M. Valdivia has shown the result for metrizable barrelled spaces. J. Orihuela [27] gave a result which showed the linking between the weak basis theorem and the closed graph theorem. In [10] N. De Grande-De Kimpe solved completely the weak basis problem for locally convex space (lcs) E having a σ (E', E) — sequentially complete topological dual E'.

In n.a analysis, the weak basis problem has the following simple solution [21]: For a lKcs E with a weak Schauder basis the weak basis theorem holds iff E is an Orlicz-Pettis-space (a space, where every weakly convergent sequence is convergent). We know that, if K is spherically complete then every lKcs E is an OP-space; so the weak basis theorem holds in this case. If K is not spherically complete J. Kąkol and T.Gilsdorf ([21], corollary 6, p. 155) proved that the weak basis theorem holds if E is a polarly barrelled polar space (a locally K-convex space is called polarly barrelled if every closed, polar and absorbing absolutely K-convex subset of E is a zero-neighbourhood), they provided a wide class of non-polar spaces E with a weak Schauder basis which is a basic sequence in the original topology of E ([21], example 7, p. 155 and 156). Finally J. Kąkol and T.Gilsdorf remark that they do not know if the following result is true: Let E be a Banach

space with a weak Schauder basis; then, E is a polar space iff every weak Schauder basis in E is a basic sequence ([21], remark 13, p. 160). This conjecture was set by P. Garcia and Schikhof ([28], p. 233) in the form of the following question: Does there exist a polar Banach space which is not OP—space, and does not contain l^{∞} ? The answer of this question is negative; in the other words, the conjecture is true (see proposition 33).

In §. 2 we'll give general results that are related to lKcs, to polar toplogies of \mathcal{A} —convergence and to space of sequences. In §. 3 we study the perfect sequence spaces over K, we give a characterization of the natural topology noted Na with the sets absolutely K—convex, weakly bounded and compactoid if K is spherically complete, with the sets absolutely K—convex and compact if K is local and with the sets absolutely K—convex weakly bounded and K—closed (K is a perfect sequence space on K) when K is not spherically complete. We are interested in §. 4 in the study of transfer of topologies between a perfect sequence spaces and a K is a Schauder basis, using the two following algebraic isomorphisms

 $\Phi: E \longrightarrow \Lambda \quad x \longmapsto (\lambda_i)_i$ and $\Psi: E' \longrightarrow \Delta \quad f \longmapsto (\mu_i)_i$ for every $x = \sum_{i=1}^{\infty} \lambda_i e_i$ and $f = \sum_{i=1}^{\infty} \mu_i f_i$; where $(f_i)_i$ is the weak Schauder basis of E' associated to the Schauder basis $(e_i)_i$ of E ([9], lemma 3, p. 402) and Λ and Δ are two sequence spaces which we'll define like in [9]. This study will allow us to solve the problem (1) by distinguishing the three cases K is local, K is spherically complete and K is not spherically complete. Some results that are related to problem (2) are given in the §. 5 by considering a polar lKcs (E,τ) which has a weak Schauder basis $(e_i)_i$ and as E_{σ} and E'_{σ} are sequentially complete, we characterize the finest compatible topology on E for which $(e_i)_i$ is a Schauder basis; this basis is necessary equicontinuous. Then, we give a necessary and sufficient condition which the topology τ must fulfill so as to admit $(e_i)_i$ as Schauder basis in the case when K is non spherically complete. Then we deduce a new characterization of OP—spaces.

Finally, in §. 6 we give applications to G-spaces and to K-barrelled spaces. We show that the result established by N. De Grande- De Kimpe in [10] in the classical case, for the barrelled spaces, is also true in the non archimedian case. For a G-space (E, τ) ; we show that τ is the only topology on E compatible with the duality $\langle E, E' \rangle$ for which $(e_i)_i$ is an equicontinuous Schauder basis.

2. Preliminaries

- 1. Throughout K is a non-archimedean (n.a) non trivially valued complete field with the valuation |.|, and the valuation ring is $B(0,1) = \{\lambda \in K : |\lambda| \le 1\}$.
- 2. Let E be a K-vector space. A subset A of E is absolutely K-convex if it is B(0,1) module. For a set $X \subset E$ its absolutely K-convex hull $\Gamma(X)$ is the smallest absolutely K-convex set containing X.
- 3. A topology on a vector space E over K is said to be locally K-convex if there exists in E a fundamental system of zero-neighbourhoods consisting of absolutely K-convex subsets of E.

In this paper the letter E will always stand for Hausdorff locally K- convex space over a field K.

- 4. A subset A of E is called compactoid if for every zero-neighbourhood U in E, there exists a finite set $F \subset E$ such that $A \subset \Gamma(F) + U$.
- 5. A subset A of E is called c-compact if every convex filter on A has a cluster point on A.
- An absolutely K-convex subset of a locally K-convex space E is called K-closed if for every $x \in E$ the set $\{|\lambda| / \lambda \in K : \lambda x \in A\}$ is closed in |K|; the K-closed hull of A is the smallest subset of E which is K-closed and contains A, it is denoted by $K_c(A)$.
- 6. A sequence $(e_i)_i$ is a Schauder basis of E if every $x \in E$ can be written uniquely as $x = \sum_{i=1}^{\infty} \lambda_i e_i$ where the coefficient functionals $f_n : x =$

$$\sum_{i=1}^{\infty} \lambda_i e_i \longmapsto \lambda_n \text{ are continuous.}$$

- The sequence $(f_n)_n$ is called the weak Schauder basis associated to basis $(e_i)_i$.
 - For every $n \ge 1$, let p_n the map $x = \sum_{i=1}^{\infty} \lambda_i e_i \longmapsto \lambda_n e_n$; the Schauder

basis $(e_i)_i$ is called equicontinuous if the sequence $(p_n)_n$ is equicontinuous on E, this is equivalent to the equicontinuity of the sequence $(S_n)_n$ where

$$S_n: x = \sum_{i=1}^{\infty} \lambda_i e_i \longmapsto \sum_{i=1}^n \lambda_i e_i$$
, for every $n \ge 1$.

- 7. Let \langle , \rangle be a duality between E and F where E and F are two vectors spaces over K (see [2] for general results);
- If A is a subset of E, the polar of A is a subset of F defined by: $A^{\circ} = \{y \in F \ / \ | \langle x,y \rangle | \leq 1 \ for \ all \ x \in A \}$.

We define also the polar of a subset B of F in the same way.

- The weak topology $\sigma(E, F)$ on E is noted simply σ and $\{A^{\circ} / A \in \mathcal{F}\}$ is a zero-neighbourhood base, where \mathcal{F} is the set of finite subset of F.
- A subset A of F is said to be E- closed if for every $y \in F \setminus A$, there exists $x \in E$ such that $|\langle x, y \rangle| > 1$ and $|\langle x, A \rangle| \leq 1$; the E-closed hull $E_c(A)$ of A is the smallest E-closed subset of F containing A.

Proposition 1. Let A be an absolutely K-convex subset of F, then A is E-closed, if and only if, A is K-closed and $\sigma(F, E)$ -closed.

Proof. By [2], theorem 4.2, p. 233, proposition 2.5, p. 224 and corollary 4.3, p. 233. \blacksquare

- 8. Let \mathcal{A} be a family of $\sigma(F, E)$ -bounded subsets of F such that
- (a) \mathcal{A} is directed by inclusion,
- $(b) F = \bigcup_{A \in \mathcal{A}} A,$
- (c) there exists $\lambda_0 \in K$, $|\lambda_0| > 1$, such that $\lambda_0 A \in A$, for all $A \in A$.

A topology τ on E is called polar topology of A- convergence, if τ has a fundamental system of zero-neighbourhoods consisting of $\{A^{\circ}/A \in A\}$

- A vector topology τ on E is called polar topology if there exists a family \mathcal{A} of $\sigma(F, E)$ -bounded subsets of F which has the properties (a), (b) and (c), such that τ is a polar topology of \mathcal{A} -convergence.
- If τ is a polar topology of \mathcal{A} -convergence on E, it is determined by the family of n.a seminorms $(p_A)_{A \in \mathcal{A}}$, where $p_A(x) = \sup \{ |\langle x, y \rangle| / y \in A \} ([10], p. 277)$.
 - If \mathcal{A} is the family of all subsets of F that are:
- 1. Absolutely K-convex, weakly bounded and weakly c-compacts, we have the c-compact topology $\tau_c(E, F) = \tau_c$,
- 2. Absolutely convex and $\sigma(F, E)$ –compact, we have the Mackey topology $\tau_m(E, F) = \tau_m$,
- 3. $\sigma(F, E)$ -bounded and E-closed, we have the E- closed topology $\tau_e(E, F) = \tau_e$.
- 9. A locally K-convex topology τ on E is called compatible with the duality $\langle E, F \rangle$ or (E, F) compatible if, F is isomorphic to the topological dual of E provided with the topology τ . $\sigma(E, F)$ is the smallest of (E, F) compatible topology.
- A sequence $(e_n, f_n)_n$ of $E \times F$ is called biorthogonal if $\langle e_n, f_n \rangle = \delta_{nm}$, for all n, m where δ_{nm} is the Kronecker delta.
- 10. The space of all sequences in K is denoted by ω , it is provided with the product topology τ_{ω} . A linear subspace of ω is called a sequence space.

 φ , c_0 and l^{∞} are respectively, the space of all sequences in K with only finitely many non-zero terms, the space of the sequences in K converging to zero and the space of the bounded sequences in K.

