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Abstract
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space E with a Schauder basis (ei)i to such Space. We are also in-
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1. Introduction

The perfect sequence spaces on a field K have been widely studied by
several authors, either in the classical case (K = IR or K = IC) Garling [18]
and [19], Köthe [23], ..., or in the case of K is a non-archimedean valued
field Monna [25], Dorleyn [14], De Grande-De Kimpe [8], ....The importance
of the sequence spaces lies on the fact that each space which is locally
convex and having a Schauder basis is isomorphic to the sequence space.
Thus, instead of studying the spaces that are locally convex and having a
Schauder basis one only has to study the sequence spaces.

In this work we are going to establish a way of transforming topologies
between this space and a perfect sequence space Λ, where

Λ =

(
(λi)i ∈ ω :

∞X
i=1

λiei converges in (E, τ)

)
and (ei)i is a Schauder

basis of a locallyK−convex space (E, τ) in question (K is a non-archimedean
valuated field complete with a non trivial valuation ). This study will allow
us to solve the following problem:

(1) if (ei)i is a Schauder basis of a locally K− convex space (E, τ)
(lKcs), determine the compatible topologies on E for which (ei)i is an
equicontinuous Schauder basis.

This problem was studied by many Mathematcians, in particular by De
Grande-De Kimpe [10]. It is also proved in ([22], 3.2. see also [32], 2.1 and
[12], 2.1) that in a lKcs (E, τ) there exists the finest locally K−convex
topology ν of countable type compatible with τ . The existence of this
topology was also proved in ([ 21], proposition 2, p. 153). Thus, we are
going to make, in the case of lKcs (E, τ) such that Eσ = (E, σ (E,E0))
and E0σ = (E0, σ (E0, E)) are sequentially complete, this topology in rela-
tion with the original topology of E, by distinguishing the following three
cases: K is local, K is spherically complete and K is not spherically com-
plete; which will give us a complete solution of this problem, we’ll give a
characterization of polar toplogies for which the weak basis problem is true
in the case when K is not spherically complete. We should remind that the
problem of the weak basis was formulated by several ways and that’s one
of them ([21], p. 150)

(2) Is every weak Schauder basis for E a Schauder basis for E ?

We shall say that for a lKcs E the weak basis theorem holds if every
weak Schauder basis in E is a Schauder basis .

In archimedean analysis, the weak basis theorem was first given for
Banach spaces in 1932 by Banach ([3], p. 238) and extended to (F )−spaces
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by Bessaga and PeÃlczynski [5] (a (F )− space is a complete, metrizable

topological vector space . McArthur [24] proved an analogue for bases
of subspaces in Frechet spaces. Arsove and Edwards [1] proved that the
answer is positive if E is a barrelled space. Singer shows by an example
([33], p. 153) that a weak basis need not be Schauder basis. Dubinsky and
Retherford [15] observed that the answer is negative in general. Bennet and
Cooper [4] proved it for strict (LF )− spaces and Floret [17] for sequentially
retractive (LF )− spaces. M. De wilde [13] obtained a rather general result
for bornological, sequentially complete and webbed spaces. W J. Stiles
([35], corollary 4.5, p. 413) showed that the theorem fails in non locally
convex spaces lp (0 ≺ p ≺ 1). N. J. Kalton [20] gave a class of spaces for
which this theorem is true. Joel H. Shapiro ([29], theorem 1, p. 1294) gave
the following generalization of stiles’result

The weak basis theorem fails in every locally bounded non locally
convex (F )−space which has a weak basis ; he also gave a wide class of
space which the weak basis theorem fails and proved the same for the space
Hp ( Hp := the linear space of functions f analytic in the open unit disc

|z| ≺ 1 such that kfkpp = sup
0≤r≺1

Z 2π

0

¯̄̄
f
³
reit

´¯̄̄p
dt ≺ ∞ ). Efimova [16]

proved the weak basis theorem for regular inductive limits of a sequence of
normed barrelled spaces. M. Valdivia has shown the result for metrizable
barrelled spaces. J. Orihuela [27] gave a result which showed the linking
between the weak basis theorem and the closed graph theorem. In [10] N.
De Grande-De Kimpe solved completely the weak basis problem for locally
convex space (lcs) E having a σ (E0, E)− sequentially complete topological
dual E0.

In n.a analysis, the weak basis problem has the following simple solution
[21]: For a lKcs E with a weak Schauder basis the weak basis theorem
holds iff E is an Orlicz-Pettis-space (a space, where every weakly convergent
sequence is convergent). We know that, if K is spherically complete then
every lKcs E is an OP−space; so the weak basis theorem holds in this case.
If K is not spherically complete J. Ka̧kol and T.Gilsdorf ([21], corollary 6,
p. 155) proved that the weak basis theorem holds if E is a polarly barrelled
polar space (a locally K−convex space is called polarly barrelled if every
closed, polar and absorbing absolutely K−convex subset of E is a zero-
neighbourhood), they provided a wide class of non-polar spaces E with a
weak Schauder basis which is a basic sequence in the original topology of E
([21], example 7, p. 155 and 156). Finally J. Ka̧kol and T.Gilsdorf remark
that they do not know if the following result is true: Let E be a Banach
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space with a weak Schauder basis; then, E is a polar space iff every weak
Schauder basis in E is a basic sequence ([21], remark 13, p. 160). This
conjecture was set by P. Garcia and Schikhof ([28], p. 233) in the form of
the following question: Does there exist a polar Banach space which is not
OP−space, and does not contain l∞ ? . The answer of this question is
negative; in the other words, the conjecture is true (see proposition 33).

In §. 2 we’ll give general results that are related to lKcs, to polar
toplogies of A−convergence and to space of sequences. In §. 3 we study the
perfect sequence spaces over K, we give a characterization of the natural
topology noted Na with the sets absolutely K−convex, weakly bounded
and compactoid if K is spherically complete, with the sets absolutely K-
convex and compact if K is local and with the sets absolutely K−convex
weakly bounded and Λ−closed (Λ is a perfect sequence space on K ) when
K is not spherically complete. We are interested in §. 4 in the study of
transfer of topologies between a perfect sequence spaces and a lKcs (E, τ)
that has a Schauder basis, using the two following algebraic isomorphisms

Φ : E −→ Λ x 7−→ (λi)i and Ψ : E0 −→ ∆ f 7−→ (µi)i for every

x =
∞X
i=1

λiei and f =
∞X
i=1

µifi ; where (fi)i is the weak Schauder basis of E0

associated to the Schauder basis (ei)i of E ([9], lemma 3, p. 402) and Λ
and ∆ are two sequence spaces which we’ll define like in [9]. This study will
allow us to solve the problem (1) by distinguishing the three casesK is local,
K is spherically complete and K is not spherically complete. Some results
that are related to problem (2) are given in the §. 5 by considering a polar
lKcs (E, τ) which has a weak Schauder basis (ei)i and as Eσ and E0σ are
sequentially complete, we characterize the finest compatible topology on E
for which (ei)i is a Schauder basis; this basis is necessary equicontinuous.
Then, we give a necessary and sufficient condition which the topology τ
must fulfill so as to admit (ei)i as Schauder basis in the case when K
is non spherically complete. Then we deduce a new characterization of
OP−spaces.

Finally, in §. 6 we give applications to G-spaces and to K−barrelled
spaces. We show that the result established by N. De Grande- De Kimpe
in [10] in the classical case, for the barrelled spaces, is also true in the
non archimedian case. For a G−space (E, τ) ; we show that τ is the only
topology on E compatible with the duality hE,E0i for which (ei)i is an
equicontinuous Schauder basis.
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2. Preliminaries

1. Throughout K is a non-archimedean (n.a) non trivially valued
complete field with the valuation |.| , and the valuation ring is B (0, 1)
= {λ ∈ K : |λ| ≤ 1} .

