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Abstract

In this paper we introduce the concept of accretive operator in lin-
ear 2-normed spaces, focusing on the relationships and the various as-
pects of accretive, m-accretive and maximal accretive operators. We
prove the analogous of Banach-Alaoglu theorem in linear 2- normed
spaces, obtaining an equivalent definition for accretive operators in
linear 2-normed spaces.
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1. Introduction

The concept of 2- metric spaces, linear 2- normed spaces and 2-inner prod-
uct spaces, introduced by S. Gahler in 1963, paved the way for a number
of authors like, A. White, Y. J. Cho, R. Freese, C. R. Diminnie, for work-
ing on possible applications of Metric geometry, Functional Analysis and
Topology as a new tool. A systematic presentation of the recent results
related to the Geometry of linear 2-normed spaces as well as an extensive
list of the related references can be found in the book [1]. In [4] S. Gahler
introduced the following definition of linear 2-normed spaces.

2. Preliminaries

Definition 2.1 (3). Let X be a real linear space of dimension greater
than 1 and k., .k be a real valued function onX×X satisfying the properties,

A1: kx, yk = 0 iff x and y are linearly dependent
A2: kx, yk = ky, xk
A3: kαx, yk = |α|ky, xk
A4: kx+ y, zk ≤ kx, zk+ ky, zk
for every x, y, z ∈ X and α ∈ R
then the function k., .k is called a 2-norm on X. The pair (X,k., .k) is

called a linear 2- normed space.

Some of the basic properties of 2-norms, they are non-negative and
kx, y + αxk = kx, yk for all x and y in X and for every α in R.

The most standard example for a linear 2-normed space is X = R2

equipped with the following 2-norm,

kx1, x2k = absdet

⎛⎜⎝ x11 x12
x21 x22

⎞⎟⎠ where xi = (xi1, xi2) for i = 1, 2

Every linear 2-normed space is a locally convex TVS. In fact, for a
fixed b ∈ X, Pb(x) = kx, bk is a semi norm, where x ∈ X and the family
{Pb; b ∈ X} of semi norms generates a locally convex topology on X.

Definition 2.2 (3). Let (X, k., .k) be a linear 2-normed space, then a
map T : X × X → R is called a 2- linear functional on X whenever for
every x1, x2, y1, y2 ∈ X and α, β ∈ R

(i) T (x1 + x2, y1 + y2) = T (x1, y1) + T (x1, y2) + T (x2, y1) + T (x2, y2)
(ii) T (αx1, βy1 = αβT (x1, y1)
hold.
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A 2-linear functional T : X ×X → R is said to be bounded if there exists
a real number M > 0 such that |T (x, y)| ≤Mkx, yk for all x, y in X.
The norm of the 2-linear functional T : X ×X → R is defined for all x, y
in X by

kTk = inf{M > 0; |T (x, y)| ≤Mkx, yk}.
It can be seen that

kTk = sup {|T (x, y)| ; kx, .yk ≤ 1}
= sup {|T (x, y)| ; kx, yk = 1}
= sup

n
|T (x,y)|
kx,yk ; kx, yk 6= 0

o
Definition 2.3 (2). Let (X, k., .k) be a linear 2- normed space, E be

a subset of X then the sequentially closure of E is E = {x ∈ X : xn ⊂
E/xn → x}. We say, E is sequentially closed if E = E.

Definition 2.4 (3). Let X∗
z be the set of all bounded linear 2- func-

tional on X × V hzi then the duality map is defined by I(x, z) = {F ∈
X∗
z ;F (x, z) = kx, zk2 and kFk = kx, zk}

3. Main Results

Let (X, k., .k) be a linear 2- normed space and A : D(A) ⊂ X → X be
an operator with domain D(A) = {x ∈ X;Ax 6= 0} and range R(A) =
∪{Ax;x ∈ D(A)}. We may identify A with its graph and the closure of A
with the closure of its graph.

Definition 3.1. : An operator A : D(A) ⊂ X → X is said to be
accretive if, for every z ∈ D(A)

kx− y, zk ≤ k(x− y) + λ(Ax−Ay), zk for all x, y ∈ D(A) and λ > 0.

Throughout this article [x, y] ∈ A means x, y ∈ X such that y = Ax.

Definition 3.2. : An operator A : D(A) ⊂ X → X is said to be m-
accretive if R(I + λA) = X for λ > 0.

An operator A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be two
operators then B is said to be an extension of A if D(A) ⊂ D(B) and
Ax = Bx for every x ∈ D(A), denote it by A ⊂ B.

Definition 3.3. : An operator A : D(A) ⊂ X → X is said to be a
maximal accretive operator in X if A is an accretive operator in X and for
every accretive operator B of X with A ⊂ B then A = B.
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Theorem 3.4. If A is an m-accretive operator in X then A is a maximal
accretive operator.

Proof: Let B be an accretive operator with A ⊂ B. Let λ > 0 and
[x, y] ∈ B.

Since A is m- accretive we have x+λy ∈ R(I+λA) implies there exists
[x1, y1] ∈ A such that x+ λy = x1 + λy1

Since B is accretive and [x1, y1] ∈ B we have for every z ∈ X,

kx− x1, zk ≤ k(x− x1) + λ(Bx−Bx1), zk
= k(x− x1) + λ(y − y1), zk
= k(x+ λy)− (x1 + λy1), zk = k0, zk for every z ∈ X

= 0

implies x− x1 = 0 and x = x1
Therefore y = y1 implies [x, y] ∈ A. So A = B.