- for all $n \ge 1$, $e^n = (\delta_{nm})_m$.
- Let $A \subseteq \omega$, the β -dual of A is the subset A^{β} of ω defined as

$$A^{\beta} = \left\{ \lambda = (\lambda_i) \in \omega / \lim_i \lambda_i \alpha_i = 0, \text{ for all } \alpha = (\alpha_i)_i \in A \right\}.$$

- A is called β -perfect (or perfect) if $A = A^{\beta\beta}$.
- A is solid if whenever $(a_n)_n \in A$ and $(\lambda_n)_n \in \omega$ such that $|\lambda_n| \leq 1$ for each n, then $(\lambda_n a_n)_n \in A$. The spaces ω, φ and c_0 are solids.
- The smallest solid subset of ω containing A is called the solid hull of A, it is denoted by \hat{A} ; and we have
 - $\hat{A} = \{ (\lambda_n a_n)_n / (a_n)_n \in A \text{ and } (\lambda_n)_n \in \omega : |\lambda_n| \le 1 \text{ for all } n \ge 1 \}.$
- Let X be a sequence space in K; $A \subset X$ is called solid in X if $\hat{A} \cap X = A$. $\hat{A} \cap X$ is called the solid hull of A in X.
- A topology on a vector space X is called solid if there exists in X a fundamental system of zero neighbourhoods consisting of solids subsets in X.
- 11. A G-space is a locally K-convex space (E, τ) such that E' is $\sigma(E', E)$ sequentially complete and $\tau = \tau_c$ $(resp.\tau_e, \tau_m)$ if K is spherically complete, (resp. not spherically complete, local). In the last case, we find the notion of G-space given and studied by N. De Grande-De Kimpe in [11] in the classical case $(K = \mathbb{R} \text{ or } K = \mathbb{C})$.

3. The natural topology in a perfect sequence spaces

Let Λ be a sequence space over K containing φ , we consider the duality $\langle \Lambda, \Lambda^{\beta} \rangle$ defined by: $((\lambda_n)_n, (\mu_n)_n) \longmapsto \langle (\lambda_n)_n, (\mu_n)_n \rangle = \sum_{n=1}^{\infty} \lambda_n \mu_n$ for every $(\lambda_n)_n \in \Lambda$ and $(\mu_n)_n \in \Lambda^{\beta}$.

For every $\mu = (\mu_n)_n \in \Lambda^{\beta}$, let \hat{p}_{μ} the n.a seminorm defined as $\hat{p}_{\mu}(\lambda) = \sup_{n} |\lambda_n \mu_n|$, For every $\lambda = (\lambda_n)_n \in \Lambda$.

We call the locally K-convex topology on Λ determined by the family of seminorms $(\hat{p}_{\mu})_{\mu \in \Lambda^{\beta}}$ the natural topology; it will be denoted by Na.

Remark 1. The weak topology σ on Λ is weaker than the natural topology Na.

Proposition 2. If Λ is perfect, then it is weakly sequentially complete.

Proof. ([25], 5.2, p. 1550).

Proposition 3. If Λ is perfect then every σ -bounded subset of Λ is τ_b -bounded, where τ_b is the strong topology $\tau_b(\Lambda, \Lambda^{\beta})$ on Λ .

Proof. ([8], proposition 8, p. 476). \blacksquare

Corollary 1. If Λ is perfect, all polars topologies on Λ yield the same bounded sets.

Lemma 1. The solid hull of a finite subset of Λ^{β} is σ -bounded.

Proof. Obvious.

Lemma 2. Let A be a σ -bounded and solid subset of Λ^{β} , then the polar of A in the duality $\langle \Lambda, \Lambda^{\beta} \rangle$ is given by $A^{\circ} = \{ \lambda \in \Lambda / \hat{p}_{\mu} (\lambda) \leq 1, \text{ for all } \mu \in A \}$.

Proof. ([8], proposition 1, p. 472). \blacksquare

Proposition 4. The natural topology on Λ is a polar topology.

Proof. Obvious.

Remark 2. The natural topology is a solid topology; in fact it is the coarsest of the polar and solid topologies on Λ .

Proposition 5. If Λ is perfect, the natural topology Na is compatible with the duality $\langle \Lambda, \Lambda^{\beta} \rangle$.

Proof. The Na topology is polar and for every $\mu \in \Lambda^{\beta}$, $\left(\left\{\hat{\mu}\right\}\right)^{\circ} = \left[K_c\left(\overline{\left\{\hat{\mu}\right\}}^{\sigma(\Lambda^{\beta},\Lambda)}\right)\right]^{\circ}$ [2], corollary 4.3, p. 233' Then, if we take $\mathcal{A} = \left\{K_c\left(\overline{\hat{A}}^{\sigma(\Lambda^{\beta},\Lambda)}\right) / A \subset \Lambda^{\beta} \text{ and A is finite}\right\}$ so Na is a polar topology of \mathcal{A} -convergence, where \mathcal{A} is formed by a $\sigma\left(\Lambda^{\beta},\Lambda\right)$ – bounded and Λ -closed subsets of Λ^{β} (proposition 1). Then by [2], theorem 4.3, p. 233 the natural topology Na is compatible. \blacksquare

Remark 3. For every $\mu \in \Lambda^{\beta}$, $\overline{\Gamma(\{\hat{\mu}\})}$ is weakly-c-compact if K is spherically complete and weakly compact if K is local.

Proposition 6. If Λ is perfect, then it is complete under any polar solid topology.

Proof. Let τ be a solid polar topology of \mathcal{A} -convergence on Λ ; we consider $(\lambda^i)_{i\in I}$ as a Cauchy-net in (Λ, τ) .

Let $A \in \mathcal{A}$, there exists $i_0 \in I$ such that $\lambda^i - \lambda^j \in A^\circ$, for all $i, j \geq i_0$; so we have (1) $\sup_{\alpha = (\alpha_n)_n \in A} \sup_n \left| \alpha_n \left(\lambda_n^i - \lambda_n^j \right) \right| \leq 1$, for all $i, j \geq i_0$ (lemma 2).

Then for every n, $(\lambda_n^i)_{i\in I}$ is a Cauchy-net in K, so there exists $\lambda_n \in K$ such that $\lambda_n = \lim \lambda_n^i$. Therefore, from (1) we obtain:

(2)
$$\sup_{\alpha=(\alpha_n)_n\in A} \sup_n \left| \alpha_n \left(\lambda_n^i - \lambda_n \right) \right| \le 1, \text{ for all } i \ge i_0.$$

Let $\alpha = (\alpha_n)_n \in \Lambda^{\beta}$, there exists $A \in \mathcal{A}$ such that $\alpha \in A$ and we have for all $n \geq 1, |\alpha_n \lambda_n| \leq \max(|\lambda_n^{i_0} \alpha_n|, |(\lambda_n^{i_0} - \lambda_n) \alpha_n|)$.

Hence $\lambda = (\lambda_n)_n \in \Lambda^{\beta\beta} = \Lambda$ (Λ is perfect) and by (2) we have $\lambda = \lim_{i \to \infty} \lambda^i$ in (Λ, τ) .

Proposition 7. Let A be a subset of Λ ; if A is Na-bounded then \hat{A} is Na-bounded.

Proof. Obvious.

Proposition 8. Suppose that Λ is perfect and let τ be a polar topology on Λ and A be a subset of Λ . If A is τ -bounded, then \hat{A} is τ -bounded.

Proof. A is τ -bounded \Rightarrow A is Na-bounded (corollary 1 and proposition 4) \Rightarrow \hat{A} is Na-bounded (proposition 7) \Rightarrow \hat{A} is τ -bounded (corollary 1 and proposition 4).

Corollary 2. τ_b is a solid topology.

Proof. Λ^{β} is perfect, then for every $A \subset \Lambda^{\beta}$, A is σ -bounded $\iff \hat{A}$ is σ -bounded.

Lemma 3. Let E and F be a locally K-convex spaces and A a compactoid subset of E. If $(f_n)_{n\geq 1}$ is an equicontinuous sequence of linear mappings from E to F pointwise converging to a mapping f, then $(f_n)_{n\geq 1}$ converges to f uniformly on A.

Proof. ([8], proposition 13, p. 477).

Remark 4. The lemma before is true if we replace compactoid by precompact (if K is local) or bounded and c-compact (if K is spherically complete).

Proposition 9. Let A be a compactoid subset of (Λ, Na) . Then for every $\alpha = (\alpha_n)_n \in \Lambda^{\beta}$, $\lim_k |\alpha_k| \sup_{\lambda \in A} |\lambda_k| = 0$.

Proof. Let $\alpha = (\alpha_n)_n \in \Lambda^{\beta}$; for every $n \in \mathbb{N}$, we consider $\alpha^n = \alpha_n e^n$ with $e^n = (\delta_{nm})_m$. Then for every $\mu = (\mu_n)_n \in \Lambda$, $\hat{p}_{\mu}(\alpha^n) = |\mu_n \alpha_n| \xrightarrow{n \to \infty} 0$, so $\lim_{n \to \infty} \alpha^n = 0$ in (Λ^{β}, Na) . On the other hand $(\alpha^n)_n$ is Na-equicontinuous ([8], proposition 3, p. 474); then according to lemma before $(\alpha^n)_n$ converges to 0 uniformly on A.

Remark 5. Suppose that K is spherically complete and let τ be a locally K-convex topology compatible with the duality $\left\langle \Lambda, \Lambda^{\beta} \right\rangle$ on Λ and A an absolutely K-convex bounded and c-compact subset of Λ in (Λ, τ) . Then for every $\alpha \in \Lambda^{\beta}$, $\lim_{k} |\alpha_{k}| \sup_{\lambda \in A} |\lambda_{k}| = 0$.

Proof. Remark 4, proposition 5, [36] theorem 4.21 and [7] proposition 3.

Proposition 10. The sequence $(e^n)_n$ is a Schauder basis of (Λ, Na) .

Proof. Let $\lambda = (\lambda_n)_n \in \Lambda$, then for every $\mu = (\mu_n)_n \in \Lambda^{\beta}$, $\hat{p}_{\mu}(\lambda_i e^i) = |\lambda_i \mu_i| \xrightarrow{i \to \infty} 0$. Therefore $\sum_i \lambda_i e^i$ converges in (Λ, Na) and so every element

 $\lambda = (\lambda_n)_n \in \Lambda$ can be written uniquely as $\lambda = \sum_{n=1}^{\infty} \lambda_n e^n$. On the other hand, for every $n \in \mathbb{N}$, $e^n \in \Lambda^{\beta}$ and we have $\hat{p}_{e^n}(\lambda) = |\lambda_n|$ for all $\lambda = (\lambda_n)_n \in \Lambda$, hence the maps $\lambda = \sum_{i=1}^{\infty} \lambda_i e^i \longmapsto \lambda_n$ is Na-continuous.

Theorem 1. Suppose that K is spherically complete and Λ is perfect. A subset A of Λ is compactoid in Λ_{Na} if, and only if, it is a subset of the solid hull of a singleton of Λ .