2. Let E be a K−vector space. A subset A of E is absolutely K−
convex if it is B (0, 1)− module. For a set X ⊂ E its absolutely K−convex
hull Γ (X) is the smallest absolutely K−convex set containing X.

3. A topology on a vector space E over K is said to be locally K−
convex if there exists in E a fundamental system of zero-neighbourhoods
consisting of absolutely K−convex subsets of E.

In this paper the letter E will always stand for Hausdorff locally K−
convex space over a field K.

4. A subset A of E is called compactoid if for every zero-neighbourhood
U in E, there exists a finite set F ⊂ E such that A ⊂ Γ (F ) + U.

5. A subset A of E is called c-compact if every convex filter on A has a
cluster point on A.

- An absolutely K−convex subset of a locally K−convex space E is
called K-closed if for every x ∈ E the set {|λ| / λ ∈ K : λx ∈ A} is closed
in |K|; the K−closed hull of A is the smallest subset of E which is K-closed
and contains A, it is denoted by Kc (A) .

6. A sequence (ei)i is a Schauder basis of E if every x ∈ E can be

written uniquely as x =
∞X
i=1

λiei where the coefficient functionals fn : x =

∞X
i=1

λiei 7−→ λn are continuous.

- The sequence (fn)n is called the weak Schauder basis associated to
basis (ei)i .

- For every n ≥ 1, let pn the map x =
∞X
i=1

λiei 7−→ λnen; the Schauder

basis (ei)i is called equicontinuous if the sequence (pn)n is equicontinuous
on E, this is equivalent to the equicontinuity of the sequence (Sn)n where

Sn : x =
∞X
i=1

λiei 7−→
nX
i=1

λiei , for every n ≥ 1.

7. Let h, i be a duality between E and F where E and F are two vectors
spaces over K (see [2] for general results);

- If A is a subset of E, the polar of A is a subset of F defined by:
A◦ = {y ∈ F / |hx, yi| ≤ 1 for all x ∈ A} .
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We define also the polar of a subset B of F in the same way.
- The weak topology σ (E,F ) on E is noted simply σ and {A◦ / A ∈ F}

is a zero-neighbourhood base, where F is the set of finite subset of F.
- A subset A of F is said to be E− closed if for every y ∈ F \A, there

exists x ∈ E such that |hx, yi| Â 1 and |hx,Ai| ≤ 1; the E−closed hull
Ec (A) of A is the smallest E−closed subset of F containing A.

Proposition 1. Let A be an absolutely K−convex subset of F, then A
is E− closed, if and only if, A is K−closed and σ (F,E)− closed.

Proof. By [2], theorem 4.2, p. 233, proposition 2.5, p. 224 and corollary
4.3, p. 233.

8. Let A be a family of σ (F,E)−bounded subsets of F such that
(a) A is directed by inclusion,
(b) F =

[
A∈A

A,

(c) there exists λ0 ∈ K, |λ0| > 1, such that λ0A ∈ A, for all A ∈ A.
A topology τ on E is called polar topology of A− convergence, if τ has

a fundamental system of zero-neighbourhoods consisting of {A◦/ A ∈ A}
- A vector topology τ onE is called polar topology if there exists a family

A of σ (F,E)−bounded subsets of F which has the properties (a) , (b) and
(c) , such that τ is a polar topology of A−convergence.

- If τ is a polar topology of A−convergence on E, it is determined by the
family of n.a seminorms (pA)A∈A ,where pA (x) = sup {|hx, yi| / y ∈ A}([10],
p. 277).

- If A is the family of all subsets of F that are:
1. Absolutely K−convex, weakly bounded and weakly c-compacts, we

have the c-compact topology τc (E,F ) = τc,
2. Absolutely convex and σ (F,E)−compact, we have the Mackey

topology τm (E,F ) = τm,
3. σ (F,E)−bounded and E−closed, we have the E− closed topology

τe (E,F ) = τe.
9. A locally K−convex topology τ on E is called compatible with the

duality hE,F i or (E,F )− compatible if, F is isomorphic to the topological
dual of E provided with the topology τ. σ (E,F ) is the smallest of (E,F )−
compatible topology.

- A sequence (en, fn)n of E×F is called biorthogonal if hen, fni = δnm,
for all n,m where δnm is the Kronecker delta.

10. The space of all sequences in K is denoted by ω, it is provided with
the product topology τω. A linear subspace of ω is called a sequence space.
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ϕ, c0 and l∞ are respectively, the space of all sequences in K with only
finitely many non-zero terms, the space of the sequences in K converging
to zero and the space of the bounded sequences in K.

- for all n ≥ 1, en = (δnm)m .

- Let A ⊂ ω, the β−dual of A is the subset Aβ of ω defined as

Aβ =

½
λ = (λi) ∈ ω / lim

i
λiαi = 0, for all α = (αi)i ∈ A

¾
.

- A is called β−perfect (or perfect) if A = Aββ.

- A is solid if whenever (an)n ∈ A and (λn)n ∈ ω such that |λn| ≤ 1 for
each n, then (λnan)n ∈ A. The spaces ω,ϕ and c0 are solids.

- The smallest solid subset of ω containing A is called the solid hull of
A, it is denoted by Â; and we have

Â = {(λnan)n / (an)n ∈ A and (λn)n ∈ ω : |λn| ≤ 1 for all n ≥ 1} .
- Let X be a sequence space in K; A ⊂ X is called solid in X if

Â ∩X = A. Â ∩X is called the solid hull of A in X.

- A topology on a vector space X is called solid if there exists in X a
fundamental system of zero neighbourhoods consisting of solids subsets in
X.

11. A G-space is a locally K−convex space (E, τ) such that E0 is
σ (E0, E)− sequentially complete and τ = τc (resp.τe, τm) if K is spher-
ically complete, ( resp. not spherically complete, local). In the last case, we
find the notion of G-space given and studied by N. De Grande-De Kimpe
in [11] in the classical case (K = IR or K = IC) .

3. The natural topology in a perfect sequence spaces

Let Λ be a sequence space overK containing ϕ, we consider the dualityD
Λ,Λβ

E
defined by: ((λn)n , (µn)n) 7−→ h(λn)n , (µn)ni =

∞X
n=1

λnµn for

every (λn)n ∈ Λ and (µn)n ∈ Λβ.
For every µ = (µn)n ∈ Λβ, let p̂µ the n.a seminorm defined as p̂µ (λ) =

sup
n
|λnµn| , For every λ = (λn)n ∈ Λ.
We call the locally K−convex topology on Λ determined by the family

of seminorms (p̂µ)µ∈Λβ the natural topology; it will be denoted by Na.

Remark 1. The weak topology σ on Λ is weaker than the natural topology
Na.

Proposition 2. If Λ is perfect, then it is weakly sequentially complete.
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Proof. ([25] , 5.2, p. 1550) .

Proposition 3. If Λ is perfect then every σ−bounded subset of Λ is

τb−bounded, where τb is the strong topology τb
³
Λ,Λβ

´
on Λ.

Proof. ([8] , proposition 8, p. 476) .

Corollary 1. If Λ is perfect, all polars topologies on Λ yield the same
bounded sets.

Lemma 1. The solid hull of a finite subset of Λβ is σ−bounded.

Proof. Obvious.

Lemma 2. Let A be a σ−bounded and solid subset of Λβ, then the polar of
A in the duality

D
Λ,Λβ

E
is given byA◦ = {λ ∈ Λ /p̂µ (λ) ≤ 1, for all µ ∈ A} .

Proof. ([8] , proposition 1, p. 472) .

Proposition 4. The natural topology on Λ is a polar topology.

