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Abstract

There is a classical fact conjectured by Albert Einstein, that the
presence of matter causes the curvature of space-time. However, even
a vacant space-time can have a non-zero Weyl’s curvature. For in-
stance, such a condition can be found near black holes and in the
zones where gravitation waves radiate. Getting inspirations from such
a fabulous classical fact, authors have attempted to describe the purely
differential geometric behaviour of Weyl’s-Gauge invariant concep-
tions concerning to 4-dimensional structured cosmos. Under the well
known Ricci flow (R.F.) techniques, various Weylian configurations
have been evolved as heat diffusion equations, which can pave the way
for new consequencies in relativity theory and cosmology.

M.S.C [2000] : 34B20; 70S15; 58J65

Keywords : Diffusion; Ricci flow (R.F.); Gauge; Cosmos; Weyl;
Tensor density; Conformal; rescaling; pseudo vector.

rvidal
Máquina de escribir
DOI: 10.4067/S0716-09172011000300005

http://dx.doi.org/10.4067/S0716-09172011000300005


330 Sandeep K. Bahuguna and Kailash C. Petwal

Nomenclature: 1.∇2g = Laplacian operator 2. Semicolon(; )=Covariant differ-

entiation with respect to symmetric affine connection Γijk 3. Comma (, ) = Partial

differentiation with respect to the co-ordinates xi.

1. Introduction:

In the present era of Einsteins theory of relativity, it has been well known that
the modern differential geometric tools can easily pave the ways to explain in-
tegrated analysis of physical incidents. Different prospects for the elucidation of
the fundamental nature and fabric of cosmos in an exactly differential geometric
fashion entails that there must be a deep underlying structural basis for extraor-
dinary synchronization that lies in the depth of natures unity. Various Physicists
and Mathematicians used to evoke that the cosmos is a self delineating continuum
which bond whatsoever seems to be genuinely intrinsic geometric object to physi-
cal observable. Recently, various multi-scale differential geometric approaches are
being employed up to some great extent to enhance basic outcomes of the Ein-
steins theory of relativity and it has been noteworthy that the analytic differential
geometry alone is able to offer the insightful description of the difficulty and har-
mony of our structured cosmos that has escort mathematicians and physicists to
embark on Geometrization of cosmos and its apparently systematic principles of
nature.

The aforementioned prosperity of intrinsic multi scale differential geometric
prospects for the geometrization of cosmos theory has produced in the fantastic
way of unified field theory. The origin of such unified field theory for structured
cosmos can thought to be initiated roughly since 1918, when Prof. Hermann Weyl
applied his self-styled purely infinitesimal geometry. This famous Weyls geometry
has been immensely used by various researches to geometrize the electromagnetic
field of structured cosmos with the hope that it could be incorporated with the
already geometrized gravitational field of Einsteins general relativity [5]. In the
general relativity, the gravitational field forms the basic geometric structure of a
structures cosmos (i.e., usual 4-dimensional continuum), while the electromagnetic
field is unconnected to the geometry of such a continuum [7]. Various efforts have
been made to establish a new hypothesis of gravitation and electromagnetism
with some modified geometry so that there could be room and demand for the
prologue of some other tensorial structures besides the well known Riemannian
metric tensor. One of the niftiest among these efforts is unquestionably H. Weyls
gauge-invariant geometry [7]. Hereafter, we now briefly delineate Weyls gauge-
invariant geometry as such geometry is the main concern of our study.

In the metric manifolds, the space-time interval dt between two infinitesimally
near world points with spatial co-ordinates P (xi, t) and (xi+dxi, t+dt) is invariant.
Thus to each world point, there may concern an invariant ”cone” with directions
along which dt vanished. Such a cone in the cosmos theory is known as ”light cone”.
Weyl had introduced an idea to amend the geometry of structured cosmos so that
the invariance of light cone could be maintained, whereas dt would lose its invariant
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attitude. In addition, to justify the feature of light that ”possible directions of light
rays are an invariant property of structured cosmos”, Weyl also assumed that
the zero directions of light rays are entirely distinguishes by the ration between
different components of the metric tensor used for structured cosmos and therefore
together with co-ordinate transformations of tensorial structures, the existence of
”Gauge transformations” would be applicable. The gauge transformation was
considered in a fashion, such that it multiplies all components of metric tensor
by a factor which is an arbitrary function of spatial co-ordinates. In addition
to invariance nature of space-time interval and thus the light cone, the concept of
”normalized condition” has been introduced for the arbitrary factor of line element
with the pre-assumption that gij be equal to −1, i.e.,

|gij | = −1.(1.1)

Such normalizing condition would not be invariant if we wish to preserve the
tensor transformation character of the metric tensor gij . To avoid this difficulty, we
assume that in the present study such metric tensor transforms as the component
of a tensor density of weight ω = − 12 just like below:

gij = gαβ|
∂x

∂x
|−1/2 ∂x

α

∂xi
∂xβ

∂xj
.(1.2)

⇒ gij = gαβ |
∂x

∂x
|1/2 ∂x

α

∂xi
∂xβ

∂xj
.(1.3)

The line element dt = gijdx
idxj , thus loses its invariant character. Also, the

determinant of the metric tensor can be represented as the multiple product of the
metric tensor and Levi-Civita tensor density:

|gij | ≡
1

24
δi1,i2,i3,i4δj1,j2,j3,j4gi1j1gi2j2gi3j3gi4j4 .(1.4)

Now, because of the Levi-Civita densities, each having weight +1, the deter-
minant is therefore a scalar and thus expression (1.4) is an invariant condition.
Because of the normalizing condition (1.1), the Riemannian metric tensor involved
in this discussion will have only nine independent components.

Let us now discuss some fundamental aspects of Weyl’s gauge geometry, which
would serve as an especial environment to its evolution by means of Ricci flow.