Proof. \Longrightarrow] Let A be a compactoid subset of Λ_{Na} . Let $\varrho > 1$ and $\lambda = (\lambda_n)_n \in \omega$ such that $|\lambda_n| = \varrho^n$ for all $n \ge 1$. A is compactoid in Λ_{Na} , so it is Na-bounded, and therefore $\sup_{(\alpha_i)_i \in A} |\alpha_i| < +\infty$, for all $i \geq 1$, there exists $n_i \geq 1$ such that $\varrho^{n_i-1} \leq \sup_{(\alpha_i) \in A} |\alpha_n| \leq \varrho^{n_i}$.

Let $\mu = (\mu_i)_i$ the element of ω given by $\mu_i = \lambda_{n_i}$ for all $i \geq 1$, then for every $\alpha = (\alpha_i)_i \in \Lambda^{\beta}$ we have: for all $i \geq 1$,

$$|\mu_i \alpha_i| \le |\alpha_i| \left(\varrho^{n_i} - \sup_{(\gamma_i) \in A} |\gamma_i| \right) + |\alpha_i| \sup_{(\gamma_i) \in A} |\gamma_i| \le \varrho$$

 $|\alpha_i| \sup_{(\gamma_i) \in A} |\gamma_i|$.

Now, $\lim_{i} |\alpha_{i}| \sup_{(\gamma_{i})_{i} \in A} |\gamma_{i}| = 0$ (proposition 9), hence $\lim_{i} \mu_{i} \alpha_{i} = 0$. Then $\mu \in \Lambda^{\beta\beta} = \Lambda$ On the other hand, if $\alpha = (\alpha_{i})_{i} \in A$, we have $|\alpha_{i}| \leq |\mu_{i}|$, for every $i \geq 1$, hence $\alpha \in {\hat{\mu}}$.

 \Leftarrow It suffices to prove that $\{\hat{\lambda}\}$ is compactoid in Λ_{Na} , for every $\lambda \in \Lambda$. Let $\lambda = (\lambda_n)_n$ an element of Λ , then for every $\alpha = (\alpha_n)_n$ in Λ^{β} , there exists $n_0 \in \mathbb{N}$ such that $|\lambda_n \alpha_n| \leq 1$ for all $n > n_0$. We put $\lambda^i = \lambda_i \ e^i$, for all i, $1 \leq i \leq n_0$.

If
$$\mu = (\mu_i \lambda_i)_i$$
 is an element of $\{\hat{\lambda}\}, \mu = \sum_{i=1}^{\infty} \mu_i \lambda_i e^i = \sum_{i=1}^{n_0} \mu_i \lambda^i + \sum_{i>n_0} \mu_i \lambda_i e^i$.

Now,
$$\hat{p}_{\alpha}\left(\sum_{i>n_0}\mu_i\lambda_ie^i\right) = \sup_{i>n_0}|\mu_i\lambda_i\alpha_i| \le 1$$

So $\mu \in \Gamma\left(\lambda^1, \lambda^2, ..., \lambda^{n_0}\right) + B_{\hat{p}_{\alpha}}\left(0, 1\right)$, where $B_{\hat{p}_{\alpha}}\left(0, 1\right) = \left\{\lambda / \hat{p}_{\alpha}\left(\lambda\right) \le 1\right\}$.
Then $\left\{\hat{\lambda}\right\} \subset \Gamma\left(\lambda^1, \lambda^2, ..., \lambda^{n_0}\right) + B_{\hat{p}_{\alpha}}\left(0, 1\right)$.

Remarks 1. 1. N. De Grande-De Kimpe gave an analogue proposition of theorem in which she characterize the weakly c-compact subsets ([8], proposition 15, p. 478). This proposition is in fact true for all compatible topologies with the duality $\langle \Lambda, \Lambda^{\beta} \rangle$ in particular for the natural topology Na

2.
$$K_c\left(\overline{\{\hat{\mu}\}}^{\sigma(\Lambda,\Lambda^{\beta})}\right)$$
 is compactoid for every field K .

Consequently the solid hull of a bounded subset which is absolutely K- convex and c-compact of Λ is also bounded and c-compact for every compatible topology.

Corollary 3. i. For every $\lambda \in \Lambda^{\beta}$, $\{\hat{\lambda}\}$ is compactoid in (Λ^{β}, Na) for every field K.

ii. Suppose that Λ is perfect and K is spherically complete and let A be a subset of Λ . Then A is compactoid in Λ_{Na} if, and only if, there exists a sequence $(\alpha^n)_n$ converging to zero in Λ_{Na} such that $A \subset \overline{\Gamma(\alpha^1, \alpha^2, ..., \alpha^n, ...)}$.

Proof. i. Λ^{β} is perfect; it suffices to use the theorem 1.

ii. Let $\lambda = (\lambda_n)_n \in \Lambda$ such that $A \subset \{\hat{\lambda}\}$ (theorem 1). We put $\alpha^n = \lambda_n e^n$ for all $n \geq 1$, then for every $\mu = (\mu_n)_n \in \Lambda^{\beta}$ we have $\hat{p}_{\mu}(\alpha^n) = |\mu_n \lambda_n| \xrightarrow{n \to \infty} 0$, so the sequence $(\alpha^n)_n$ is converging to zero in Λ_{Na} . On the other hand for every $a = (a_n)_n \in A$, $a \in \{\hat{\lambda}\}$, therefore there exists $(\mu_n)_n \in \Lambda$

 ω such that $|\mu_n| \leq 1$ for all n and $a = (\mu_n \lambda_n)_n$; so $a = \sum_{n=1}^{\infty} \mu_n \alpha^n$ (proposition

10). Then $a \in \overline{\Gamma(\alpha^1, \alpha^2, ..., \alpha^n, ...)}$.

Conversely, suppose that $A \subset \overline{\Gamma}(\alpha^1, \alpha^2, ..., \alpha^n, ...)$ where $(\alpha^n)_n$ converges to zero in Λ_{Na} . Let U be a zero-neighbourhood in Λ_{Na} , then there is $n_0 \in I\!\!N$ such that for all $n > n_0$, $\alpha^n \in U$. So $\Gamma(\alpha^1, \alpha^2, ..., \alpha^n, ...) \subset \Gamma(\alpha^1, \alpha^2, ..., \alpha^{n_0}) + U$, (we can choose U absolutely K-convex and open). Then $\overline{\Gamma}(\alpha^1, \alpha^2, ..., \alpha^n, ...) \subset \Gamma(\alpha^1, \alpha^2, ..., \alpha^{n_0}) + U$, because $\Gamma(\alpha^1, \alpha^2, ..., \alpha^{n_0}) + U$ is Na-closed.

Characterization of the natural topology a- K is spherically complete

Theorem 2. If Λ is perfect, then the natural topology on Λ is the polar topology of \mathcal{A} -convergence, where \mathcal{A} is the family of all compactoid subsets of (Λ^{β}, Na) .

Proof. Let \mathcal{A} be the family of all compactoid subsets of $\left(\Lambda^{\beta}, Na\right)$ then for every $A \in \mathcal{A}$, A is σ – bounded and \mathcal{A} satisfies the conditions (a), (b) and (c) of 8. Let τ be the polar topology of \mathcal{A} – convergence on Λ ; then $\tau = Na$, (theorem 1).

Theorem 3. If Λ is perfect, then the natural topology on Λ is the polar topology of \mathcal{A} -convergence where \mathcal{A} is the family of all absolutely K-convex, bounded and c-compact subsets of (Λ^{β}, Na) .

Proof. The same as theorem 2 and apply remarks 1.

Remark 6. If K is spherically complete and Λ is perfect then $Na = \tau_c$; where τ_c is the c-compact topology on Λ . And for every topology τ on Λ , τ is compatible with the duality $\langle \Lambda, \Lambda^{\beta} \rangle$ if, and only if, $\sigma \leq \tau \leq Na$.

\mathbf{b} - K is local

If K is local, then [31], proposition 1 and [7], proposition 2, p. 177 induce that all results before still hold when the word absolutely K-convex, bounded and c-compact (or compactoid) is replaced by absolutely K-convex and compact; and the characterization of the natural topology became:

Theorem 4. If Λ is perfect, then the natural topology on Λ is the polar topology of \mathcal{A} -convergence where \mathcal{A} is the family of all absolutely K-convex and compact subsets of (Λ^{β}, Na) .

c-K is not spherically complete

Theorem 5. If Λ is perfect, then the natural topology on Λ is the polar topology of \mathcal{A} -convergence where

$$\mathcal{A} = \left\{ K_c \left(\overline{\hat{A}}^{\sigma(\Lambda^{\beta}, \Lambda)} \right) / A \subset \Lambda^{\beta} \text{ and } A \text{ is finite} \right\}.$$

Proof. By proposition 5.

4. Locally K-convex spaces with a Schauder basis and perfect sequence spaces

Let (E,τ) be a locally K-convex space where τ is a polar topology of \mathcal{A} -convergence, $(e_i)_i$ be a Schauder basis of (E,τ) and $(f_i)_i$ the associated weak Schauder basis. If $S_n(x) = \sum_{i=1}^n \lambda_i e_i$ and $T_n(f) = \sum_{i=1}^n \mu_i f_i$ for all $x \in E$, all $f \in E'$ (the topological dual of E) and all $n \geq 1$, $\langle S_n(x), f \rangle = \langle x, T_n(f) \rangle$, for all $n \geq 1$, $x \in E$ and $f \in E'$. For every $A \subset E'$, we put $\widetilde{A} = \{T_n(a) \mid n \in \mathbb{N}; \ a \in A\}$ with $T_0 = id_{E'}$ and for every $A \subset E$ we put $S(A) = \{x \in A/S_n(x) \in A, \ for \ all \ n \geq 1\}$. We define also \widetilde{A} for $A \subset E$ and S(A) for $A \subset E'$. N. De Grande-De Kimpe has defined the topology $\widetilde{\tau}$ of \widetilde{A} -convergence where $\widetilde{A} = \{\widetilde{A}/A \in \mathcal{A}\}$, and she gave a characterization of this topology ([10], proposition 1.2, p. 278). We enhance this result in theorem 6, p. 19.