Proof. Obvious.

Remark 2. The natural topology is a solid topology; in fact it is the
coarsest of the polar and solid topologies on Λ.

Proposition 5. If Λ is perfect, the natural topology Na is compatible

with the duality
D
Λ,Λβ

E
.

Proof. The Na topology is polar and for every µ ∈ Λβ,
³
ˆ{µ}
´◦
="

Kc

Ã
ˆ{µ}

σ(Λβ ,Λ)
!#◦

[2], corollary 4.3, p. 233˙ Then, if we take

A=
(
Kc

Ã
Â
σ(Λβ ,Λ)

!
/ A ⊂ Λβ and A is finite

)
so Na is a polar topology

of A−convergence, where A is formed by a σ
³
Λβ,Λ

´
− bounded and Λ−

closed subsets of Λβ (proposition 1 ). Then by [2], theorem 4.3, p. 233 the
natural topology Na is compatible.

Remark 3. For every µ ∈ Λβ, Γ
³
ˆ{µ}
´
is weakly-c-compact if K is spher-

ically complete and weakly compact if K is local.
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Proposition 6. If Λ is perfect, then it is complete under any polar solid
topology.

Proof. Let τ be a solid polar topology of A−convergence on Λ; we
consider

¡
λi
¢
i∈I as a Cauchy-net in (Λ, τ) .

LetA ∈ A, there exists i0 ∈ I such that λi−λj ∈ A◦, for all i, j ≥ i0; so

we have (1) sup
α=(αn)n∈A

sup
n

¯̄̄
αn
³
λin − λjn

´¯̄̄
≤ 1, for all i, j ≥ i0 (lemma 2) .

Then for every n,
¡
λin
¢
i∈I is a Cauchy-net in K, so there exists λn ∈ K

such that λn = lim
i
λin. Therefore, from (1) we obtain:

(2) sup
α=(αn)n∈A

sup
n

¯̄̄
αn
³
λin − λn

´¯̄̄
≤ 1, for all i ≥ i0.

Let α = (αn)n ∈ Λβ, there exists A ∈ A such that α ∈ A and we have
for all n ≥ 1, |αnλn| ≤ max

¡¯̄
λi0n αn

¯̄
,
¯̄¡
λi0n − λn

¢
αn
¯̄¢
.

Hence λ = (λn)n ∈ Λββ = Λ (Λ is perfect) and by (2) we have λ =
lim
i
λi in (Λ, τ) .

Proposition 7. Let A be a subset of Λ ; if A is Na−bounded then Â is
Na−bounded.

Proof. Obvious.

Proposition 8. Suppose that Λ is perfect and let τ be a polar topology
on Λ and A be a subset of Λ. If A is τ−bounded, then Â is τ−bounded.

Proof. A is τ−bounded⇒ A is Na−bounded (corollary 1 and proposi-
tion 4)⇒ Â is Na−bounded (proposition 7)⇒ Â is τ−bounded (corollary
1 and proposition 4).

Corollary 2. τb is a solid topology.

Proof. Λβ is perfect, then for every A ⊂ Λβ, A is σ−bounded ⇐⇒ Â is
σ−bounded.

Lemma 3. Let E and F be a locally K−convex spaces and A a com-
pactoid subset of E. If (fn)n≥1 is an equicontinuous sequence of linear
mappings from E to F pointwise converging to a mapping f, then (fn)n≥1
converges to f uniformly on A.

Proof. ([8] , proposition 13, p. 477) .
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Remark 4. The lemma before is true if we replace compactoid by pre-
compact (if K is local) or bounded and c-compact (if K is spherically
complete).

Proposition 9. Let A be a compactoid subset of (Λ,Na) . Then for every
α = (αn)n ∈ Λβ, limk |αk| sup

λ∈A
|λk| = 0.

Proof. Let α = (αn)n ∈ Λβ; for every n ∈ IN, we consider αn =
αne

n with en = (δnm)m . Then for every µ = (µn)n ∈ Λ, p̂µ (αn) =
|µnαn| n→∞−→ 0, so lim

n→∞
αn = 0 in

³
Λβ, Na

´
. On the other hand (αn)n is

Na−equicontinuous ([8], proposition 3, p. 474); then according to lemma
before (αn)n converges to 0 uniformly on A.

Remark 5. Suppose that K is spherically complete and let τ be a locally

K−convex topology compatible with the duality
D
Λ,Λβ

E
on Λ and A an

absolutely K−convex bounded and c-compact subset of Λ in (Λ, τ) . Then
for every α ∈ Λβ, lim

k
|αk| sup

λ∈A
|λk| = 0.

Proof. Remark 4, proposition 5, [36] theorem 4.21 and [7] proposition
3.

Proposition 10. The sequence (en)n is a Schauder basis of (Λ, Na) .

Proof. Let λ = (λn)n ∈ Λ, then for every µ = (µn)n ∈ Λβ, p̂µ
¡
λie

i
¢
=

|λiµi| i→∞−→ 0. Therefore
X
i

λie
i converges in (Λ, Na) and so every element

λ = (λn)n ∈ Λ can be written uniquely as λ =
∞X
n=1

λne
n. On the other hand,

for every n ∈ IN, en ∈ Λβ and we have p̂en (λ) = |λn| for all λ = (λn)n ∈ Λ,

hence the maps λ =
∞X
i=1

λie
i 7−→ λn is Na−continuous.

Theorem 1. Suppose that K is spherically complete and Λ is perfect. A
subset A of Λ is compactoid in ΛNa if, and only if, it is a subset of the solid
hull of a singleton of Λ.

Proof. =⇒] Let A be a compactoid subset of ΛNa.
Let > 1 and λ = (λn)n ∈ ω such that |λn| = n for all n ≥ 1.
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A is compactoid in ΛNa, so it isNa−bounded, and therefore sup
(αi)i∈A

|αi| <

+∞, for all i ≥ 1, there exists ni ≥ 1 such that ni−1 ≤ sup
(αi)∈A

|αn| ≤ ni .

Let µ = (µi)i the element of ω given by µi = λni for all i ≥ 1, then for
every α = (αi)i ∈ Λβ we have: for all i ≥ 1,

|µiαi| ≤ |αi|
Ã

ni − sup
(γi)∈A

|γi|
!
+ |αi| sup

(γi)∈A
|γi| ≤

|αi| sup
(γi)∈A

|γi| .

Now, lim
i
|αi| sup

(γi)i∈A
|γi| = 0 (proposition 9) , hence lim

i
µiαi = 0. Then

µ ∈ Λββ = Λ˙ On the other hand, if α = (αi)i ∈ A, we have |αi| ≤ |µi| , for
every i ≥ 1, hence α ∈ ˆ{µ}.
⇐=] It suffices to prove that ˆ{λ} is compactoid in ΛNa, for every λ ∈ Λ.
Let λ = (λn)n an element of Λ, then for every α = (αn)n in Λ

β, there
exists n0 ∈ IN such that |λnαn| ≤ 1 for all n > n0. We put λ

i = λi e
i,

for all i , 1 ≤ i ≤ n0 .

If µ = (µiλi)i is an element of
ˆ{λ}, µ =

∞X
i=1

µiλie
i =

n0X
i=1

µiλ
i+
X
i>n0

µiλie
i.

Now, p̂α

⎛⎝X
i>n0

µiλie
i

⎞⎠ = sup
i>n0

|µiλiαi| ≤ 1

So µ ∈ Γ
¡
λ1, λ2, ..., λn0

¢
+Bp̂α (0, 1) , whereBp̂α (0, 1) = {λ / p̂α (λ) ≤ 1} .

Then ˆ{λ} ⊂ Γ
¡
λ1, λ2, ..., λn0

¢
+Bp̂α (0, 1) .