1.1. Basic Mathematical Environment of Weyl’s Gauge Invariant
Geometry:

In addition to establish evolution equations for the Weyl’s gauge invariant geome-
try under Ricci flow, we introduce some basic tensor calculus involving the notions
of affine connection and curvature tensor for the structured cosmos. Since the ten-
sor densities play extensive role in this geometry, we extend the usual concept of
covariant differentiation of tensor densities. For this purpose, we employ a set of
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variables with one index φµ, which indulges in the usual expression of the covariant
differentiation as like below:

∇qu
l,m,n···
i,j,k··· =

∂

∂xq
∇qu

l,m,n...
i,j,k··· + ue,m,n···

i,j,k··· Γ
l
eq + · · ·− ul,m,n···

e,j,k··· Γ
e
iq − · · ·− wul,m,n···

i,j,k···,φq ,

(1.5)

where w is the weight of the tensor density ul,m,n···
i,j,k··· . To obtain the transforma-

tion law of index φµ, it is sufficient to consider the covariant derivatives of a
scalar density D of weight w. These derivatives form a vector density as follows:

∇q∗D
∗ =

¯̄̄
∂xα

∂x∗β

¯̄̄
∂xl

∂x∗q∇lD.

Therefore, we have

∇l

³¯̄̄
∂xα

∂x∗β

¯̄̄w
D
´

∂xl

∂x∗q − wφ∗q

¯̄̄
∂xα

∂x∗β

¯̄̄w
D =

¯̄̄
∂xα

∂x∗β

¯̄̄w
(∇lD − wφlD)

∂xl

∂x∗q ,

and therefore we have

w

∙
∇l

µ
log
¯̄̄ ∂xα
∂x∗β

¯̄̄¶ ∂xl

∂x∗q
− wφ∗q

¸
= −wφl

∂xl

∂x∗q
D.(1.6)

This logarithmic derivative of the determinant can be rewritten in the more
simplified form:

∇l

µ
log
¯̄̄ ∂xα
∂x∗β

¯̄̄¶
=

∂x∗β

∂xα
∂x∗q

∂xl
∂2xα

∂x∗β∂x∗q
= − ∂xα

∂x∗β
∂2x∗β

∂xα∂xl
.(1.7)

All the above, consequently lead to the following very desirable transformation
law of index φµ:

φ∗q = φl
∂xl

∂x∗q
+

∂x∗β

∂xα
∂2xα

∂x∗β∂x∗q
=

∂xl

∂x∗q

µ
φl −

∂xα

∂x∗β
∂2x∗β

∂xα∂xl

¶
(1.8)

Now, once we have the concept of covariant differentiation in the sense of
tensor densities, it is very logical to postulate that covariant derivatives of the
Levi-Civita tensor density vanish. Such condition produces a unique relationship
between the pseudo vector φl and the components of Christoffel’s symbol as given
below:

δρl2l3l4Γl1ρq + δl1ρl3l4Γl2ρq + δl1l2ρl4Γl3ρq + δl1l2l3ρΓl4ρq − δl1l2l3l4φq = 0.(1.9)

By straight forward computation, it can be shown that each term on the left
hand side of equation (1.9) is skew symmetric with respect to all the four indices
l1, l2, l3 and l4. Also, in this significant equation, the summation over ρ in the
first term reduces to the one value ρ = l1, likewise second term ρ = l2 and so forth.
The first four terms in (1.9) are equal to δl1l2l3l4Γρρq and the condition (1.9) then
reduces to the form:
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φσ = Γ
ρ
ρδ.(1.10)

Moreover, the metric tensor in Weyl’s geometry plays a role similar to that
the metric tensor in Riemannian geometry. we shall therefore assume that its
components of covariant differentiation vanish and the Christoffel’s symbol are
symmetric in their subscripts. Now we have an expression:

gµν;ρ ≡ gµν,ρ − gµσΓ
σ
νρ − gσνΓ

σ
µρ +

1

2
gµνφρ = 0.(1.11)

These equations can be solved, if we introduce the ”contravariant metric tensor
density” gµν of weight

¡
+1
2

¢
which has the property glµg

µν = δνl .
Hence the solution of equation (1.11) then takes the form:

Γλlk =
1

2
gλσ (glσ,k + gkσ,l − glk,σ) +

1

4
gλσ (glσφk + gkσφl − glkφσ) ≡

µ
λ

lk

¶
.

(1.12)

If we reform the contracted Christoffel’s symbol
¡
l
lk

¢
, we again have equation

(1.10). In Weyl’s geometry, the pseudo vector φl and the Riemannian metric
tensor gµν are independent of each other, but needed to form the components of

Christoffel’s symbol
¡
λ
lk

¢
. Also, the curvature tensor Rν

lkλ is skew symmetric in its
first index pair, has the cyclic symmetry as Rν

lkλ + Rν
kλi + Rν

λlk = 0and satisfies
the well known Bianchi’s identity given by

Rν
lkσ;λ +Rν

kλσ;l +Rν
λlσ;k = 0.(1.13)

If we contract this Bianchi’s identity with respect to indices l and ν, we have
the equation:

Rρ
ρkσ;λ +Rρ

kλσ;ρ +Rρ
λρσ;k = Rρ

ρkσ;λ +Rρ
kλσ;ρ −Rρ

ρλσ;k ≡ 0.(1.14)

Let us now raise the index σ and contract the equation (1.14) with respect to
k and σ, we obtain an equation of the form:

Rσρ
ρσ;λ +Rσρ

σλ;ρ −Rσρ
ρλ;σ ≡ 0,(1.15)

in which the R-quantities are densities.
In Riemannian geometry, due to the skew symmetric property of curvature

tensor, the second and third terms of equation (1.15) are equal, while in case
of Weyl’s geometry the same reason can not be applied. Therefore to obtain
symmetric relationship of last index pair in this geometry, one need to form a
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covariant curvature density Rlkλµ. Thus in Weyl’s geometry the following symbol
has been adopted:

(lk, λ) = gλσ

µ
σ

lk

¶
=
1

2
(glλ,k + gkλ,l − glk,λ) +

1

4
(glλφk + gkλφl − glkφλ) .