Remarks 2. 1. $\widetilde{p}_{A}(x) = \sup_{n} p_{A}\left(\sum_{i=1}^{n} \langle x, f_{i} \rangle e_{i}\right)$ for all $A \in \mathcal{A}$ for all $x \in E$; in the case where F = E', $p_{\widetilde{A}}(x) = \widetilde{p}_{A}(x) = \sup_{n} p_{A}(S_{n}(x)) = \sup_{n} p_{A}(f_{n}(x).x_{n})$ ([10], proposition 1.1, p. 278).

2. The $\widetilde{\sigma}$ - topology associated to the weak topology $\sigma = \sigma\left(E, E'\right)$ on E is defined by the family of seminorms n.a $(p_f)_{f \in E'}$, where $p_f(x) = \sup_{x} |\langle S_n(x), f \rangle|$, for every $x \in E$ and $f \in E'$; and we have $\widetilde{\sigma} \leq \widetilde{\tau}$.

Example 1. Let Λ be a perfect sequence space over K. The topology $\tilde{\sigma} = \tilde{\sigma}\left(\Lambda, \Lambda^{\beta}\right)$ associated to $\sigma = \sigma\left(\Lambda, \Lambda^{\beta}\right)$ is defined by the family of seminorms $n.a\ (p_{\mu})_{\mu \in \Lambda^{\beta}}$, where $p_{\mu}(\lambda) = \sup_{n} \left|\sum_{i=1}^{n} \lambda_{i} \mu_{i}\right| = \sup_{n} \left|\lambda_{n} \mu_{n}\right|$, for every $\lambda = (\lambda_{i})_{i} \in \Lambda$ and $\mu = (\mu_{i})_{i} \in \Lambda^{\beta}$. Then the topology $\tilde{\sigma}$ is exactly the natural topology studied in §. 3.

We Consider the two linear mappings $\Phi: E \longrightarrow \Lambda$, $x = \sum_{i=1}^{\infty} \lambda_i e_i \longmapsto (\lambda_i)_i$ and $\Psi: E' \longrightarrow \Delta$, $f = \sum_{i=1}^{\infty} \mu_i f_i \longmapsto (\mu_i)_i$; where Λ and Δ are the sequence spaces defined as $\Lambda = \left\{ (\lambda_i)_i \in \omega \ / \ \sum_{i=1}^{\infty} \lambda_i e_i \ converges \ in \ (E, \tau) \right\}$ and $\Delta = \left\{ (\mu_i)_i \in \omega \ / \ \sum_{i=1}^{\infty} \mu_i f_i \ converges \ in \ E'_{\sigma} \right\}$. Φ and Ψ are algebraic isomorphisms.

Proposition 11. $\Lambda \subset \Delta^{\beta}$ and $\Delta \subset \Lambda^{\beta}$.

Proposition 12. i.
$$\Phi$$
 is $\left(\sigma\left(E,E'\right),\sigma\left(\Lambda,\Delta\right)\right)$ – continuous; ii. Ψ is $\left(\sigma\left(E',E\right),\sigma\left(\Delta,\Lambda\right)\right)$ – continuous.

Proof. i. Let $\mu \in \Delta$, we consider $V = \{\lambda = (\lambda_i)_i \in \Lambda/ |\langle \lambda, \mu \rangle| \leq 1\}$. We put $f = \psi^{-1}(\mu)$, then $f \in E'$. We Consider $U = \{x \in E / |\langle x, f \rangle| \leq 1\}$; U is a zero neighbourhood in $(E, \sigma(E, E'))$, and we have $\Phi(U) = \{\lambda = \Phi(x) \in E / |\langle x, f \rangle| \leq 1\} = V$.

If
$$x = \sum_{i=1}^{\infty} \lambda_i e_i$$
 and $\mu = (\mu_i)_i$, then $\Phi(x) = (\lambda_i)_i$ and $f = \sum_{i=1}^{\infty} \mu_i f_i$.

Therefore $\langle x, f \rangle = \sum_{i=1}^{\infty} \lambda_i \mu_i = \langle \Phi(x), \mu \rangle$.

ii. Same proof as for i.

Proposition 13. If Φ^* and Ψ^* are the algebraic adjoints of Φ and Ψ respectively, then $\Phi^* = \Psi^{-1}$ and $\Psi^* = \Phi^{-1}$.

Proof. Φ^* take his values in E' ([30], p. 128). For every $x \in E$ and $\mu \in \Delta$ we have $\langle x, \Phi^*(\mu) \rangle = \langle \Phi(x), \mu \rangle = \sum_{i=1}^{\infty} \lambda_i \mu_i$, where $x = \sum_{i=1}^{\infty} \lambda_i e_i$ and $\mu = (\mu_i)_i$. So $\langle x, \Phi^*(\mu) \rangle = \langle x, \Psi^{-1}(\mu) \rangle$. Then $\Phi^* = \Psi^{-1}$. The same for $\Psi^* = \Phi^{-1}$.

Proposition 14. a. For every $A \subset E$, $(\Phi(A))^{\circ} = \Psi(A^{\circ})$; b. For every $B \subset E'$, $(\Psi(B))^{\circ} = \Phi(B^{\circ})$.

Proof. a. Let $A \subset E$, then $(\Phi(A))^{\circ} = (\Phi^{*})^{-1}(A^{\circ})$ [[2], proposition 2.8, p. 225].

Now $\Phi^* = \Psi^{-1}$ (proposition 13), so $(\Phi(A))^{\circ} = (\Psi^{-1})^{-1}(A^{\circ}) = \Psi(A^{\circ})$.

b. The same proof. \blacksquare

The topology τ_{Φ} defined on Λ by Φ has a zero-neighbourhood base consisting of the family $(\Phi(A^{\circ}))_{A \in \mathcal{A}}$ ([6], II. 29), τ_{Φ} is a polar topology of $\Psi(\mathcal{A})$ –convergence, where $\Psi(\mathcal{A}) = \{\Psi(A) / A \in \mathcal{A}\}$ (proposition 14).

Examples 1. 1. If we consider the space E_{σ} , then the topology σ_{Φ} has a zero-neighbourhood base the set $\{(\psi(A))^{\circ} / A \subset E' \text{ and } A \text{ is finite}\}$.

For
$$A = \left\{ (f^i)_{1 \leq i \leq n} / f^i \in E' \right\}$$
, put $f^i = \sum_{j=1}^{\infty} \mu^i_j f_j$, for every $i, 1 \leq i \leq n$; $(\Psi(A))^{\circ} = \left(\left\{ \left(\mu^i_j \right)_{j \geq 1}, \ 1 \leq i \leq n \right\} \right)^{\circ}$. Hence σ_{Φ} is exactly the weak topology.

2. Let τ be a polar topology of $\mathcal{A}-$ convergence on E and $\widetilde{\tau}$ the associated polar topology, then $\widetilde{\tau}_{\Phi}=(\widetilde{\tau})_{\Phi}$ has $\left[\left(\Psi\left(\widetilde{A}\right)\right)^{\circ}\right]_{A\in\mathcal{A}}$ as a zero-neighbourhood base. For every $A\in\mathcal{A},\ \Psi\left(\widetilde{A}\right)=\widetilde{\Psi\left(A\right)}$, then $\widetilde{\tau}_{\Phi}$ is defined by the family of n.a seminorms $\left(\widetilde{p}_{\Psi(A)}\right)_{A\in\mathcal{A}}$, where :

$$\widetilde{p}_{\Psi(A)}\left(\left(\lambda_{i}\right)_{i\geq1}\right) = \sup_{n} p_{\psi(A)}\left(\lambda_{1},...,\lambda_{n},0,...\right) = \sup_{n} \sup_{\mu=(\mu_{i})\in A} \left|\sum_{i=1}^{n} \lambda_{i}\mu_{i}\right| = \sup_{\mu=(\mu_{i})\in A} \widetilde{p}_{\mu}\left(\left(\lambda_{i}\right)_{i\geq1}\right).$$

3. The direct image topology of $\tilde{\sigma}$ with Φ on Λ , noted $\tilde{\sigma}_{\Phi}$, is defined with the family of semi-norms n.a $\left(\widetilde{p}_{\Psi(f)}\right)_{f\in E'}$, where $\widetilde{p}_{\Psi(f)}\left(\left(\lambda_{i}\right)_{i}\right)=$ $\widetilde{p}_{\mu}\left((\lambda_{i})_{i}\right),\ (\lambda_{i})_{i}\in\Lambda\ \text{and}\ \mu=\Psi\left(f\right).$ Then $\widetilde{\sigma}_{\Phi}$ is exactly the natural topology on Λ .

Some properties of the topology $\tilde{\sigma}$

Lemma 4. i. If E_{σ} is sequentially complete then $\Lambda = \Delta^{\beta}$; ii. If E'_{σ} is sequentially complete then $\Delta = \Lambda^{\beta}$; iii. If E_{σ} and E'_{σ} are sequentially complete then Λ is perfect.

i. $\Lambda \subset \Delta^{\beta}$ (proposition 11).

Let
$$\lambda = (\lambda_i)_i$$
 an element of Δ^{β} , so $\lambda = \lim_{n \to \infty} \sum_{i=1}^n \lambda_i e^i$ in $\left(\Delta^{\beta} \sigma \left(\Delta^{\beta} \Delta^{\beta\beta}\right)\right) = 1$

 Δ_{σ}^{β} where $e^{i} = (\delta_{ij})_{j}$ for all $i \geq 1$, $(\Delta^{\beta} \text{ is perfect})$. Then $(e^{i})_{i}$ is a Schauder

basis of Δ_{σ}^{β} (propositions 5, 10 and remark 1), so $\lambda = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda_{i} e^{i}$ in

$$\left(\Delta^{\beta}, \sigma\left(\Delta^{\beta}, \Delta\right)\right)$$
. $\left(\sum_{i=1}^{n} \lambda_{i} e^{i}\right)_{n}$ is a Cauchy-sequence in $(\Lambda, \sigma(\Lambda, \Delta))$ which

is sequentially-complete (examples 1. 1), then $\lambda = \lim_{n \to \infty} \sum_{i=1}^{n} \lambda_i e^i$ in $(\Lambda, \sigma(\Lambda, \Delta))$ and so $\lambda \in \Lambda$.

ii. $\Delta \subset \Lambda^{\beta}$ (proposition 11). Let $\lambda = (\lambda_i)_i \in \Lambda^{\beta}$, for every $x \in E$, there exists $\alpha = (\alpha_i)_i \in \Lambda$ such that $x = \sum_{i=1}^{\infty} \alpha_i e_i$. for all $n \geq 1$, $\lambda_n f_n(x) = \lambda_n \alpha_n \xrightarrow{n \to \infty} 0$; then $\sum_{i \geq 1} \lambda_j f_j$ is convergent in E'_{σ} ; and so $\lambda = (\lambda_i)_i \in \Delta$.