Remarks 1. 1. N. De Grande-De Kimpe gave an analogue proposition
of theorem in which she characterize the weakly c-compact subsets ([8],
proposition 15, p. 478 ). This proposition is in fact true for all compatible

topologies with the duality
D
Λ,Λβ

E
in particular for the natural topology

Na.

2. Kc

Ã
ˆ{µ}

σ(Λ,Λβ)
!
is compactoid for every field K.

Consequently the solid hull of a bounded subset which is absolutely
K− convex and c-compact of Λ is also bounded and c-compact for every
compatible topology.

Corollary 3. i. For every λ ∈ Λβ, ˆ{λ} is compactoid in
³
Λβ, Na

´
for

every field K.
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ii. Suppose that Λ is perfect and K is spherically complete and let A be
a subset of Λ. Then A is compactoid in ΛNa if, and only if, there exists a se-
quence (αn)n converging to zero in ΛNa such that A ⊂ Γ (α1, α2, ..., αn, ...).

Proof. i. Λβ is perfect; it suffices to use the theorem 1.
ii. Let λ = (λn)n ∈ Λ such that A ⊂ ˆ{λ} (theorem 1) . We put αn =

λne
n for all n ≥ 1, then for every µ = (µn)n ∈ Λβ we have p̂µ (αn) =

|µnλn| n→∞−→ 0, so the sequence (αn)n is converging to zero in ΛNa. On the

other hand for every a = (an)n ∈ A, a ∈ ˆ{λ}, therefore there exists (µn)n ∈

ω such that |µn| ≤ 1 for all n and a = (µnλn)n ; so a =
∞X
n=1

µnα
n(proposition

10). Then a ∈ Γ (α1, α2, ..., αn, ...).
Conversely, suppose that A ⊂ Γ (α1, α2, ..., αn, ...) where (αn)n con-

verges to zero in ΛNa. Let U be a zero-neighbourhood in ΛNa, then there
is n0 ∈ IN such that for all n > n0, α

n ∈ U . So Γ
¡
α1, α2, ..., αn, ...

¢
⊂

Γ
¡
α1, α2, ..., αn0

¢
+ U, (we can choose U absolutely K−convex and open).

Then Γ (α1, α2, ..., αn, ...) ⊂ Γ
¡
α1, α2, ..., αn0

¢
+ U, because

Γ
¡
α1, α2, ..., αn0

¢
+ U is Na− closed.

Characterization of the natural topology a- K is spherically
complete

Theorem 2. If Λ is perfect, then the natural topology on Λ is the polar
topology of A−convergence, whereA is the family of all compactoid subsets
of
³
Λβ, Na

´
.

Proof. Let A be the family of all compactoid subsets of
³
Λβ,Na

´
then for every A ∈ A, A is σ − bounded and A satisfies the conditions
(a) , (b) and (c) of 8. Let τ be the polar topology of A− convergence on
Λ; then τ = Na, (theorem 1) .

Theorem 3. If Λ is perfect, then the natural topology on Λ is the polar
topology of A−convergence where A is the family of all absolutely K−
convex, bounded and c-compact subsets of

³
Λβ, Na

´
.

Proof. The same as theorem 2 and apply remarks 1.

Remark 6. If K is spherically complete and Λ is perfect then Na = τc ;
where τc is the c-compact topology on Λ. And for every topology τ on Λ,

τ is compatible with the duality
D
Λ,Λβ

E
if, and only if, σ ≤ τ ≤ Na.
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b- K is local
If K is local, then [31], proposition 1 and [7], proposition 2, p. 177

induce that all results before still hold when the word absolutely K-convex,
bounded and c-compact (or compactoid) is replaced by absolutelyK−convex
and compact; and the characterization of the natural topology became:

Theorem 4. If Λ is perfect, then the natural topology on Λ is the polar
topology of A−convergence where A is the family of all absolutely K−
convex and compact subsets of

³
Λβ, Na

´
.

c- K is not spherically complete

Theorem 5. If Λ is perfect, then the natural topology on Λ is the polar
topology of A−convergence where

A=
(
Kc

Ã
Â
σ(Λβ ,Λ)

!
/ A ⊂ Λβ and A is finite

)
.

Proof. By proposition 5.

4. Locally K−convex spaces with a Schauder basis and per-
fect sequence spaces

Let (E, τ) be a locally K−convex space where τ is a polar topology of
A−convergence, (ei)i be a Schauder basis of (E, τ) and (fi)i the associated

weak Schauder basis. If Sn (x) =
nX
i=1

λiei and Tn (f) =
nX
i=1

µifi for all

x ∈ E, all f ∈ E
0
(the topological dual of E) and all n ≥ 1, hSn (x) , fi =

hx, Tn (f)i , for all n ≥ 1, x ∈ E and f ∈ E
0
. For every A ⊂ E

0
, we puteA = {Tn (a) / n ∈ IN ; a ∈ A} with T0 = idE0 and for every A ⊂ E we put

S (A) = {x ∈ A/Sn (x) ∈ A, for all n ≥ 1} . We define also eA for A ⊂ E
and S (A) for A ⊂ E

0
. N. De Grande-De Kimpe has defined the topology eτ

of eA−convergence where eA=n eA/ A ∈ A
o
, and she gave a characterization

of this topology ([10], proposition 1.2, p. 278). We enhance this result in
theorem 6, p. 19.

Remarks 2. 1. epA (x) = sup
n

pA

Ã
nX
i=1

hx, fii ei
!

for all A ∈ A for all x ∈

E; in the case where F = E
0
, peA (x) = epA (x) = sup

n
pA (Sn (x)) = sup

n

pA (fn (x) .xn) ([10], proposition 1.1, p. 278).
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2. The eσ− topology associated to the weak topology σ = σ
³
E,E

0
´

on E is defined by the family of seminorms n.a (pf )f∈E0 , where pf (x) =

sup
n
|hSn (x) , fi| , for every x ∈ E and f ∈ E

0
; and we have eσ ≤ eτ .

Example 1. Let Λ be a perfect sequence space over K. The topology eσ =eσ ³Λ,Λβ´ associated to σ = σ
³
Λ,Λβ

´
is defined by the family of seminorms

n.a (pµ)µ∈Λβ , where pµ (λ) = sup
n

¯̄̄̄
¯
nX
i=1

λiµi

¯̄̄̄
¯ = sup

n
|λnµn| , for every λ =

(λi)i ∈ Λ and µ = (µi)i ∈ Λβ. Then the topology eσ is exactly the natural
topology studied in §. 3.

We Consider the two linear mappings Φ : E −→ Λ, x =
∞X
i=1

λiei 7−→

(λi)i and Ψ : E
0 −→ ∆, f =

∞X
i=1

µifi 7−→ (µi)i ; where Λ and ∆ are the

sequence spaces defined as Λ =

(
(λi)i ∈ ω /

∞X
i=1

λiei converges in (E, τ)

)
and

∆ =

(
(µi)i ∈ ω /

∞X
i=1

µifi converges in E
0
σ

)
. Φ and Ψ are algebraic iso-

morphisms.

Proposition 11. Λ ⊂ ∆β and ∆ ⊂ Λβ.

Proposition 12. i. Φ is
³
σ
³
E,E

0
´
, σ (Λ,∆)

´
− continuous;

ii. Ψ is
³
σ
³
E
0
, E
´
, σ (∆,Λ)

´
− continuous.

Proof. i. Let µ ∈ ∆, we consider V = {λ = (λi)i ∈ Λ/ |hλ, µi| ≤ 1} .We
put f = ψ−1 (µ) , then f ∈ E

0
. We Consider U = { x ∈ E / |hx, fi| ≤ 1} ;

U is a zero neighbourhood in
³
E, σ

³
E,E

0
´´

, and we have

Φ (U) = {λ = Φ (x) ∈ E/ |hx, fi| ≤ 1} = V.