(1.16)

In terms of the symbol (lk, λ), the derivative of the metric tensor are

glk,λ = (kλ, l) + (lλ, k)−
1

2
glkφλ.(1.17)

Furthermore, in the light of symbol (lk, λ), the covariant components of cur-
vature tensor density are written in the form:

R∗lkλµ = (λl, µ),k +
1

2
(λl, µ)φk − (λk, µ),l −

1

2
(λk, µ)φl

+gρσ [(λk, ρ) (µl, σ)− (λl, ρ) (µk, σ)]

= Rlkλµ +
1

4
[glµφλ,k − gk,µφλ,l + gλµ (φl,k − φk,l) + gkλφµ,l − glλφµ,k] .

(1.18)

Here in the right hand side of the expression (1.18), Rlkλµ stands for a number
of terms which have all the algebraic symmetry properties of the Riemannian
curvature tensor, while rest of the terms do not have such properties. If we use an
expression Rlkλµ +Rlkµλ, which vanishes in Riemannian geometry,, we have from
equation (1.18):

R∗lkλµ = −R∗lkµλ + 2gλµ (φl,k − φk,l) .(1.19)

Even though, φl is not a vector, its skew-symmetric derivative is given as;

φlk = φl,k − φk,l,(1.20)

which forms a tensor and can be demonstrated with the help of equation (1.8). In
case, if one apply equation(1.19) in the second term of equation (1.15), we obtain
here;

Rσρ
ρσ;λ − 2R

σρ
ρλ;σ + 2g

ρσφσλ;ρ ≡ 0.(1.21)

However in equation (1.21), one can introduce the symmetric part of Rρ
ρkλ, so

that;
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Rkλ =
1

2

³
Rρ
ρkλ +Rρ

ρλk

´
.(1.22)

In the light of equation (1.18), we observe that Rkλ and Rρ
ρkλ are connected

by the equation

Rρ
ρkλ = Rkλ +

1

2
φλk.(1.23)

Now, by substituting this expression in equation (1.21), we obtain the con-
tracted Bianchi identities in the following form:µ

Rλσ − 1
2
gλµR

¶
;σ

+
1

2
φλσ;σ = 0.(1.24)

φλσ is a tensor density of weight +1 and φλσ;σ is therefore the ordinary divergence

of φλσ.
In Weyl’s geometry, the structured cosmos is characterized by a symmetric

tensor density gµν and the ”pseudo vector” φµ. In this geometry it is very natural
that the gµν represent gravitational field and the φµ are the components of the
world vector potential. In Weyl’s’s original formalism, the φµ transform as a
vector with respect to co-ordinate transformations, but are changed by a gradient
when a gauge transformation is applied. This is the historical reason for calling
the addition of a gradient to the electromagnetic world vector potential, a gauge
transformation.

1.2. Weyl’s-Gauge Invariant Geometry under Ricci Flow:

The significance of Riemannian geometry in relativity has been questioned both
from the axiomatic and observational point of view. For instance, in [6]; the au-
thors have tried to give an axiomatic foundation for the geometrical nature of
space-time by means of ideal operations with elementary clocks and rods. Instead
of this, a Weylian structure is more appropriate. As from the observational stand-
point, one has to keep concentration upon the measuring procedure of invariance
of light cone and for this, besides the metric gij(x), a pseudo scalar function φ(x)
must be introduces. Then such a notion leads a conformally-Riemannian struc-
ture which is more specific rather than Riemannian one. Therefore, in the modern
study of relativity, the most promising and credible alternatives to Riemannian
structures of structured cosmos are the conformally Riemannian (i.e., Weylian
configuration)structures.

These Weylian configurations are most prominent because of the two reasons.
First, the Weyl’s structures possess an additional degree of freedom to involve the
Gauge transformations, which make the study of structured cosmos more inter-
esting for dealing with gauge principle in field theory. Second, there are some
effects that take place in Weyl’s manifold, that classically draw some purely quan-
tum effects. For instance, in [9], the authors verified that there is some kind of
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correlation between objects in classical gravity on Weyl’s manifolds and quantum
non-Abelian field theory.

Now, the structured cosmos having Weylian structures as its characteristic
tools is defined as an affine manifold specified by a metric tensor gij(x) and a
gauge vector (in our case, a pseudo vector φi(x)), such that [4]:

Υijk = Γ
i
jk −

1

2

¡
φk + δij + φjδ

i
k − gjkφ

i
¢
,(1.25)

whereΥijk is Weyl’s affine connection and Γ
i
jk is the well known Christoffel’s second

kind symbol of the metric given by eq. (1.12). By substituting (1.12) in (1.25),
we obtain a Weylian affine structure in terms of metric tensor and pseudo vector
as follows:

Υijk =
1

2
gih (gjh,k + gkh,j − gjk,h) +

1

4
gih (gjhφk + gkhφj − gjkφh)

−1
2

¡
φkδ

i
j + φjδ

i
k − gjkφ

i
¢
.

(1.26)

Furthermore, is has been already remarked that in addition to manifold mo-
tions group of Riemannian structures, Weyl’s geometry admits internal (i.e. gauge)
transformations of the form:
gij → Ω2(x)gij .
Thereby, the Weyl’s tensor can also be characterized as the part of covariant Rie-
mannian tensor:

Riklm =
∂

∂xl
Γi,km −

∂

∂xm
Γik,l + Γ

s
klΓs,im − ΓskmΓs,il,(1.27)

which is covariant under the conformal transformation or deformation of the met-
ric. Thus, if we take the conformal deformation of the metric gij as;

bgij = Ω2gij .(1.28)

Then, for an n = 4 dimensional space-time continuum, the Weyl’s tensor is
given by;

Wijkl = Rijkl −
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

2
+

R (gikgjl − gilgjk)

6
.