Proposition 15. i. If E_{σ} is sequentially complete then $E_{\widetilde{\sigma}}$ is complete; ii. If E'_{σ} is sequentially complete then $E'_{\widetilde{\sigma}}$ is complete; where $E_{\widetilde{\sigma}} = (E, \widetilde{\sigma}(E, E'))$ and $E'_{\widetilde{\sigma}} = (E', \widetilde{\sigma}(E', E))$.

i. Suppose that E_{σ} is sequentially complete, then by lemma 4 $\Lambda = \Delta^{\beta}$ and $(\Lambda, \tilde{\sigma}(\Lambda, \Delta^{\beta\beta}))$ is complete (proposition 6 and remark 2), then $(\Lambda, \widetilde{\sigma}(\Lambda, \Delta))$ is complete and $E_{\widetilde{\sigma}}$ is also complete (examples 1. 3). ii. Same proof as for i. ■

Proposition 16. If E_{σ} is sequentially complete and has an equicontinuous Schauder basis, then E is isomorphic to a closed subspace of some power of K.

Proof. Suppose that E_{σ} is sequentially complete and admits an equicontinuous Schauder basis, then the topologies $\sigma\left(E,E'\right)$ and $\tilde{\sigma}\left(E,E'\right)$ coincides on E, then by proposition 15 $\left(E,\sigma\left(E,E'\right)\right)$ is complete; and the proposition follows ([7], proposition 7, p. 179).

Proposition 17. If E_{σ} and E'_{σ} are sequentially complete and E has a weak Schauder basis $(e_i)_{i\geq 1}$, then $\tilde{\sigma}$ is the smallest compatible topology on E for which $(e_i)_i$ is an equicontinuous Schauder basis.

Proof. E'_{σ} is sequentially complete, then $\Delta = \Lambda^{\beta}$ (lemma 3.1) and so $\left(\Lambda, \widetilde{\sigma}\left(\Lambda, \Lambda^{\beta}\right)\right)' = \Delta$, since $\left(\Lambda, \widetilde{\sigma}\left(\Lambda, \Lambda^{\beta}\right)\right)' = \Lambda^{\beta}$. Consequently $(E, \widetilde{\sigma}\left(E, E'\right))' = E'$ (example 1. 3) and the result follows from propositions 15 and [10], proposition 1.2, p. 278.

Compatibility of the $\tilde{\tau}$ -topology

We establish the compatibility and the completeness of $\tilde{\tau}$ by distinguishing the three cases: K is local, K is spherically complete and K is non spherically complete.

a. K is local

Lemma 5. Let E be a topological vector space with an equicontinuous Schauder basis $(e_i)_i$; then for every $A \subset E$ the following are equivalent:

a. A is precompact;

b. (i). for all $i \geq 1$, $p_i(A)$ is precompact and (ii). $\left(\sum_{i=1}^n p_i\right)_n$ converges uniformly on A. Where the p_n are defined in §. 2.

Proof. a \Longrightarrow b For every $i \ge 1$ $p_i(A)$ is precompact $(p_i$ is continuous). On the other hand, the sequence of linear mappings $\left(\sum_{i=1}^n p_i\right)_n$ is equicontinuous and converging pointwise to a mapping id_E and A is compactoid, then $\left(\sum_{i=1}^n p_i\right)_n$ converges uniformly on A (§. 3, lemma 3).

then $\left(\sum_{i=1}^{n} p_{i}\right)_{n}$ converges uniformly on A (§. 3, lemma 3). b \Longrightarrow a Let U be a zero-neighbourhood, then there exists V a neighbourhood of zero and $n_{0} \in \mathbb{N}^{*}$ such that $V + V \subset U$ and $\sum_{n_{0} < i} p_{i}(a) \in V$

, for all $a \in A$. On the other hand $B = \sum_{i=1}^{n_0} p_i(A)$ is precompact, then

there exist $b_1, b_2, ..., b_p \in E$ such that $B \subset \bigcup_{i=1}^p (b_i + V)$. Then $A \subset B + V \subset \bigcup_{i=1}^p (b_i + V) + V \subset \bigcup_{i=1}^p (b_i + U)$.

Lemma 6. For every $n \geq 1$, the mapping $p_n : E'_{\sigma} \longrightarrow E'_{\widetilde{\sigma}}$, $\sum_{i=1}^{\infty} \mu_i f_i \longmapsto \mu_n f_n$, is continuous; where $(f_i)_i$ is the weak Schauder basis associated to $(e_i)_i$.

Proof. Let $n \geq 1$ and $x \in E$, then for every $f = \sum_{i=1}^{\infty} \mu_i f_i = \sum_{i=1}^{\infty} \langle e_i, f \rangle f_i$ we have: $\widetilde{p}_x(p_n(f)) = \sup_m |\langle x, T_m(p_n(f)) \rangle| = |\langle x, p_n(f) \rangle| = |\langle x, f_n \rangle| |\langle x_n, f \rangle|$ Take $y = \langle x, f_n \rangle x_n$, then $y \in E$ and we have $p_y(f) = \widetilde{p}_x(p_n(f))$.

Remark 7. Lemma 6 is true for every K.

Lemma 7. Let $A \in \mathcal{A}$, then the statements **a.** and **b.** are equivalente **a.** A is precompact in $E'_{\widetilde{\sigma}}$;

b. (i). A is precompact in E'_{σ} and (ii). for all $x \in E$, $\lim_{n} \widetilde{p}_{A}(x - S_{n}(x)) = 0$.

Proof. We consider $A \in \mathcal{A}$ such that A is precompact in $E'_{\widetilde{\sigma}}$, then A is precompact in E'_{σ} ($\sigma \leq \widetilde{\sigma}$). On the other hand, for every $x \in E$, we have: $\widetilde{p}_{A}(x - S_{n}(x)) = \sup_{k \in \mathbb{N}} p_{A}(S_{k}(x - S_{n}(x))) = \sup_{f \in A} \widetilde{p}_{x}(f - T_{n}(f)).$

Since $(e_i)_i$ is a Schauder basis of (E, τ) , the sequence $(f_i)_i$ is an equicontinuous Schauder basis of $E'_{\widetilde{\sigma}}$ [9], lemma 3, p. 402 and [10], proposition 1.2, p. 278.

Furthermore A is precompact in $E'_{\widetilde{\sigma}}$, so $(T_n)_n$ converges to $id_{E'}$ uniformly on A in $E'_{\widetilde{\sigma}}$ (§. 3, lemma 3); then $\lim_{n\to\infty}\sup_{f\in A}\widetilde{p}_x\left(f-T_n\left(f\right)\right)=0$ for all $x\in E$, and so $\lim_{n\to\infty}\widetilde{p}_A\left(x-S_n\left(x\right)\right)=0$.

Conversely A is precompact in $E'_{\sigma} \Longrightarrow for \ all \ i \geq 1 \ p_i(A)$ is precompact in $E'_{\widetilde{\sigma}}$ (lemma 6). On the other hand we have $for \ all \ x \in E$ and

all
$$n \ge 1$$
 $\widetilde{p}_A(x - S_n(x)) = \sup_{f \in A} \widetilde{p}_x(f - T_n(f)) = \sup_{f \in A} \widetilde{p}_x\left(f - \sum_{i=1}^n p_i(f)\right).$

So
$$\lim_{n\to\infty} \widetilde{p}_x \left(f - \sum_{i=1}^n p_i \left(f \right) \right) = 0$$
 for all $x \in E$, this means that $\left(\sum_{i=1}^n p_i \right)_n$

converges uniformly to $id_{E'}$ on A in $E'_{\widetilde{\sigma}}$; then by lemma 5, A is precompact in $E'_{\widetilde{\sigma}}$.

Lemma 8. If E' is $\sigma(E', E)$ –sequentially complete, then for every $A \in \mathcal{A}$, the following are equivalent:

- **a.** A is $\widetilde{\sigma}$ -relatively compact;
- **b.** (i). A is relatively compact in E'_{σ} and (ii). for all $x \in E$, $\lim_{n \to \infty} \widetilde{p}_A(x S_n(x)) = 0$.

Proof. Suppose that A is $\widetilde{\sigma}$ -relatively compact in $E'_{\widetilde{\sigma}}$; $\overline{A}^{\widetilde{\sigma}}$ is compact in E'_{σ} ($\sigma \leq \widetilde{\sigma}$). Since $A \subset \overline{A}^{\widetilde{\sigma}}$ and $\overline{A}^{\widetilde{\sigma}}$ is closed in E'_{σ} then $\overline{A}^{\sigma} \subset \overline{A}^{\widetilde{\sigma}}$ and so \overline{A}^{σ} is compact in E'_{σ} . Furthermore by lemma 7 we have (ii).

Conversely, take A such that (i) and (ii) of **b** holds, then A and so \overline{A}^{σ} are precompacts in $E'_{\widetilde{\sigma}}$ (lemma 7). Consequently $\overline{A}^{\widetilde{\sigma}}$ is compact in $E'_{\widetilde{\sigma}}$ ($E'_{\widetilde{\sigma}}$ is complete: proposition 15.ii).

Proposition 18. Let $A \in \mathcal{A}$.

- 1. \widetilde{A} is $\widetilde{\sigma}(E', E)$ precompact;
- 2. If E' is $\sigma(E', E)$ sequentially complete, then
 - i. \widetilde{A} is $\widetilde{\sigma}\left(E', E\right)$ relatively compact;
 - ii. $\Gamma(\widetilde{A})$ is $\sigma(E', E)$ relatively compact.

Proof. Let $A \in \mathcal{A}$.