If x =
∞X
i=1

λiei and µ = (µi)i , then Φ (x) = (λi)i and f =
∞X
i=1

µifi.

Therefore hx, fi =
∞X
i=1

λiµi = hΦ (x) , µi .

ii. Same proof as for i.



Schauder basis in a locally K− convex space and ... 383

Proposition 13. If Φ∗ and Ψ∗ are the algebraic adjoints of Φ and Ψ
respectively, then Φ∗ = Ψ−1 and Ψ∗ = Φ−1.

Proof. Φ∗ take his values in E
0
( [30], p. 128 ). For every x ∈ E and

µ ∈ ∆ we have hx,Φ∗ (µ)i = hΦ (x) , µi =
∞X
i=1

λiµi, where x =
∞X
i=1

λiei and

µ = (µi)i . So hx,Φ∗ (µ)i =

x,Ψ−1 (µ)

®
. Then Φ∗ = Ψ−1.

The same for Ψ∗ = Φ−1.

Proposition 14. a. For every A ⊂ E, (Φ (A))◦ = Ψ (A◦) ;
b. For every B ⊂ E

0
, (Ψ (B))◦ = Φ (B◦) .

Proof. a. Let A ⊂ E, then (Φ (A))◦ = (Φ∗)−1 (A◦) [[2], proposition 2.8,
p. 225].

Now Φ∗ = Ψ−1 (proposition 13), so (Φ (A))◦ =
¡
Ψ−1

¢−1
(A◦) =

Ψ (A◦) .
b. The same proof.

The topology τΦ defined on Λ by Φ has a zero-neighbourhood base
consisting of the family (Φ (A◦))A∈A ([6], II. 29), τΦ is a polar topology of
Ψ (A)−convergence, where Ψ (A) = {Ψ (A) / A ∈ A} (proposition 14).

Examples 1. 1. If we consider the space Eσ, then the topology σΦ has a

zero-neighbourhood base the set
n
(ψ (A))◦ / A ⊂ E

0
and A is finite

o
.

For A =
n¡
f i
¢
1≤i≤n / f i ∈ E

0
o
, put f i =

∞X
j=1

µij fj , for every i, 1 ≤ i ≤

n; (Ψ (A))◦ =
µ½³

µij

´
j≥1

, 1 ≤ i ≤ n

¾¶◦
. Hence σΦ is exactly the weak

topology.

2. Let τ be a polar topology ofA−convergence onE and eτ the associated
polar topology, then eτΦ = (eτ)Φ hash³Ψ³ eA´´◦iA∈A as a zero-neighbourhood
base. For every A ∈ A, Ψ

³ eA´ = gΨ (A), then eτΦ is defined by the family of
n.a seminorms

³epΨ(A)´
A∈A

, where :

epΨ(A) ³(λi)i≥1´ = sup
n

pψ(A) (λ1, ..., λn, 0, ...) = sup
n

sup
µ=(µi)∈A

¯̄̄̄
¯
nX
i=1

λiµi

¯̄̄̄
¯ =

sup
µ=(µi)∈A

epµ ³(λi)i≥1´ .
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3. The direct image topology of eσ with Φ on Λ, noted eσΦ, is de-
fined with the family of semi-norms n.a

³epΨ(f)´
f∈E0

, where epΨ(f) ((λi)i) =epµ ((λi)i) , (λi)i ∈ Λ and µ = Ψ (f) . Then eσΦ is exactly the natural topol-
ogy on Λ.

Some properties of the topology eσ
Lemma 4. i. If Eσ is sequentially complete then Λ = ∆

β;
ii. If E

0
σ is sequentially complete then ∆ = Λ

β;
iii. If Eσ and E

0
σ are sequentially complete then Λ is perfect.

Proof. i. Λ ⊂ ∆β (proposition 11).

Let λ = (λi)i an element of ∆
β, so λ = lim

n→∞

nX
i=1

λiei in
³
∆βσ

³
∆β∆ββ

´´
=

∆β
σ where ei = (δij)j for all i ≥ 1, (∆β is perfect). Then (ei)i is a Schauder

basis of ∆β
σ (propositions 5, 10 and remark 1), so λ = lim

n→∞

nX
i=1

λiei in

³
∆β, σ

³
∆β,∆

´´
.

Ã
nX
i=1

λie
i

!
n

is a Cauchy-sequence in (Λ, σ (Λ,∆)) which

is sequentially-complete (examples 1. 1), then λ = lim
n→∞

nX
i=1

λiei in (Λ, σ (Λ,∆))

and so λ ∈ Λ.
ii. ∆ ⊂ Λβ (proposition 11). Let λ = (λi)i ∈ Λβ, for every x ∈ E,

there exists α = (αi)i ∈ Λ such that x =
∞X
i=1

αiei. for all n ≥ 1, λnfn (x) =

λnαn
n→∞−→ 0; then

X
j≥1

λjfj is convergent in E
0
σ; and so λ = (λi)i ∈ ∆.

Proposition 15. i. If Eσ is sequentially complete then Eeσ is complete;
ii. If E

0
σ is sequentially complete then E

0eσ is complete;
where Eeσ = ³

E, eσ ³E,E0
´´

and E
0eσ = ³

E
0
, eσ ³E0

, E
´´

.

Proof. i. Suppose that Eσis sequentially complete, then by lemma 4

Λ = ∆β and
³
Λ, eσ ³Λ,∆ββ

´´
is complete ( proposition 6 and remark 2),

then (Λ, eσ (Λ,∆)) is complete and Eeσ is also complete (examples 1. 3).
ii. Same proof as for i.

Proposition 16. If Eσ is sequentially complete and has an equicontinuous
Schauder basis, then E is isomorphic to a closed subspace of some power
of K.
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Proof. Suppose that Eσ is sequentially complete and admits an equicon-

tinuous Schauder basis, then the topologies σ
³
E,E

0
´
and eσ ³E,E0

´
coin-

cides on E, then by proposition 15
³
E, σ

³
E,E

0
´´

is complete; and the

proposition follows ([7], proposition 7, p. 179).

Proposition 17. If Eσ and E
0
σ are sequentially complete and E has a weak

Schauder basis (ei)i≥1 , then eσ is the smallest compatible topology on E for
which (ei)i is an equicontinuous Schauder basis.

Proof. E0σ is sequentially complete, then ∆ = Λβ (lemma 3.1) and so³
Λ, eσ ³Λ,Λβ´´0 = ∆, since³Λ, eσ ³Λ,Λβ´´0 = Λβ. Consequently (E, eσ (E,E0))0
= E0 (example 1. 3) and the result follows from propositions 15 and [10],
proposition 1.2, p. 278.

Compatibility of the eτ−topology
We establish the compatibility and the completeness of eτ by distin-

guishing the three cases: K is local, K is spherically complete and K is
non spherically complete.

a. K is local

Lemma 5. Let E be a topological vector space with an equicontinuous
Schauder basis (ei)i ; then for every A ⊂ E the following are equivalent:

a. A is precompact;

b. (i). for all i ≥ 1, pi (A) is precompact and (ii).
Ã

nX
i=1

pi

!
n

converges

uniformly on A. Where the pn are defined in §. 2.

Proof. a =⇒ b For every i ≥ 1 pi (A) is precompact (pi is continuous).