(1.29)
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Under the deformation (1.28), this Weyl’s tensor takes the form:

cWijkl = Ω
2(x)Wijkl.(1.30)

Also, under the conformal deformation, the pseudo-vector φi(x) will have the
form:

bφi(x)→ φi(x) + 2Ω
−1 ∂Ω

∂xi
.(1.31)

The conformal transformations given by equations (1.28) and (1.31) are also
acknowledged as Weyl’s rescaling of metric tensor and pseudo-vector respectively.

Now, it is well known that while using Weyl’s geometry, the properties of sym-
metries and skew-symmetries for Weyl’s tensor can not take place in the same sense
as in case of Riemannian geometries. Therefore, we need to develop a covariant
Weyl’s tensor density W ∗ijkl as follows:

For the sake of simplicity, concerning to indicial discipline, we rewrite eq.
(1.18) as below:

R∗ijkl =
∂

∂xj
Γki,l +

1

2
Γki,lφj −

∂

∂xi
Γkj,l −

1

2
Γkj,lφl + gρσ [Γkj,ρΓli,σ − Γki,ρΓlj,σ] ,

(1.32)

or,

R∗ijkl =
∂

∂xj
ghlΓ

h
ki+

1

2
φjghlΓ

h
ki−

∂

∂xi
ghlΓ

h
kj−

1

2
φighlΓ

h
kj+ghσ×

£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

(1.33)

Further, from eq. (1.32), one can calculate the Ricci tensor density (or con-
tracted curvature density) by taking inner product of gik with eq. (1.32) through-
outly. The result of this process is as follows:

gikR∗ijkl = gik
∂

∂xj
Γki,l +

1

2
φjg

ikΓki,l − gik
∂

∂xi
Γkj,l −

1

2
gikφiΓkj,l

+gikgρσ [Γkj,ρΓli,σ − Γki,ρΓlj,σ] .

⇒ R∗jl = gik
∂

∂xj
¡
ghlΓ

h
kj

¢
+
1

2
φjg

ikghlΓ
h
ki − gik

∂

∂xi
¡
ghlΓ

h
kj

¢
− 1
2
gikφighlΓ

h
kj
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+gik
£
ΓσkjghσΓ

h
li − ΓσkighσΓhlj

¤
.

⇒ R∗jl = gik
∂

∂xj
¡
ghlΓ

h
kj

¢
+
1

2
φjg

ikghlΓ
h
ki − gik

∂

∂xi
¡
ghlΓ

h
kj

¢
− 1
2
gikφighlΓ

h
kj

+ gikghσ
£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.(1.34)

On the basis of eq. (1.34), we can calculate R∗jk, R
∗
il and R∗ik as follows:

R∗jk = gilR∗ijkl = gil
∂

∂xj
¡
ghlΓ

h
ki

¢
+
1

2
φjghlg

ilΓhki − gil
∂

∂xi
¡
ghlΓ

h
kj

¢
−1
2
φighlg

ilΓhkj + gilghσ
£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

Now, applying the process of inner multiplication and contraction for further
manipulations, the last expression yields;

R∗jk = gijR∗ijkl = gil
∂

∂xj
¡
ghlΓ

h
ki

¢
+
1

2
φjδ

i
hΓ

h
ki − gil

∂

∂xi
¡
ghlΓ

h
kj

¢
−1
2
φiδ

i
hΓ

h
kj + gilghσ

£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

At this stage, using the property Γiij =
1
2
∂log(gii)

∂xk
, we finally have;

R∗jk = gijR∗ijkl = gil
∂

∂xj
¡
ghlΓ

h
ki

¢
+
1

4
φj

∂log(gii)

∂xk
− gil

∂

∂xi
¡
ghlΓ

h
kj

¢
− 1
2
φiΓ

i
kj + gilghσ

£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

(1.35)

In the similar fashion, we have the component R∗il of the Ricci tensor density
as;

R∗il = gjkR∗ijkl = gjk
∂

∂xj
¡
ghlΓ

h
ki

¢
+
1

2
φjg

jkghkΓ
h
ki − gjk

∂

∂xi
¡
ghlΓ

h
kj

¢
− 1
2
φig

jkghlΓ
h
kj + gjkghσ

£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

(1.36)
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Eventually, we calculate the component R∗ik of the Ricci tensor density as
below:

R∗ik = gjlR∗ijkl = gjl
∂

∂xj
¡
ghlΓ

h
kj

¢
+
1

2
φjg

jlghlΓ
h
ki − gjl

∂

∂xi
¡
ghlΓ

h
kj

¢
−1
2
φig

jlghlΓ
h
kj + gjkghσ

£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

Again, under the process of inner multiplication and contraction, the last result
yields;

R∗ik = gjl
∂

∂xj
¡
ghlΓ

h
ki

¢
+
1

2
φjΓ

j
ki − gjl

∂

∂xi
¡
ghjΓ

h
kj

¢
− 1
4
φi
∂loggjj
∂xk

+ gjlghσ
£
ΓσkjΓ

h
li − ΓσkiΓhli

¤
.

(1.37)

Afterward, we now calculate the scalar curvature tensor density by taking
inner product of gij with R∗ij . The result of this process is as follows:

R∗ = gijRij = gijgkl
∂

∂xj
¡
ghlΓ

h
ki

¢
+
1

4
φi
∂loggkk
∂xi

− gijgkl
∂

∂xi
¡
ghlΓ

h
kj

¢
− 1
4
φj

∂loggkk
∂xj

+ gijgkjghσ
£
ΓσkjΓ

h
li − ΓσkiΓhlj

¤
.

(1.38)

Evidently, in view of equations (1.29), (1.33), (1.34), (1.35), (1.36), (1.37) and
(1.38), the Weyl’s tensor density can be evolved as the composition of components
of Riemannian tensor density R∗ijkl, the Ricci tensor densities R

∗
jl, R

∗
jk, R

∗
ik, R∗il

and the scalar curvature density R∗ in the following way:

W ∗ijkl = R∗ijkl −

³
R∗ikgjl −R∗ilgjk +R∗jlgik −R∗jkgil

´
2

+
R∗ (gikgjl − gilgjk)

6
.