- 1. \widetilde{A} is $\sigma\left(E',E\right)$ bounded [10], lemma 1.2, p. 277, then it is $\sigma\left(E',E\right)$ relatively compact ([2], proposition 2.3, p. 223) and so \widetilde{A} is precompact in $\left(E',\sigma\left(E',E\right)\right)$. On the other hand for every $x\in E$ $\lim_{n\to\infty}\widetilde{p}_A\left(x-S_n\left(x\right)\right)=0$ $\left(\left(e_i\right)_i$ is a Schauder basis of $\left(E,\widetilde{\tau}\right)$). Therefore, by lemma 7 and remarks 2, \widetilde{A} is precompact in $E'_{\widetilde{\sigma}}$.
- 2. \widetilde{A} is $\sigma(E', E)$ -relatively compact and $\lim_{n\to\infty} \widetilde{p}_A(x S_n(x)) = 0$ for every $x \in E$, then \widetilde{A} is $\widetilde{\sigma}(E', E)$ relatively compact (lemma 8).
- 3. \widetilde{A} is $\widetilde{\sigma}\left(E',E\right)$ —relatively compact, so $B=\overline{\Gamma\left(\widetilde{A}\right)}^{\widetilde{\sigma}}$ is $\widetilde{\sigma}\left(E',E\right)$ —compact because B is a closed in a complete space $E'_{\widetilde{\sigma}}$ (proposition 15 and [30], p. 26). Hence $\Gamma\left(\widetilde{A}\right)$ is $\sigma\left(E',E\right)$ relatively compact in E'_{σ} (lemma 8).

Proposition 19. If (E, τ) has a Schauder basis and E' is $\sigma(E', E)$ – sequentially complete, then $\tilde{\tau}$ is compatible with the duality $\langle E, E' \rangle$.

Proof. We have $\sigma \leq \tilde{\tau}$. On the other hand, $\tilde{\tau}$ is generated by the family $\left(\overline{\Gamma\left(\tilde{A}\right)}^{\sigma\left(E',E\right)}\right)_{A\in\mathcal{A}}$ ([2], §. 3, proposition 3.4, p. 228) and $\overline{\Gamma\left(\tilde{A}\right)}^{\sigma\left(E',E\right)}$ is $\sigma\left(E',E\right)$ – compact for every $A\in\mathcal{A}$, so $\tilde{\tau}\leq\tau_m$, where τ_m is the Mackey topology on E.

b. K is spherically complete

Lemma 9. Let E be a topological K-vector space with an equicontinuous Schauder basis $(e_i)_i$; then for every $A \subset E$ the statements \mathbf{a} and \mathbf{b} are equivalente

a. A is compactoid;

b. (i). for all $i \ge 1$ $p_i(A)$ is compactoid and (ii). $\left(\sum_{i=1}^n p_i\right)_n$ converges uniformly on A.

Proof. Suppose that A is compactoid; then for every $i \geq 1$ $p_i(A)$ is compactoid. On the other hand, $(e_i)_i$ is an equicontinuous Schauder basis, so $\left(\sum_{i=1}^n p_i\right)_n$ converges pointwise to the mapping id_E ; since A is compactoid, this convergence is uniform on A (§. 3, lemma 3).

Conversely let U and V are two zero-neigbourhoods such that $V+V\subset U$, then the convergence of $\left(\sum_{i=1}^n p_i\right)_n$ on A implies the existence of $n_0\in I\!\!N$

such that $\sum_{i=n_0+1}^{\infty} p_i(x) \in V$ for all $x \in A$. On the other hand, (i) of lemma

induces the existence of $x_1,...,x_n \in E$ such that $\sum_{i=1}^{n_0} p_i(A) \subset V + \Gamma(B)$,

where $B = \{x_1, ..., x_n\} \left(\sum_{i=1}^{n_0} p_i(A) \text{ is compactoid} \right)$.

Then for every $x \in A$, $x = \sum_{i=1}^{n_0} \lambda_i e_i + \sum_{i=n_0+1}^{\infty} \lambda_i e_i$

$$= \sum_{i=1}^{n_0} p_i(x) + \sum_{i=n_0+1}^{\infty} p_i(x) \in V + \Gamma(B) + V,$$

so $A \subset U + \Gamma(B)$.

Lemma 10. Let $A \in \mathcal{A}$, then the following are equivalent

- **a.** A is compactoid in $E'_{\widetilde{\alpha}}$;
- **b.** (i). A is compactoid in E'_{σ} and (ii). for all $x \in E \lim_{n \to \infty} \widetilde{p}_A(x S_n(x)) = 0$.

Proof. Same proof as for lemma 7 using lemma 9 and remark 7.

Proposition 20. Let τ be a polar topology of A- convergence on E and $(e_i)_i$ be a Schauder basis of (E, τ) , then for every $A \in A$

- i. \widetilde{A} is $\widetilde{\sigma}$ -compactoid;
- ii. If E' is $\sigma(E', E)$ sequentially complete then
 - **a.** \widetilde{A} is $\widetilde{\sigma}$ relatively-c-compact;
 - **b.** $\Gamma(\widetilde{A})$ is σ -relatively-c-compact.

Proof. i. Let $A \in \mathcal{A}$, then \widetilde{A} is σ -bounded [10], lemma 1.2, p. 277 and, since K is spherically complete, \widetilde{A} is compactoid in E'_{σ} ([31], proposition 18.ii, p. 145). On the other hand for all $x \in E$ $\lim_{n \to \infty} \widetilde{p}_A(x - S_n(x)) = 0$ since $(e_i)_i$ is a Schauder basis of $(E, \widetilde{\tau})$. Then \widetilde{A} is copmactoid in $E'_{\widetilde{\sigma}}$ (lemma 10).

- ii. Let $A \in \mathcal{A}$; then
- **a.** $\overline{\widetilde{A}}^{\widetilde{\sigma}}$ is compactoid in $E'_{\widetilde{\sigma}}$ (by \mathbf{i}) $\Longrightarrow E'_{\widetilde{\sigma}}$ is complete, because E' is $\sigma\left(E',E\right)$ sequentially complete (proposition 15), then $\overline{\widetilde{A}}^{\widetilde{\sigma}}$ is also complete and so it is c-compact in $E'_{\widetilde{\sigma}}$ [31], theorem 9, p. 141.
- $\mathbf{b.} \ \ B = \overline{\Gamma\left(\widetilde{A}\right)}^{\widetilde{\sigma}} \text{is c-compact in } E_{\widetilde{\sigma}}', \text{ then it is } \sigma\left(E', E\right) c \text{compact and } \sigma\left(E', E\right) \text{closed } (\sigma \leq \widetilde{\sigma}) \,, \text{ therefore } \overline{\Gamma\left(\widetilde{A}\right)}^{\sigma\left(E', E\right)} \text{ is } \sigma\left(E', E\right) c \text{compact.}$

Proposition 21. If (E, τ) has a Schauder basis and E' is $\sigma(E', E)$ – sequentially complete, then $\tilde{\tau}$ is compatible with the duality $\langle E, E' \rangle$.

234. ■

The topology $\tilde{\tau}$ is a polar topology of $\mathcal{B}-$ convergence; where $\mathcal{B} = \left(\overline{\Gamma\left(\tilde{A}\right)}^{\sigma\left(E',E\right)}\right)_{A \in \mathcal{A}} \text{ and } \mathcal{A} \text{ is the family which defines the topology } \tau;$ for every $A \in \mathcal{A}$, $\overline{\Gamma\left(\tilde{A}\right)}^{\sigma\left(E',E\right)}$ is $\sigma\left(E',E\right)$ -c-compact in E'_{σ} (proposition 20), then $\tilde{\tau}$ is compatible with the duality $\left\langle E,E'\right\rangle$ [2], theorem 4.4, p.

c. K is not spherically complete

K is not spherically complete $\Longrightarrow K$ is dense \Longrightarrow For every absolutely K- convex A in E', K_c $(A) = \bigcap_{|\lambda| \succ 1} \lambda A \Longrightarrow for all |\mu| \succ 1 \mu K_c$ (A) =

 $K_c(\mu A)$. Then we have the following proposition:

Proposition 22. If (E, τ) has a Schauder basis, then $\tilde{\tau}$ is compatible.

Let \mathcal{A} be a family which defines the topology τ , such that for all $A \in \mathcal{A}$ A is absolutely K- convex; then $K_c\left(\overline{\widetilde{A}}^{\sigma\left(E',E\right)}\right)^{\circ} = \left(\widetilde{A}\right)^{\circ}$ for all $A \in \mathcal{A}$ [2], corollary 4.3, p. 233, so if we take $\beta = \left(K_c\left(\overline{\widetilde{A}}^{\sigma(E',E)}\right)\right)_{A \in \mathcal{A}}, \text{ then } \beta \text{ verify the conditions (a), (b) and (c)}$ of 8. Therefore $\tilde{\tau}$ is a polar topology of β - convergence and its elements are E- closed. Then $\tilde{\tau}$ is compatible [2], theorem 4.3, p. 233.

Completeness of the topology $\tilde{\tau}$

Proposition 23. Let (E,τ) be a locally K-convex space and $(e_i)_i$ be a Schauder basis of (E,τ) . If E and E' are weakly-sequentially complete, then $(E, \tilde{\tau})$ is complete.

Proof. The space $(E, \tilde{\sigma}(E, E'))$ is complete (proposition 15), then by remarks 2 and ([2], theorem 3.2, p. 230) $(E, \tilde{\tau})$ is complete.

The following theorem is a consequence for previous results

Theorem 6. Let (E,τ) be a locally K- convex space with a Schauder basis $(e_i)_i$ such that E_{σ} and E'_{σ} are sequentially complete, then $\tilde{\tau}$ is complete and it is the coarsest compatible topology on E finer than τ for which $(e_i)_i$ is an equicontinuous Schauder basis.

5. The weak basis Problem

Throughout this section we shall assume that (E, τ) has a weak Schauder basis $(e_i)_i$ and the spaces E'_{σ} and E_{σ} are sequentially complete. We then characterize the finest (E, E') –compatible topology on E for which $(e_i)_i$ is a Schauder basis; according to theorem 6, $(e_i)_i$ is equicontinuous for that topology. We shall distinguish three cases: K is local, K is spherically complete or K is not spherically complete.

a. K is local Let $\mathcal{B} = \left\{ B \subset E'/B = \widetilde{B} \text{ and } B \text{ is } \widetilde{\sigma} - precompact \right\}$; it is obviously that \mathcal{B} is not empty and verifies the properties (a), (b) and (c) of 8. Let \mathcal{U} be the polar topology of \mathcal{B} -convergence on E; we have the following propositions

Proposition 24. \mathcal{U} is compatible with the duality $\langle E, E' \rangle$ and $(e_i)_i$ is an equicontinuous Schauder basis of (E, \mathcal{U}) .