On the other hand, the sequence of linear mappings

Ã
nX
i=1

pi

!
n

is equicon-

tinuous and converging pointwise to a mapping idE and A is compactoid,

then

Ã
nX
i=1

pi

!
n

converges uniformly on A (§. 3, lemma 3).

b =⇒ a Let U be a zero-neighbourhood, then there exists V a neigh-
bourhood of zero and n0 ∈ IN∗ such that V + V ⊂ U and

X
n0<i

pi (a) ∈ V

, for all a ∈ A. On the other hand B =

n0X
i=1

pi (A) is precompact, then
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there exist b1, b2, ..., bp ∈ E such that B ⊂
p[

i=1

(bi + V ) . Then A ⊂ B+V ⊂
p[

i=1

(bi + V ) + V ⊂
p[

i=1

(bi + U) .

Lemma 6. For every n ≥ 1, the mapping pn : E
0
σ −→ E

0eσ ,
∞X
i=1

µifi 7−→

µnfn, is continuous; where (fi)i is the weak Schauder basis asssociated to
(ei)i .

Proof. Let n ≥ 1 and x ∈ E, then for every f =
∞X
i=1

µifi =
∞X
i=1

hei, fi fi

we have: epx (pn (f)) = sup
m
|hx, Tm (pn (f))i| = |hx, pn (f)i| = |hx, fni| |hxn, fi| .

Take y = hx, fnixn, then y ∈ E and we have py (f) = epx (pn (f)) .
Remark 7. Lemma 6 is true for every K.

Lemma 7. Let A ∈ A, then the statements a. and b. are equivalente
a. A is precompact in E0eσ ;
b. (i).A is precompact inE0σ and (ii). for all x ∈ E, lim

n
epA (x− Sn (x)) =

0.

Proof. We consider A ∈ A such that A is precompact in E0eσ , then A is
precompact in E0σ (σ ≤ eσ) . On the other hand , for every x ∈ E, we have :epA (x− Sn (x)) = sup

k∈IN
pA (Sk (x− Sn (x))) = sup

f∈A
epx (f − Tn (f)) .

Since (ei)i is a Schauder basis of (E, τ) , the sequence (fi)i is an equicon-
tinuous Schauder basis of E0eσ [9], lemma 3, p. 402 and [10], proposition 1.2,
p. 278.

Furthermore A is precompact in E0eσ , so (Tn)n converges to idE0 uni-
formly on A in E0eσ (§. 3, lemma 3); then limn→∞

sup
f∈A

epx (f − Tn (f)) = 0 for all

x ∈ E, and so lim
n→∞

epA (x− Sn (x)) = 0.

Conversely A is precompact in E0σ =⇒ for all i ≥ 1 pi (A) is precom-
pact in E0eσ (lemma 6). On the other hand we have for all x ∈ E and

all n ≥ 1 epA (x− Sn (x)) = sup
f∈A

epx (f − Tn (f)) = sup
f∈A

epx
Ã
f −

nX
i=1

pi (f)

!
.

So lim
n→∞

epx
Ã
f −

nX
i=1

pi (f)

!
= 0 for all x ∈ E, this means that

Ã
nX
i=1

pi

!
n
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converges uniformly to idE0 on A in E
0eσ ; then by lemma 5, A is precompact

in E0eσ.
Lemma 8. If E0 is σ (E0, E)−sequentially complete, then for every A ∈ A,
the following are equivalent:

a. A is eσ−relatively compact;
b. (i). A is relatively compact in E0σ and (ii). for all x ∈ E,

lim
n→∞

epA (x− Sn (x)) = 0.

Proof. Suppose that A is eσ−relatively compact in E0eσ ; Aeσ is com-
pact in E0σ (σ ≤ eσ) . Since A ⊂ A

eσ
and A

eσ
is closed in E0σ then A

σ ⊂ A
eσ

and so A
σ
is compact in E

0
σ. Furthermore by lemma 7 we have (ii).

Conversely, take A such that (i) and (ii) of b holds, then A and so A
eσ

are precompacts in E0eσ (lemma 7). Consequently Aeσ is compact in E0eσ (E0eσ
is complete: proposition 15.ii).

Proposition 18. Let A ∈ A.
1. eA is eσ ³E0

, E
´
− precompact;

2. If E
0
is σ

³
E
0
, E
´
− sequentially complete, then

i. eA is eσ ³E0
, E
´
− relatively compact;

ii. Γ
³ eA´ is σ ³E0

, E
´
− relatively compact.

Proof. Let A ∈ A.
1. eA is σ

³
E
0
, E
´
− bounded [10], lemma 1.2, p. 277, then it is

σ
³
E
0
, E
´
− relatively compact ([2], proposition 2.3, p. 223) and so eA

is precompact in
³
E
0
, σ
³
E
0
, E
´´

. On the other hand for every x ∈ E

lim
n→∞

epA (x− Sn (x)) = 0 ((ei)i is a Schauder basis of (E, eτ)). Therefore, by
lemma 7 and remarks 2, eA is precompact in E

0eσ.
2. eA is σ (E0, E)−relatively compact and lim

n→∞
epA (x− Sn (x)) = 0 for

every x ∈ E, then eA is eσ ³E0
, E
´
− relatively compact (lemma 8).

3. eA is eσ ³E0
, E
´
−relatively compact, so B = Γ

³ eA´eσ is eσ ³E0
, E
´

−compact because B is a closed in a complete space E
0eσ (proposition 15

and [30], p. 26). Hence Γ
³ eA´ is σ ³E0

, E
´
− relatively compact in E

0
σ

(lemma 8).
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Proposition 19. If (E, τ) has a Schauder basis and E
0
is σ

³
E
0
, E
´
−

sequentially complete, then eτ is compatible with the duality DE,E0
E
.

Proof. We have σ ≤ eτ . On the other hand, eτ is generated by the family⎛⎝Γ³ eA´σ
³
E
0
,E

´⎞⎠
A∈A

([2], §. 3, proposition 3.4, p. 228) and Γ
³ eA´σ

³
E
0
,E

´

is σ
³
E
0
, E
´
− compact for every A ∈ A, so eτ ≤ τm, where τm is the Mackey

topology on E.

b. K is spherically complete

Lemma 9. Let E be a topologicalK−vector space with an equicontinuous
Schauder basis (ei)i ; then for every A ⊂ E the statements a and b are
equivalente

a. A is compactoid;

b. (i). for all i ≥ 1 pi (A) is compactoid and (ii).

Ã
nX
i=1

pi

!
n

converges

uniformly on A.

Proof. Suppose that A is compactoid; then for every i ≥ 1 pi (A) is com-
pactoid. On the other hand, (ei)i is an equicontinuous Schauder basis, soÃ

nX
i=1

pi

!
n

converges pointwise to the mapping idE ; since A is compactoid,

this convergence is uniform on A (§. 3, lemma 3).
Conversely let U and V are two zero-neigbourhoods such that V +V ⊂

U , then the convergence of

Ã
nX
i=1

pi

!
n

on A implies the existence of n0 ∈ IN

such that
∞X

i=n0+1

pi (x) ∈ V for all x ∈ A. On the other hand, (i) of lemma

induces the existance of x1 , ..., xn ∈ E such that
n0X
i=1

pi (A) ⊂ V + Γ (B) ,

where B = {x1, ..., xn}
Ã

n0X
i=1

pi (A) is compactoid

!
.

Then for every x ∈ A, x =
n0X
i=1

λiei +
∞X

i=n0+1

λiei
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=
n0X
i=1

pi (x) +
∞X

i=n0+1

pi (x) ∈ V + Γ (B) + V,

so A ⊂ U + Γ (B) .

Lemma 10. Let A ∈ A, then the following are equivalent
a. A is compactoid in E

0eσ;
b. (i).A is compactoid inE

0
σ and (ii). for all x ∈ E lim

n→∞
epA (x− Sn (x)) =

0.

Proof. Same proof as for lemma 7 using lemma 9 and remark 7.