(1.39)
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1.2.1. Evolution of Weylian Configurations under Ricci Flow:

It has been already mentioned in the foregoing section that in addition to com-
pletely analyze the geometric nature of structured cosmos of dimension n = 4,
(from axiomatic as weel as observational stand points), one need to go through
conformally Riemannian structures (often called Weylian configurations) rather
than Riemannian one.

To develop the structured cosmos, Weyl’s affine connection given by eq. (1.26)
has been introduced. Also, a Weyl’s tensor density given by eq. (1.39) has been
setup. It is also known that Weylian configurations given by equations (1.26),
(1.32), (1.33), (1.34), (1.35), (1.36), (1.37), (1.38) and (1.39) are more rigid than
topological structures but, more flexible than Riemannian structures. Therefore,
we now evolve the heat diffusion equations (i.e., Ricci Flow) of Weylian configu-
rations by making use of the following basic notions:

The Ricci flow (in abbreviated form ”R.F.”) is a mean by which one can take
an arbitrary Riemannian manifold and smooth out geometry of that manifold to
make it look more symmetric. Informally, R.F. is the process of stretching the
metric tensor gij in the direction of negative Ricci curvature and contracting the
same in the direction of positive Ricci curvature. Thus, concisely and lucidly, the
R.F. can be delineated by the equation [3]:

d

dt
g = −2Ric ≡ ∂tgij = −2Rij .(1.40)

Now under the R.F. (1.40), the metric tensor given by eq. (1.28) turns out to
be a no-linear heat diffusion equation for Riemannian curvature tensor (1.27), as
follows:

∂

∂t
Rijkl = ∇2gRijkl + 2 (Dijkl −Dijlk −Diljk +Dikjl)

− gpq (RpjklRqi +RipklRqj +RijplRqk +RijkpRql) ,(1.41)

where Dijkl = gprgqsRpiqjRrksl and ∇2g is the Laplacian with respect to the evolv-
ing metric (1.28) and is defined as;

∇2g = gij∇i∇j = gij
µ

∂2

∂xi∂xj
− Γkij

∂

∂xk

¶
.

Further, the heat diffusion equation for Ricci curvature tensor Rik is given by;

∂

∂t
Rik = ∇2gRik + 2g

prgqsRpiqkRrs − 2gpqRpiRqk,(1.42)

while the heat diffusion equation for scalar curvature R is

∂R

∂t
= ∇2gR+ 2Ric2,(1.43)
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where Ric2 = RpqRikg
ipgqk is called length of Rik.

Moreover, the Ricci flow of Christoffel’s symbol Γkij is of the form:

∂

∂t
Γkij = −

1

2
gkl (Rjl;i +Ril;j −Rij;l) = ∇Rm.(1.44)

In case of conformal Riemannian (Weylian) geometry, of course, the curvatures
are not only the significant Weylian configurations. But, the volume structures of
the manifold are also of fundamental importance and interest. The evolution of
the volume element dv =

p
(det gij)dx of the space-time M is given by:

∂

∂t
log
q
(det gij)dx =

1

2
gij

∂

∂t
gij = r −R,(1.45)

where r =

R
M
R dvR

M
dv

is the average scalar curvature and serves to normalize the

R.F., so that the volume is constant. But, most often, the volume is not constant
for the structured cosmos due to different layers of atmosphere, therefore, to pre-
vent the solution of eq. (1.45) from shrinking to a point or expanding to ∞, we
consider the normalized R.F.:

∂

∂t
gij =

2

n
r gij − 2Rij ,(1.46)

so that
∂

∂t
log
q
(det gij) = 0.(1.47)

Here, in our case the space-time is of dimension n = 4.

Now, with the help of all the expressions mentioned in this sub-subsection, we
evolve the following Weyl’s configurations under R.F.:

1.2.2. Evolution of Heat Diffusion Equation for Υijk under R.F.

Let us evolve the heat diffusion equation for Weyl’s affine connection eq. (1.26),
by taking care of equation (1.40), (1.41), (1.42), (1.43), (1.44), (1.45), (1.46) and
(1.47) as below:

Taking R.F. of Weyl’s affine connection given by eq. (1.26), we get

∂

∂t
Υijk =

1

2

∂

∂t
gih (gjh,k + gkh,j − gjk,h) +

1

4

∂

∂t
gih (gjhφk + gkhφj − gjkφh)

−1
2

∂

∂t

¡
φkδ

i
j + φjδ

i
k − gjkφ

i
¢



342 Sandeep K. Bahuguna and Kailash C. Petwal

=
1

2

∙
gih

∂

∂t
(gjh,k + gkh,j − gjk,h) +

µ
gjh,k + gkh,j − gjk,h

∂

∂t
gih
¶¸

+
1

4

∙
gih

∂

∂t
(gjhφk + gkhφj − gjkφh) + (gjhφk + gkhφj − gjkφh)

∂

∂t
gih
¸

−1
2

∙
φk

∂

∂t
δij + δij

∂φk
∂t

+ φj
∂

∂t
δik + δik

∂φj
∂t
− gjk

∂φi

∂t
− φi

∂gjk
∂t

¸
.

=
1

2
[gih

µ
∂

∂xk
∂

∂t
gjh +

∂

∂xj
∂

∂t
gkh −

∂

∂xh
∂

∂t
gjk

¶
+

µ
∂

∂xk
gjh +

∂

∂xj
gkh −

∂

∂xh
gjk

¶
gip

µ
∂

∂t
gpq

¶
] +

1

4
[gih

µ
φk

∂gjh
∂t

+ gjh
∂φk
∂t

+ φj
∂gkh
∂t

+ gkh
∂φj
∂t
− φh

∂gjk
∂t
− gjk

∂φh
∂t

¶

+(gjhφk + gkhφj − gjkφh) g
ip

µ
∂

∂t
gpq

¶
ghq]−1

2
[φk

∂

∂t

¡
gipgjp

¢
+gipgjp

∂φk
∂t
+φj

∂

∂t

¡
gipgkp

¢
+gipgkp

∂φj
∂t
− φi

∂gjk
∂t
− gjk

∂φi

∂t
].