E' is $\sigma(E', E)$ – sequentially complete \Longrightarrow for all $B \in \mathcal{B}$, $\overline{\Gamma(B)}^{\sigma\left(E',E\right)}$ is $\sigma\left(E',E\right)$ – compact (proposition 18) $\Longrightarrow \mathcal{U}$ is compatible with the duality $\langle E, E' \rangle$ [2], theorem 4.5, p. 235.

We'll prove that $(e_i)_i$ is a Schauder basis of (E, \mathcal{U}) . $(e_i)_i$ is a weak Schauder basis $\Longrightarrow (f_i)_i$ is a Schauder basis of $(E', \sigma(E', E))$, then $(f_i)_{i\geq 1}$ is an equicontinuous Schauder basis of $(E', \widetilde{\sigma}(E', E))$; therefore $(T_n)_n$ is equicontinuous in $\left(E^{'},\widetilde{\sigma}\left(E^{'},E\right)\right)$ and converges pointwise to the mapping $id_{E'}$, then the convergence is uniformly on every $B \in \mathcal{B}$, this means that for all $x \in E$ $\lim_{n} \sup_{f \in B} \widetilde{p}_{x} \left(f - \sum_{i=1}^{n} p_{i} \left(f \right) \right) = 0.$

For every $x \in E$ and for every $B \in \mathcal{B}$ we have $\sup_{f \in B} \widetilde{p}_x \left(f - \sum_{i=1}^n p_i \left(f \right) \right) =$ $\widetilde{p}_{B}\left(x-S_{n}\left(x\right)\right)$ (lemma 7). Then $\lim_{n}\widetilde{p}_{B}\left(x-S_{n}\left(x\right)\right)=0$ for all $x\in E$ and for all $B \in \mathcal{B}$, and so $(S_n(x))_n$ converges to x in (E,\mathcal{U}) for every $x \in E$. Moreover the associated sequence $(f_i)_i$ of $(e_i)_i$ verifies for all $i \geq 1$ $f_i \in (E, \mathcal{U})'$ (*U* is compatible).

Proposition 25. \mathcal{U} is the finest compatible topology on E for which $(e_i)_i$ is a Schauder basis.

Proof. Let τ be a compatible topology on E such that $(e_i)_i$ be a Schauder basis of (E,τ) . Then $B=\overline{\Gamma\left(\widetilde{A}\right)}^{\sigma\left(E',E\right)}$ is a $\sigma\left(E',E\right)$ – compact of E' (proposition 18) and since $B=\widetilde{B}, B^{\circ}$ is a zero-neighbourhood in (E,\mathcal{U}) ; now $B^{\circ}=\left(\widetilde{A}\right)^{\circ}$, for every $A\in\mathcal{A}$, where \mathcal{A} is a family which defines the topology τ , then $\widetilde{\tau}\leq\mathcal{U}$ and so $\tau\leq\mathcal{U}$.

Proposition 26. A weak Schauder basis $(e_i)_i$ is a Schauder basis for a polar compatible topology on E if, and only if, for every $A \in \mathcal{A}$, \widetilde{A} is $\widetilde{\sigma}(E', E)$ – relatively compact.

Proof. \Longrightarrow] By proposition 18.

 $\Longleftrightarrow] \text{ Suppose that for every } A \in \mathcal{A}, \widetilde{A} \text{ is } \widetilde{\sigma}\left(E', E\right) - \text{relatively compact}, \\ \text{then } \overline{\Gamma\left(\widetilde{A}\right)}^{\sigma\left(E', E\right)} \text{ is } \sigma\left(E', E\right) - \text{ compact (proposition 18), so } \tau \leq U \text{ and } \\ (e_i)_i \text{ is a Schauder basis of } (E, \tau) \text{.} \blacksquare$

Corollary 4. A weak Schauder basis $(e_i)_i$ is a Schauder basis for a polar compatible topology τ on E if, and only if, for every $A \in \mathcal{A}$, \widetilde{A} is $\widetilde{\sigma}(E', E)$ – relatively compact, where \mathcal{A} is a family that define the topology τ .

Proof. τ_m is compatible, then it suffices to use the proposition 26.

Remark 8. If τ is a polar topology of A- convergence on E having a weak Schauder basis $(e_i)_i$, then for every $A \in A$, \widetilde{A} is $\widetilde{\sigma}(E', E)$ - relatively compact.

Proof. E is an OP- space, so $(e_i)_i$ is a Schauder basis of (E,τ) , then according to proposition 18 we have the conclusion.

b. K is spherically complete

Let $\mathcal{N} = \{ N \subset E' / N = \widetilde{N} \text{ and } N \text{ is } \widetilde{\sigma}(E', E) - compactoid \}$; it is obviously that \mathcal{N} is not empty and verifies the properties (a), (b) and (c) of 8. Let \mathcal{V} the polar topology of \mathcal{N} -convergence on E, then we have the following propositions

Proposition 27. The topology V is compatible with the duality $\langle E, E' \rangle$ and $(e_i)_i$ is an equicontinuous Schauder basis of (E, V).

Proof. Same proof as for proposition 24 using the proposition 20 and [2], theorem 4.4, p. 234. \blacksquare

Proposition 28. V is the finest compatible topology on E for which $(e_i)_i$ is a Schauder basis.

Proof. Same proof as for proposition 25 using the proposition 20. ■

Proposition 29. A weak Schauder basis $(e_i)_i$ is a Schauder basis for a polar compatible topology τ on E if, and only if, for every $A \in \mathcal{A}$, \tilde{A} is $\tilde{\sigma}(E', E)$ -relatively c-compact, where A is a family that defines the topològy τ .

Proof. Same proof as for proposition 26 using the proposition 20.

Remark 9. if τ is a polar topology of A-convergence on E that having a weak Schauder basis $(e_i)_i$, then for every $A \in \mathcal{A}$, \widetilde{A} is $\widetilde{\sigma}(E', E)$ – relatively c-compact.

Corollary 5. A weak Schauder basis $(e_i)_i$ is a Schauder basis for a topology τ_c on E if, and only if, for every absolutely K-convex, $\sigma\left(E',E\right)$ -bounded and $\sigma\left(E',E\right)$ -c-compact A of E',\widetilde{A} is $\widetilde{\sigma}\left(E',E\right)$ -relatively c-compact.

Proof. It is sufficient to take $\tau = \tau_c$ in proposition 29.

c. K is not spherically complete

Let \mathcal{M} the family of all $M \subset E'$ such that $M = \widetilde{M}$, M is $\sigma(E', E)$ – bounded, E- closed and $(T_n)_n$ converges uniformly on M in $E'_{\widetilde{\sigma}}$, where $E'_{\widetilde{\sigma}} = (E', \widetilde{\sigma}(E', E))$. Let ϑ be the polar topology of \mathcal{M} -convergence.

Theorem 7. ϑ is the finest compatible topology on E for which $(e_i)_i$ is an equicontinuous Schauder basis.

 ϑ is compatible [2], theorem 4.3, p. 233.

Let $M \in \mathcal{M}$, then $(T_n)_n$ converges uniformly on M in $E'_{\widetilde{\sigma}} \Longrightarrow \lim_n \sup_{f \in M}$ $\widetilde{p}_{x}\left(f-T_{n}\left(f\right)\right)=0$, so $\lim_{n}\,p_{M}\left(x-S_{n}\left(x\right)\right)=0$. Then $\left(e_{i}\right)_{i}$ is a Schauder basis of ϑ .

Let τ be a polar and compatible topology of A- convergence such that $(e_i)_i$ be an equicontinuous Schauder basis, then $\tau = \tilde{\tau}$. Therefore

 $\mathcal{A} = \left\{ A \subset E' / \ A = \widetilde{A} \ and \ A \ is \ \sigma\left(E', E\right) - bounded \ and \ E - closed \right\}.$ Let $A \in \mathcal{A}$, so for every $x \in E \lim_{n} \ p_{A}\left(x - S_{n}\left(x\right)\right) = 0$, then $\lim_{n} \sup_{f \in A} \widetilde{p}_{x}\left(f - T_{n}\left(f\right)\right) = 0$, therefore $(T_{n})_{n}$ converges uniformly on A in $E'_{\widetilde{\sigma}}$. Then $\tau \leq \vartheta$.

Theorem 8. Let τ be a polar topology of $\mathcal{A}-$ convergence on E such that E_{σ} and E'_{σ} are sequentially complete and $(e_i)_i$ be a weak Schauder basis of E, then $(e_i)_i$ is a Schauder basis of (E,τ) if, and only if, for all $A \in \mathcal{A}$ the sequence $(T_n)_n$ converges uniformly on A in $E'_{\widetilde{\sigma}}$.

Proof. If $(e_i)_i$ is a Schauder basis of (E,τ) , then $(e_i)_i$ is an equicontinuous Schauder basis of $\tilde{\tau}$; therefore for all $A \in \mathcal{A}$ the sequence $(T_n)_{n\geq 1}$ converges uniformly on \tilde{A} in $E'_{\tilde{\sigma}}$, so for all $A \in \mathcal{A}$, $(T_n)_n$ converges uniformly on A in $E'_{\tilde{\sigma}}$.

Conversely, let $A \in \mathcal{A}$, then for all $x \in E$ $\widetilde{p}_A(x - S_n(x)) = \sup_{f \in A} \widetilde{p}_x(f - T_n(f))$.

But $\lim_{n} \sup_{f \in A} \widetilde{p}_{x}(f - T_{n}(f)) = 0$, then $\lim_{n} \widetilde{p}_{A}(x - S_{n}(x)) = 0$ and so $\lim_{n} p_{A}(x - S_{n}(x)) = 0$.

Theorem 9. Under the conditions of theorem 8, E is an OP- space if, and only if, for all $A \in \mathcal{A}$ the sequence $(T_n)_n$ converges uniformly on A in $E'_{\widetilde{\sigma}}$.