Proposition 20. Let τ be a polar topology of A− convergence on E and
(ei)i be a Schauder basis of (E, τ) , then for every A ∈ A

i. eA is eσ−compactoid;
ii. If E

0
is σ

³
E
0
, E
´
− sequentially complete then

a. eA is eσ− relatively-c-compact;
b. Γ

³ eA´ is σ− relatively-c-compact.
Proof. i. Let A ∈ A, then eA is σ−bounded [10], lemma 1.2, p. 277

and, since K is spherically complete, eA is compactoid in E0
σ ([31], proposi-

tion 18.ii, p. 145). On the other hand for all x ∈ E lim
n→∞

epA (x− Sn (x)) = 0

since (ei)i is a Schauder basis of (E, eτ) . Then eA is copmactoid in E0eσ (lemma
10).

ii. Let A ∈ A; then

a. eAeσ is compactoid in E
0eσ (by i) =⇒ E

0eσ is complete, because E0
is

σ
³
E
0
, E
´
− sequentially complete (proposition 15), then eAeσ is also com-

plete and so it is c-compact in E
0eσ [31], theorem 9, p. 141.

b. B = Γ
³ eA´eσis c-compact in E

0eσ, then it is σ ³E0
, E
´
− c−compact

and σ
³
E
0
, E
´
−closed (σ ≤ eσ) , therefore Γ³ eA´σ

³
E
0
,E

´
is σ

³
E
0
, E
´
− c−

compact.

Proposition 21. If (E, τ) has a Schauder basis and E
0
is σ

³
E
0
, E
´
−

sequentially complete, then eτ is compatible with the duality DE,E0
E
.
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Proof. The topology eτ is a polar topology of B− convergence; where
B=

⎛⎝Γ³ eA´σ
³
E
0
,E

´⎞⎠
A∈A

and A is the family which defines the topology τ ;

for every A ∈ A, Γ
³ eA´σ

³
E
0
,E

´
is σ

³
E
0
, E
´
-c-compact in E

0
σ (proposition

20), then eτ is compatible with the duality DE,E0
E
[2], theorem 4.4, p.

234.

c. K is not spherically complete
K is not spherically complete =⇒ K is dense =⇒For every absolutely

K− convex A in E
0
,Kc (A) =

\
|λ|Â1

λ A =⇒ for all |µ| Â 1 µKc (A) =

Kc (µA) . Then we have the following proposition :

Proposition 22. If (E, τ) has a Schauder basis, then eτ is compatible.
Proof. Let A be a family which defines the topology τ, such that

for all A ∈ A A is absolutely K− convex; then Kc

⎛⎝ eAσ

³
E
0
,E

´⎞⎠◦ = ³ eA´◦
for all A∈ A [2], corollary 4.3, p. 233, so if we take

β =

⎛⎝Kc

⎛⎝ eAσ

³
E
0
,E

´⎞⎠⎞⎠
A∈A

, then β verify the conditions (a), (b) and (c)

of 8. Therefore eτ is a polar topology of β− convergence and its elements
are E− closed. Then eτ is compatible [2], theorem 4.3, p. 233.

Completeness of the topology eτ
Proposition 23. Let (E, τ) be a locally K−convex space and (ei)i be
a Schauder basis of (E, τ) . If E and E

0
are weakly-sequentially complete,

then (E, eτ) is complete.
Proof. The space

³
E, eσ ³E,E0

´´
is complete (proposition 15), then by

remarks 2 and ([2], theorem 3.2, p. 230)(E, eτ) is complete.
The following theorem is a consequence for previous results

Theorem 6. Let (E, τ) be a locally K− convex space with a Schauder
basis (ei)i such thatEσ andE

0
σ are sequentially complete, then eτ is complete

and it is the coarsest compatible topology on E finer than τ for which (ei)i
is an equicontinuous Schauder basis.
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5. The weak basis Problem

Throughout this section we shall assume that (E, τ) has a weak Schauder
basis (ei)i and the spaces E

0
σ and Eσ are sequentially complete. We then

characterize the finest
³
E,E

0
´
−compatible topology on E for which (ei)i

is a Schauder basis; according to theorem 6, (ei)i is equicontinuous for that
topology. We shall distinguish three cases: K is local, K is spherically
complete or K is not spherically complete.

a. K is local
Let B=

n
B ⊂ E

0
/B = eB and B is eσ − precompact

o
; it is obviously that B

is not empty and verifies the properties (a) , (b) and (c) of 8. Let U be the
polar topology of B−convergence on E; we have the following propositions

Proposition 24. U is compatible with the duality
D
E,E

0
E
and (ei)i is an

equicontinuous Schauder basis of (E,U) .

Proof. E
0
is σ

³
E
0
, E
´
− sequentially complete =⇒ for all B ∈ B,

Γ (B)
σ

³
E
0
,E

´
is σ

³
E
0
, E
´
− compact (proposition 18) =⇒ U is compatible

with the duality
D
E,E

0
E
[2], theorem 4.5, p. 235.

We’ll prove that (ei)i is a Schauder basis of (E,U) . (ei)i is a weak
Schauder basis =⇒ (fi)i is a Schauder basis of

³
E
0
, σ
³
E
0
, E
´´

, then (fi)i≥1

is an equicontinuous Schauder basis of
³
E
0
, eσ ³E0

, E
´´
; therefore (Tn)n is

equicontinuous in
³
E
0
, eσ ³E0

, E
´´
and converges pointwise to the mapping

idE0 , then the convergence is uniformly on every B ∈ B, this means that

for all x ∈ E lim
n
sup
f∈B

epx
Ã
f −

nX
i=1

pi (f)

!
= 0.

For every x ∈ E and for every B ∈ B we have sup
f∈B

epx
Ã
f −

nX
i=1

pi (f)

!
=

epB (x− Sn (x)) (lemma 7). Then lim
n
epB (x− Sn (x)) = 0 for all x ∈ E and

for all B ∈ B, and so (Sn (x))n converges to x in (E,U) for every x ∈ E.
Moreover the associated sequence (fi)i of (ei)i verifies for all i ≥ 1

fi ∈ (E,U)
0
(U is compatible).

Proposition 25. U is the finest compatible topology on E for which (ei)i
is a Schauder basis.
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Proof. Let τ be a compatible topology on E such that (ei)i be a

Schauder basis of (E, τ). Then B = Γ
³ eA´σ

³
E
0
,E

´
is a σ

³
E
0
, E
´
− com-

pact of E
0
(proposition 18) and since B = eB, B◦ is a zero-neighbourhood

in (E,U) ; now B◦ =
³ eA´◦ , for every A ∈ A, where A is a family which

defines the topology τ, then eτ ≤ U and so τ ≤ U .
Proposition 26. A weak Schauder basis (ei)i is a Schauder basis for a

polar compatible topology on E if, and only if, for every A ∈ A, eA iseσ ³E0
, E
´
− relatively compact.

Proof. =⇒] By proposition 18.
⇐=] Suppose that for every A ∈ A, eA is eσ ³E0

, E
´
−relatively compact,

then Γ
³ eA´σ

³
E
0
,E

´
is σ

³
E
0
, E
´
− compact (proposition 18), so τ ≤ U and

(ei)i is a Schauder basis of (E, τ) .

Corollary 4. A weak Schauder basis (ei)i is a Schauder basis for a polar

compatible topology τ onE if, and only if, for everyA ∈ A, eA is eσ ³E0
, E
´
−

relatively compact, where A is a family that define the topology τ.

Proof. τm is compatible, then it suffices to use the proposition 26.

Remark 8. If τ is a polar topology of A− convergence on E having a

weak Schauder basis (ei)i, then for every A ∈ A, eA is eσ ³E0
, E
´
− relatively

compact.