=
1

2
[gih

µ
∂

∂xk
∂

∂t
gjh +

∂

∂xj
∂

∂t
gkh −

∂

∂xh
∂

∂t
gjk

¶
+

µ
∂

∂xk
hjh +

∂

∂xj
gkh −

∂

∂xh
gjk

¶
×

gip
µ
∂

∂t
gpq

¶
ghq]+

1

4
[gih

µ
φk

∂gjh
∂t

+ gjh
∂φk
∂t

+ φj
∂gkh
∂t

+ gkh
∂φj
∂t
− φh

∂gjk
∂t
− gjk

∂φh
∂t

¶
+(gjhφk + gkhφj − gjkφh) g

ip

µ
∂

∂t
gpq

¶
ghq]−1

2
[φkg

ip ∂gjp
∂t

+φkgjpg
im

µ
∂

∂t
gmn

¶
gpn

+gipgjp
∂φk
∂t
+φjg

ip ∂gkp
∂t

+φjgkpg
im

µ
∂

∂t
gmn

¶
gpm+gipgkp

∂φj
∂t
−gjk

∂φi

∂t
−φi ∂φ

i

∂t
].

Here, in the above manipulation, we have used the following basic tensorial
algebra:

(i)
∂

∂t
gih = gip

µ
∂

∂t
gpq

¶
ghq etc..(ii) gjh,k ≡

∂

∂xk
gjh etc..(iii) δij = gipgjp.
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Now, under the R.F. techniques, the last lengthy expression reduces to:

∂

∂t
Υijk = [g

ih

µ
∂

∂xh
Rjk −

∂

∂xj
Rkh −

∂

∂xk
Rjh − 2{jk, h}gipghqRpq

¶
]

+
1

4
[gih

µ
−2φkRjh + gjh

∂φk
∂t
− 2φjRkh + gkh

∂φj
∂t

+ 2φhRjk − gjk
∂φh
∂t

¶

−2 (gjhφk + gkhφj − gjkφh) g
ipghqRpq]−

1

2
[−2φkgipRjp − 2φkgjpgimgpmRmn

+gipgjp
∂φk
∂t
− 2φjgipRkp − 2φjgkpgipgpmRmn + gipgkp

∂φj
∂t
− gjk

∂φi

∂t
+ 2φiRjk]

(1.48)

1.2.3. Evolution of Heat Diffusion Equation for R∗ijkl under R.F.

We evolve the Riemannian tensor density R∗ijkl eq. (1.33) under R. F. in the fol-
lowing fashion:

Taking R.F. on both side of eq. (1.33), we get

R∗ijkl =
∂

∂xj
[ghl

∂

∂t
Γhki + Γ

h
ki

∂

∂t
ghl] +

1

2
[φjghl

∂

∂t
Γhki + φjΓ

h
ki

∂

∂t
ghl + ghlΓ

h
ki

∂φj
∂t
]×

− ∂

∂xi
[ghl

∂

∂t
Γhkj + Γ

h
kj

∂

∂t
ghl]−

1

2
[φjghl

∂

∂t
Γhkj + φiΓ

h
kj

∂

∂t
ghl + ghlΓ

h
kj

∂φi
∂t
]

+ghσΓ
h
li

∂

∂t
Γσkj − ghσΓ

σ
ki

∂

∂t
Γhlj − ghσΓ

h
lj

∂

∂t
Γσki + [Γ

σ
kjΓ

h
li − ΓσkiΓhlj ]

∂ghσ
∂t

.

Now under R.F. techniques, the last expression reduces to:

∂

∂t
R∗ijkl = −

∂

∂xj
[ghlg

hl 1

2
(Ril;k +Rkl;i −Rki;l) + 2Γ

h
kiRhl]

−1
2
[φjghlg

hl 1

2
(Ril;k +Rkl;i −Rki;l) + 2φjΓ

h
kiRhl − ghlΓ

h
ki

∂φj
∂t
]
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+
∂

∂xi
[ghlg

hl 1

2
(Rjl;k +Rkl;j −Rkj;l)+2Γ

h
kjRhl]+

1

2
[φighlg

hl 1

2
(Rjl;k +Rkl;j −Rkj;l)+

+2φiΓ
h
kjRhl − ghlΓ

h
kj

∂φi
∂t
]− 1

2
[ghσΓ

σ
kjg

hw (Riw;l +Rlw;i −Ril;w)

+ghσΓ
h
lig

σw (Rkw;j +Rjw;k −Rkj;w)− ghσΓ
σ
kig

gw (Rjw;l +Rlw;j −Rlj;w)

−ghσΓhljgσw (Rkw;i +Riw;k −Rki;w)]− 2Rhσ

¡
ΓσkjΓ

h
li − ΓσkiΓhlj .