Proof. ([21], proposition 1) and theorem 8. \blacksquare

Proposition 30. Let τ be a polar topology of $\mathcal{A}-$ convergence on E and $(e_i)_i$ be a weak Schauder basis of E, then if every $\tilde{\sigma}-$ equicontinuous sequence of E' that converging pointwise to zero converges uniformly on every $A \in \mathcal{A}$ in $E'_{\tilde{\sigma}}$, then $(e_i)_i$ is a Schauder basis of (E, τ) .

Proof. $(f_i)_i$ is an equicontinuous Schauder basis of $\left(E', \widetilde{\sigma}\left(E', E\right)\right) = E'_{\widetilde{\sigma}} \Longrightarrow (T_n)_n$ is an equicontinuous sequence of $E'_{\widetilde{\sigma}} \Longrightarrow$ the sequence $(id_{E'} - T_n)_n$ is pointwise converging to zero in $E'_{\widetilde{\sigma}}$ and this convergence is uniformly on every $A \in \mathcal{A}$ in $E'_{\widetilde{\sigma}} \Longrightarrow \lim_n \sup_{f \in A} \widetilde{p}_x \left(f - T_n\left(f\right)\right) = 0$ for all $x \in E \Longrightarrow \lim_n \widetilde{p}_A \left(x - S_n\left(x\right)\right) = 0$ for all $x \in E \Longrightarrow \lim_n p_A \left(x - S_n\left(x\right)\right) = 0$ for all $x \in E$.

6. Application to barrelled spaces and G-spaces

Barrelled spaces

a. K is spherically complete

Proposition 31. If (E, τ) is a barrelled locally K- convexe space which is $\sigma(E, E')$ – sequentially complete and having a weak Schauder basis, then (E, τ) is complete and every weak Schauder basis is an equicontinuous Schauder basis of (E, τ) .

Lemma 11. If (E, τ) is barrelled and having a Schauder basis then $\tau = \tilde{\tau}$.

Proof. Let $A \in \mathcal{A}$, where \mathcal{A} is a family that defines the topology τ ; $(\widetilde{A})^{\circ}$ is a barrel, so it is a zero-neighbourhood in (E, τ) , then $\widetilde{\tau} \leq \tau$.

Proof of proposition Let $(e_i)_i$ be a weak Schauder basis of E, then $(e_i)_i$ is a Schauder basis of (E,τ) (E is an OP-space) \Longrightarrow $(e_i)_i$ is an equicontinuous Schauder basis of $\tilde{\tau} \Longrightarrow (e_i)_i$ is an equicontinuous Schauder basis of (E,τ) ($\tau=\tilde{\tau}$).

b. K is not spherically complete

Proposition 32. Every weak Schauder basis in a polarly barrelled polar locally K-convex space is an orthogonal basic sequence.

Proof. ([21], corollary 6, p. 155). ■

Proposition 33. Let E be a Banach space with a weak Schauder basis; then E is a polar space if and only if, every weak Schauder basis in E is a basic sequence.

Proof. For the sufficient condition, one only has to use theorem 3.2 (α) \Longrightarrow (β) of [28]. The necessary condition is a particular case of proposition 32.

G-spaces

Proposition 34. If (E, τ) is a weakly-sequentially complete G-space that having a Schauder basis, then (E, τ) is complete and this basis is equicontinuous.

Proof. By theorem 6. \blacksquare

Proposition 35. If (E,τ) is a G-space with a Schauder basis $(e_i)_i$, there is no strictly finer locally K-convex topology on E for which $(e_i)_i$ is still a Schauder basis.

Proof. By proposition 19 if K is local, proposition 21 if K is spherically complete and by proposition 22 if K is not spherically complete.

Proposition 36. Suppose that K is spherically complete; if (E, τ) is a weakly-sequentially complete G-space that having a weak Schauder basis $(e_i)_i$, then (E, τ) is complete and $(e_i)_i$ is an equicontinuous Schauder basis of (E, τ) .

Proof. Let $(e_i)_i$ be a weak Schauder basis of E, then E is an OP-space $\Longrightarrow (e_i)_i$ is a Schauder basis of (E,τ) . So the proposition is an immediate consequence of proposition 34. \blacksquare

References

- [1] M. G. Arsove, and R. E. Edwards, generalized bases in topological linear spaces. Studia math.19, pp. 95-113, (1960).
- [2] R. Ameziane Hassani and M. Babahmed, Topologies polaires compatibles avec une dualité séparante sur un corps valué non-archimédien, Proyecciones. Vol. 20, No. 2, pp. 217-241, (2001).
- [3] S. Banach, Théorie des opérateurs linéaires, Chelsea, New York (1955).
- [4] S. Bennet and J. B. Cooper, Weak basis in F and (LF)-spaces. J. London Math. Soc. 44, pp. 505-508, (1969).
- [5] G. Bessaga and A. Pełczynski, Properties of bases in spaces of type B_0 . Prace Math. 3, pp. 123-142, (1959).
- [6] N. Bourbaki, Espaces vectoriels topologiques, Chap.1 à 5, Paris, (1981).
- [7] N. De Grande-De Kimpe, C-compactness in locally K-convex spaces, Indag. Math. 33, pp. 176-180, (1971).
- [8] N. De Grande-De Kimpe, Perfect locally K-convex sequence spaces, Indag. Math. 33, pp. 471-482, (1971).

- [9] N. De Grande-De Kimpe, On the structure of locally K-convex spaces with a Schauder basis, Indag. Math. 34, pp. 396-406, (1972).
- [10] N. De Grande-De Kimpe, Equicontinuous Schauder basis and compatible locally convex topologies, Proc. Kond. Ned. Akad. V. Wet. A77(3), pp. 276-283 (1973).
- [11] N. De Grande-De Kimpe, On a class of locally convex spaces with a Schauder basis, Proc. Kond. Ned.Akad. V. Wet. pp. 307-312, (1976).
- [12] N. De Grande-De Kimpe, Structure theorems for locally K-convex spaces. Proc. Kond. Ned. Akad. Wet. 80: pp. 11-22, (1977).
- [13] M. De Wilde, Reseaux dans les espaces linéaires a semi-normes. Mem. Soc. R. Liège. (1969).
- [14] Dorleyn, M, Beschouwingen over coördinatenruimten, oneindige matrices en determinanten in een niet-archmedisch gewaardeerd lichaam. Thesis, Amsterdam, (1951).
- [15] E. Dubinsky, JR. Retherford, Schauder bases in compatible topologies. Stud. Math. 28: pp. 221-226, (1967).
- [16] T. A. Efimova, On weak basis in the inductive limits of barrelled normed spaces. Vestnik. Leningrad Uni. Math. Meb. Astronom.119, pp. 21-26, (1981).
- [17] K. Floret, Bases in sequentially retractive limits spaces. Proc. Int. Coll.on Nuclear Spaces and Ideals in operators Algebras, Warsaw1969, Studia Math. 38, pp. 221-226, (1970).
- [18] D. J. H. Garling, On topological sequence spaces, Proc. Camb. Phil. Soc. 63, pp. 997-1019, (1967).
- [19] D. J. H. Garling, The β -and γ -duality of sequence spaces, Proc. Camb. Phil. Soc. 63, pp. 963-981, (1967).
- [20] N. J. Kalton, On the weak-basis theorem. Compositio Mathematica, Vol. 27, Fasc. 2, pp. 213-215, (1973).
- [21] J. Kakol and T. Gilsdorf, On the weak basis theorems for p-adic locally convex spaces, p-adic functional analysis edited by J. Kakol, N. De Grande-De Kimpe and C. Perez-Garcia. Marcel Dekker, Ink. New York, (1999).

- [22] J. Kakol, C. Perez-Garcia and W. H. Schikhof, Cardinality and Mackey topologies of non-archimedean Banach and Fréchet spaces. Bull PolAcad Sci Math 44: pp. 131-141, (1996).
- [23] G. Köthe, Topologische lineaire Räume; Springer Verlag, (1960).
- [24] C. W. McArthur, The weak basis theorem, Colloq. Math. 17, pp. 71-76, (1967).
- [25] A. F. Monna, Espaces linéaires à une infinité dé nombrable de coordonnées. Proc. Ned. Akad. V. Wetensch. 53, pp. 1548-1559, (1950).
- [26] A. F. Monna, Sur le théorème de Banach-Steinhaus, Proc. Kond. Ned. Akad. V. Wetensch. A66, pp. 121-31 (1963).
- [27] J. Orihuela, On the equivalence of weak and Schauder bases, Arch. Math. Vol. 46, pp. 447-452, (1986).
- [28] C. Perez-Garcia and W. H. Schikhof, The Orlicz-Pettis property in p-adic analysis, collect. Math. 43, 3, pp. 225-233, (1992).
- [29] J. H. Shapiro, On the weak basis theorem in F-Spaces, can. J. Math. Vol. XX∨I, No. 6, pp. 1294-1300, (1974).
- [30] H. H. Schaefer, Topological vector spaces, Springer-Verlag New-York, herdlberg Berlin, (1971).
- [31] W. H. Schikhof, Compact-like sets in non-archimedean fonctional analysis, Proc. of the conférence on p-adic analysis henglehoef, Belgium, pp. 137-147 (1986).
- [32] W. H. Schikhof, The continuous linear image of p-adic compactoid. Proc Kon Ned Akad Wet 92: pp. 119-123, (1989).
- [33] I. Singer, Weak*-bases in conjugate Banach spaces, Stud. Math. 21, (1961).
- [34] T. A. Springer, Une notion de compacité dans la théorie des espaces vectoriels topologiques, Indag. Math. 27, pp. 182-189 (1965).
- [35] W. J. Stiles, On properties of subspaces of l_p , $0 \prec p \prec 1$, Trans. mer. Math. Soc. 149, pp. 405-415 (1970).

[36] J. Van-tiel, Espaces localement K-convexes, I-III. Proc. Kon. Ned. Akad. van Wetensch. A68, pp. 249-289 (1965).

R. Ameziane Hassani

Department of mathematics and computer science Faculty of Sciences Dhar Mahraz B. P. 1796 Atlas Fès,

Morocco

e-mail: ra.ameziane@yahoo.fr

A. El Amrani

Department of mathematics and computer science Faculty of Sciences Dhar Mahraz B. P. 1796 Atlas Fès,

Morocco

e-mail: abdelkhalek-amrani@hotmail.com

and

M. Babahmed

Department of mathematics and computer science Faculty of Sciences Meknes,

Morocco

e-mail: babahmed@hotmail.com