Proof. E is an OP− space, so (ei)i is a Schauder basis of (E, τ) , then
according to proposition 18 we have the conclusion.

b. K is spherically complete

Let N =
n
N ⊂ E

0
/ N = eN and N is eσ ³E0

, E
´
− compactoid

o
; it is ob-

viously that N is not empty and verifies the properties (a) , (b) and (c) of
8. Let V the polar topology of N−convergence on E, then we have the
following propositions

Proposition 27. The topology V is compatible with the duality
D
E,E

0
E

and (ei)i is an equicontinuous Schauder basis of (E,V) .
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Proof. Same proof as for proposition 24 using the proposition 20 and
[2], theorem 4.4, p. 234.

Proposition 28. V is the finest compatible topology on E for which (ei)i
is a Schauder basis.

Proof. Same proof as for proposition 25 using the proposition 20.

Proposition 29. A weak Schauder basis (ei)i is a Schauder basis for a

polar compatible topology τ on E if, and only if, for every A ∈ A, eA
is eσ ³E0

, E
´
−relatively c-compact, where A is a family that defines the

topology τ.

Proof. Same proof as for proposition 26 using the proposition 20.

Remark 9. if τ is a polar topology of A−convergence on E that having a

weak Schauder basis (ei)i , then for every A ∈ A, eA is eσ ³E0
, E
´
− relatively

c-compact.

Corollary 5. A weak Schauder basis (ei)i is a Schauder basis for a topol-

ogy τc onE if, and only if, for every absolutelyK−convex, σ
³
E
0
, E
´
−bounded

and σ
³
E
0
, E
´
−c−compact A of E0

, eA is eσ ³E0
, E
´
−relatively c-compact.

Proof. It is sufficient to take τ = τc in proposition 29.

c. K is not spherically complete

Let M the family of all M ⊂ E
0
such that M = fM, M is σ

³
E
0
, E
´
−

bounded, E− closed and (Tn)n converges uniformly on M in E
0eσ, where

E
0eσ = ³

E
0
, eσ ³E0

, E
´´

. Let ϑ be the polar topology ofM−convergence.

Theorem 7. ϑ is the finest compatible topology on E for which (ei)i is
an equicontinuous Schauder basis.

Proof. ϑ is compatible [2], theorem 4.3, p. 233.
Let M ∈M, then (Tn)n converges uniformly on M in E

0eσ =⇒ lim
n
sup
f∈Mepx (f − Tn (f)) = 0, so lim

n
pM (x− Sn (x)) = 0. Then (ei)i is a Schauder

basis of ϑ.
Let τ be a polar and compatible topology of A− convergence such that
(ei)i be an equicontinuous Schauder basis, then τ = eτ . Therefore
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A=
n
A ⊂ E

0
/ A = eA and A is σ

³
E
0
, E
´
− bounded and E − closed

o
.

Let A ∈ A, so for every x ∈ E lim
n

pA (x− Sn (x)) = 0, then lim
n

supf∈A epx (f − Tn (f)) = 0, therefore (Tn)n converges uniformly on A in

E
0eσ. Then τ ≤ ϑ.

Theorem 8. Let τ be a polar topology of A− convergence on E such that
Eσ and E

0
σ are sequentially complete and (ei)i be a weak Schauder basis of

E, then (ei)i is a Schauder basis of (E, τ) if, and only if, for all A ∈ A the
sequence (Tn)n converges uniformly on A in E

0eσ.
Proof. If (ei)i is a Schauder basis of (E, τ) , then (ei)i is an equicon-
tinuous Schauder basis of eτ ; therefore for all A ∈ A the sequence (Tn)n≥1
converges uniformly on eA in E

0eσ , so for all A ∈ A, (Tn)n converges uni-
formly on A in E

0eσ.
Conversely, let A ∈ A, then for all x ∈ E epA (x− Sn (x)) = sup

f∈Aepx (f − Tn (f)) .

But lim
n
sup
f∈A

epx (f − Tn (f)) = 0, then lim
n

epA (x− Sn (x)) = 0 and so

lim
n

pA (x− Sn (x)) = 0.

Theorem 9. Under the conditions of theorem 8, E is an OP− space if,
and only if, for all A ∈ A the sequence (Tn)n converges uniformly on A in
E
0eσ.

Proof. ([21] , proposition 1) and theorem 8.

Proposition 30. Let τ be a polar topology of A− convergence on E
and (ei)i be a weak Schauder basis of E, then if every eσ− equicontinuous
sequence of E

0
that converging pointwise to zero converges uniformly on

every A ∈ A in E
0eσ, then (ei)i is a Schauder basis of (E, τ) .

Proof. (fi)i is an equicontinuous Schauder basis of
³
E
0
, eσ ³E0

, E
´´
=

E
0eσ =⇒ (Tn)n is an equicontinuous sequence of E

0eσ =⇒ the sequence¡
idE0 − Tn

¢
n
is pointwise converging to zero in E

0eσ and this convergence is
uniformly on every A ∈ A in E

0eσ =⇒ lim
n
sup
f∈A

epx (f − Tn (f)) = 0 for all

x ∈ E =⇒ lim
n
epA (x− Sn (x)) = 0 for all x ∈ E =⇒ lim

n
pA (x− Sn (x)) = 0

for all x ∈ E.
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6. Application to barrelled spaces and G-spaces

Barrelled spaces
a. K is spherically complete

Proposition 31. If (E, τ) is a barrelled locally K− convexe space which
is σ

³
E,E

0
´
− sequentially complete and having a weak Schauder basis,

then (E, τ) is complete and every weak Schauder basis is an equicontinuous
Schauder basis of (E, τ) .

Lemma 11. If (E, τ) is barrelled and having a Schauder basis then τ = eτ .
Proof. Let A ∈ A, where A is a family that defines the topology τ ;³ eA´◦ is a barrel, so it is a zero-neighbourhood in (E, τ) , then eτ ≤ τ.

Proof of proposition Let (ei)i be a weak Schauder basis of E, then
(ei)i is a Schauder basis of (E, τ) (E is an OP − space) =⇒ (ei)i is an
equicontinuous Schauder basis of eτ =⇒ (ei)i is an equicontinuous Schauder
basis of (E, τ) (τ = eτ) .

b. K is not spherically complete

Proposition 32. Every weak Schauder basis in a polarly barrelled polar
locally K−convex space is an orthogonal basic sequence.

Proof. ([21] , corollary 6, p. 155).

Proposition 33. Let E be a Banach space with a weak Schauder basis;
then E is a polar space if and only if, every weak Schauder basis in E is a
basic sequence.

Proof. For the sufficient condition, one only has to use theorem 3.2 (α)
=⇒ (β) of [28]. The necessary condition is a particular case of proposition
32.

G-spaces

Proposition 34. If (E, τ) is a weakly-sequentially complete G-space that
having a Schauder basis, then (E, τ) is complete and this basis is equicon-
tinuous.

Proof. By theorem 6.
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Proposition 35. If (E, τ) is a G-space with a Schauder basis (ei)i , there
is no strictly finer locally K−convex topology on E for which (ei)i is still
a Schauder basis.

Proof. By proposition 19 if K is local, proposition 21 if K is spherically
complete and by proposition 22 if K is not spherically complete.

Proposition 36. Suppose that K is spherically complete; if (E, τ) is a
weakly-sequentially complete G-space that having a weak Schauder basis
(ei)i , then (E, τ) is complete and (ei)i is an equicontinuous Schauder basis
of (E, τ) .

Proof. Let (ei)i be a weak Schauder basis of E, then E is an OP−space
=⇒ (ei)i is a Schauder basis of (E, τ) . So the proposition is an immediate
consequence of proposition 34.
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