¢
(1.49)

1.2.4. Evolution of Heat Diffusion Equations for the Components
of Ricci tensor density under R.F.

Let us now evolve the components of Ricci tensor density given by equations (1.34),
(1.35), (1.36) and (1.37) in the following way:

Taking the R.F. on both side of eq. (1.34) and manipulating under the condi-
tions (i), (ii) and (iii), we obtain:

∂

∂t
R∗jl = gik[

∂

∂xj

µ
ghl

∂

∂t
Γhki + Γ

h
ki

∂

∂t
ghl

¶
] +

∂

∂xj
¡
ghlΓ

h
ki

¢
gim

µ
∂

∂t
gmn

¶
gkn

+
1

2
[φj

µ
gikghl

∂

∂t
Γhki + gikΓhki

∂

∂t
ghl + ghlΓ

h
kig

im{ ∂
∂t
gmn}gkn

¶
+ gikghlΓ

h
ki

∂

∂t
φj ]

−gik[ ∂
∂xi

µ
ghl

∂

∂t
Γhkj + Γ

h
kj

∂

∂t
ghl

¶
]− ∂

∂xi
(ghlΓ

h
kj)g

im(
∂

∂t
gmn)g

kn

−1
2
[φi

µ
gikghl

∂

∂t
Γhkj + gikΓhkj

∂

∂t
ghl + ghlΓ

h
kjg

im(
∂

∂t
gmn)g

kn

¶
+ gikghlΓ

h
kj

∂

∂t
φi]

+gik[ghσ

µ
Γσkj

∂

∂t
Γhli + Γ

h
li

∂

∂t
Γσkj − Γσki

∂

∂t
Γhlj − Γhlj

∂

∂t
Γσki

¶
+(ΓσkjΓ

h
li−ΓσkiΓhlj)

∂

∂t
ghσ]

+ghσ(Γ
σ
kjΓ

h
li − ΓσkiΓhlj)

∂

∂t
gik.
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Under the R.F. techniques, the last expression eventually produces;

∂

∂t
R∗jl = gik[

∂

∂xj

µ
−1
2
ghlg

hl(Ril:k +Rkl;i −Rki;l)− 2RhlΓ
h
ki

¶
]

−2 ∂

∂xj
(ghlΓ

h
ki)g

imgknRmn ++
1

2
[φj(−

1

2
gikghlghl(Rik;l +Rkl;i −Rki;l)

−2Rhlg
ikΓhki−2ghlΓhkigimgknRmn)+g

ikghlΓ
h
kj

∂φj
∂t
]+gik[

∂

∂xi
{1
2
ghlg

hl(Rjl;k+Rkl;j−Rkj;l)

+2RhlΓ
h
kj}] + 2

∂

∂xi
(ghlΓ

h
kj)g

imgknRmn +
1

2
[φi{

1

2
gikghlg

hl(Rjl;k +Rkl;j −Rkj;l)

+2Rhlg
ikΓhkj+2ghlΓ

h
kjg

imgknRmn}−gikghlΓhkj
∂φi
∂t
]−gik[ghσ{

1

2
Γσkjg

hu(Rlu;i+Riu;l−Rli;u)

+
1

2
Γhlig

σu(Rku;j +Rju;k −Rkj;u)−
1

2
Γσkig

hu(Rlu;j +Rju;l −Rlj;u)

−1
2
Γhljg

σu(Rku;i+Riu;k−Rki;u)}+2Rhσ(Γ
σ
kjΓ

h
li−ΓσkiΓhlj)]−2ghσgimglnRmn(Γ

σ
kjΓ

h
li−ΓσkiΓhlj).

(1.50)

Further, taking R.F. on both side of eq. (1.35) performing some lengthy but
straight forward in the same way as above, we obtain

∂

∂t
R∗jk = −gil[

∂

∂xj
{1
2
ghlg

hl(Ril;k+Rkl;j−Rki;l)+2RhlΓ
h
ki}]−2gimglnRmn

∂

∂t
(ghlΓ

h
ki)

+
1

4

∂ log(gii)

∂xk
∂φj
∂t

+ gil[
∂

∂xi
{1
2
ghlg

hl(Rkl;j +Rjl;k −Rkj;l) + 2RhlΓ
h
kj}]

+2gimglnRmn
∂

∂xi
(ghlΓ

h
kj) +

1

2
{1
2
φigil(Rkl;i +Rjl;k −Rkj;l)− Γikj

∂φi
∂t
}

−gil[ghσ{
1

2
Γσkjg

hu(Rlu;i +Riu;l −Rli;u) +
1

2
Γhlig

σu(Rku;j +Rju;k −Rkj;u)
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−1
2
Γσkig

hu(Rlu;j +Rju;l −Rlj;u)−
1

2
Γhljg

σu(Rku;i +Riu;k −Rki;u)}

+2Rhσ(Γ
σ
kjΓ

h
li − ΓσkiΓhlj)]− 2ghσgimglnRmn(Γ

σ
kjΓ

h
li − ΓσkiΓhlj).

(1.51)

Afterward, taking R.F. on both side of the eq. (1.36) and going through
complicated manipulations as above, we arrive at the final result as:

∂

∂t
R∗il = −gjk[ ∂

∂xj
{1
2
ghlg

hl(Rkl;i +Ril;k −Rki;l) + 2RhlΓ
h
ki}]

−2 ∂

∂xj
(ghlΓ

h
ki)g

jmgknRmn +
1

2
[φj{−

1

2
gjkghlg

hl(Rkl;i +Ril;k −Rki;l)

−2gjkΓhkiRhl − 2(ghlΓhki)gjmgknRmn}+ gjkghlΓ
h
ki

∂φj
∂t
]− gjk{ ∂

∂xi
{−1
2
ghlg

hl×

(Rkl;j +Rjl;k −Rkj;l)− 2gjkΓhkiRhl − 2ghlΓhkigjmgknRmn}+ gjkghlΓ
h
ki

∂φj
∂t
]

−1
2
[φi{−

1

2
gjkghlg

hl(Rkl;j +Rjl;k −Rkj;l) +−2ΓhkigjkRhl − 2ΓhkjghlgmjgknRmn}

+gjkghlΓ
h
kj

∂φi
∂t
]−gjk[ghσ{

1

2
Γσkjg

hu(Rlu;i+Riu;l−Rli;u)+
1

2
Γhlig

σu(Rku;j+Rju;k−Rkj;u)

−1
2
Γσkig

hu(Rlu;j +Rju;l −Rlj;u)−
1

2
Γhljg

σu(Rku;i +Riu;k −Rki;u)}+ 2Rhσ(Γ
σ
kjΓ

h
li

-ΓσkiΓ
h
lj)]− 2ghσgjmgknRmn(Γ

σ
kjΓ

h
li − ΓσkiΓhlj).(1.52)

Moreover, taking R.F. on both side of eq.(1.37) and solving for obtaining some
feasible form, we get

∂

∂t
R∗ik = −gjl[

∂

∂xj
{1
2
ghlg

hl(Rkl;i+Ril;k−Rki;l)}+2RhlΓ
h
ki]−2gjmglnRmn

∂

∂xj
(ghlΓ

h
ki)

1

4
φj

∂ log(gjj)

∂xk
∂φj
∂t

+ gjl[
∂

∂xi
{1
2
ghlg

hl(Rkl;j +Rjl;k −Rkj;l + 2RhlΓ
h
kj)}]
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+2
∂

∂xi
(ghlΓ

h
kj)g

jmglnRmn +
1

2
[Γjki

∂φj
∂t
− 1
2
φjg

jl(Rkl;i +Ril;k −Rki;l)]

−gjl[ghσ{
1

2
Γσkjg

hu(Rlu;i +Riu;l −Rli;u) +
1

2
Γhlig

σu(Rku;j +Rju;k −Rkj;u)−
1

2
×

Γσkig
hu(Rlu;j+Rju;l−Rlj;u)−

1

2
Γhjlg

σu(Rku;i+Riu;k−Rki;u)}+2Rhσ(Γ
σ
kjΓ

h
li−ΓσkiΓhlj)]

−2ghσgjmgknRmn(Γ
σ
kjΓ

h
li − ΓσkiΓhlj).

(1.53)

Eventually, we now take R.F. of eq. (1.38) and simplify with the help of known
R.F. techniques, we obtain the resulting heat flow equation as:

∂

∂t
R∗ = −gij [gkkl ∂

∂xj
{1
2
ghlg

hl(Rkl;i +Ril;k −Rki;l) + 2RhlΓ
h
ki}

+2gkmglnRmn
∂

∂xj
(ghlΓ

h
ki)]− 2gimgjnRmng

kl ∂

∂xi
(ghlΓ

h
ki) +

1

4
[
∂

∂xi
log(gkk)

∂φi

∂t
]

+gij [gkl
∂

∂xi
{1
2
ghlg

hl(Rkl;j +Rjl;k−Rkj;l)+2RhlΓ
h
kj}+2gkmglnRmn

∂

∂xi
(ghlΓ

h
kj)]

−2Rmng
imgjngkl

∂

∂xi
(ghlΓ

h
kj)−

1

4
[
∂

∂xi
log (gkk)

∂φi

∂t
]− gij [gkl{ggσ(

1

2
Γσkjg

hu×

(Rlu;i+Riu;l−Rli;u)+
1

2
Γhlig

σu(Rku;j+Rju;k−Rjk;u)−
1

2
Γσghu(Rlu;j+Rju;l−Rlj;u)

−1
2
Γhljg

σu(Rku;i +Riu;k −Rki;u)) + 2Rhσ(Γ
σ
kjΓ

h
li − ΓσkiΓhlj)}+ 2gkmglnRmnghσ×

(ΓσkjΓ
h
li − ΓσliΓhkj)] + 2Rmng

imgjngklghσ(Γ
σ
kjΓ

h
li − ΓσkiΓhlj).

(1.54)
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1.2.5. Evolution of Heat Diffusion Equation for the Weyl’s tensor
density W∗

ijkl under R.F.

Now, we have been arriving at the extrimity, where we can evolve the R.F. for the
most desirable Weyl’s tensor density in Weyl-Gauge geometry.

We take the R.F. of eq. (1.39) such that the heat diffusion expression for
Weyl’s tensor density evolves like below:

∂

∂t
W ∗ijkl =

∂

∂t

∙
R∗ijkl −

(R∗ikgjl +R∗jlgik −R∗ilgjk −R∗jkgil)

2
+

R∗(gikgjl − gilgjk)

6

¸
,

which under R.F. techniques produces;

∂

∂t
W ∗ijkl =

∂

∂t
R∗ijkl − (−2RjlR

∗ik + gjl
∂

∂t
R∗ik − 2RikR

∗
jl + gik

∂

∂t
R∗jl + 2RjkR

∗
il

−gjk
∂

∂t
R∗il + 2RilR

∗
jk − gil

∂

∂t
R∗jk)/2

+

∙
R∗(−Rjlgik − 2Rikgjl + 2Rjkgil + 2Rilgjk) + (gikgjl − gilgjk)

∂

∂t
R∗
¸
/6.

(1.55)

In eq. (1.55), by substituting the R.F.’s of all calculatedWeylian configurations
from equations (1.49), (1.50), (1.51), (1.52), (1.53) and (1.54), we obtain a lengthy
but straight forward expression for the heat diffusion equation of Weylian tensor
density W ∗ijkl.

1.3. Concluding Remarks

Here is the brief discussion over some main outcomes of this article written in favor
of evolution of Weyl’s-Gauge invariant geometry under R.F.:

(a): Because of the prominence of Weyl’s configurations due to the natu-
ral freedom of involvement of Gauge transformations in the pursuance of cosmic
structures, we have developed some new Weylian structures. These weylian struc-
tures have been manufactured in such a way that they could resolve the problems
of their symmetric and anti-symmetric nature in Weyl’s geometry as these prop-
erties seem to be ambigious in case of Riemannian geometry.

(b): In subsection (1.2), we have calculated the components of Ricci tensor
density and scalar curvature density from the given Riemannian curvature density.
Also, with the help of these, a new kind of Weyl’s tensor having the involvement
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of certain density (called Weyl’s tensor density) and pseudo vector has been con-
structed.

(c): After that, in all the subsequent sub-subsections, various Weylian struc-
tures, like Weyl’s affine connection, Riemannian tensor density, Ricci tensor den-
sities etc. have been evolved under R.F. as heat diffusion equations. And finally,
in the light of all these evolution equations, the heat diffusion equation for Weyl’s
tensor density under R.F. has been computed.
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