Hence A is a maximal accretive operator.

Lemma 3.5. Let A be an accretive operator inX and let (u, v) ∈ X×X
then A is maximal accretive in X iff for every [x, y] ∈ A and z ∈ X and
λ > 0 one has kx− u, zk ≤ k(x− u) + λ(y − v), zk implies [u, v] ∈ A.

Proof:

Let A be a maximal accretive operator in X. Put T = A ∪ [u, v]
Suppose kx− u, zk ≤ k(x− u) + λ(y− v), zk for every [x, y] ∈ A, z ∈ X

and λ > 0

then T is accretive in X and A ⊂ T implies [u, v] ∈ A

Conversely, suppose that if A is accretive operator in X and

kx−u, zk ≤ k(x−u)+λ(y−v), zk for every [x, y] ∈ A, z ∈ X and λ > 0
implies [u, v] ∈ A

Let B be accretive in X with A ⊂ B and [x1, y1] ∈ B

Since B is accretive in X, for every [x, y] ∈ A, z ∈ X and λ > 0 one has

kx− x1, zk ≤ k(x− x1) + λ(Bx−Bx1), zk = k(x− x1) + λ(y − y1), zk
which

implies [x1, y1] ∈ A. Therefore B ⊂ A. So A = B.

Hence A is maximal accretive in X.

Theorem 3.6. If A is an accretive operator in X then there exists a
maximal accretive operator containing A.
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Proof:
Let B = {B; B is accretive in X and A ⊂ B} then (B,⊂) is a partially

ordered set.
Let T be a totally ordered set with T ⊂ B then by Zorn’s lemma there

exists a maximal element in B, is a maximal accretive operator containing
A.

Theorem 3.7. Let A be an accretive operator in X then the closure A
of A is accretive.

Proof:
Let [x1, y1], [x2, y2] ∈ A then there exists sequences {[xn, yn]}, {[xm, ym]}

in A such that xn → x1; yn → y1;xm → x2; ym → y2 and λ > 0 .

Since A is accretive in X one has
kxn − xm, zk ≤ k(xn − xm) + λ(Axn −Axm), zkfor every z ∈ X

= k(xn − xm) + λ(yn − ym), zk for every z ∈ X
as n→∞, kx1 − x2, zk ≤ k(x1 − x2) + λ(y1 − y2), zkfor every z ∈ X
implies A is accretive in X.

Theorem 3.8. Let A be a maximal accretive operator in X then A is
sequentially closed.

Proof: For all xn, yn ∈ D(A), Let {[xn, yn]} in A such that xn → u, yn →
v and λ > 0

Since A is accretive in X and [x, y] ∈ A implies kx − xn, zk ≤ k(x −
xn) + λ(y − yn), zkfor every z ∈ X

as n→∞ we have kx− u, zk ≤ k(x− u) + λ(y− v), zk for every z ∈ X
Therefore, by Lemma 3.6 [u, v] ∈ A. Hence A is sequentially closed.

Corollary 3.9. If A is an m-maximal accretive operator in X then A is
sequentially closed.

Proof: We have an m-accretive operator A in X is a maximal accretive
operator in X. Hence by Theorem 3.8, A is sequentially closed.

Next we prove analogous of Banach Alaoglu theorem in linear 2- normed
spaces.

Theorem 3.10. Let X be a linear 2- normed space then the closed unit
ball of X∗

z is weak* compact, i.e. B = {f ∈ X∗
z ; kfk ≤ 1} is compact for

the weak* topology.
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Proof:

If f ∈ B then |f(x, z)| ≤ kfkkx, zk for every x, z ∈ X

Let Dx,z = {λ ∈ R; |λ| ≤ kx, zk} be a closed interval then it is compact.
We have f(x, z) ∈ Dx,z for every x, z ∈ X. Take D = Πx∈XDx,z for

every z ∈ X. Equip product topology on D then, by Tychnoff’s theorem D
is compact.

Consider the canonical projection Πx,z : D→ Dx,z

Equip B with the relative topology induced by weak* topology. So it is
enough to prove that B is homeomorphic with a closed subset C of D.

Define T : B → D as follows:

If f ∈ B then f(x, z) ∈ Dx,zfor every x, z ∈ X

So, define Tf = (f(x, z))x,z∈Xof D has the property that (x, z)th coor-
dinate is a 2-linear functional of index (x, z).

Construct the set C of all (λx,z)x,z∈X ∈ in D such that
λ(x1+x2,z1+z2) = λx1,z1 + λx1,z2 + λx2,z1 + λx2,z2
λαx1,βz1 = αβλx1,z1 for every x1, x2, z1, z2 ∈ X and α, β inR

We have T (B) ⊂ C

If λx,z ∈ C for x, z ∈ X

Define f : X ×X → R by f(x, z) = λx,z is a 2-linear functional on X.

Also |f(x, z)| = |λx,z| ≤ kx, zk implies kfk ≤ 1. Therefore f ∈ B.

And Tf = f(x, z)x,z∈X = (λx,z)x,z∈X . So C ⊂ T (B). Therefore T (B) =
C.

Next we have to prove that,

(i) T is one-to-one

(ii) C is a closed subset of D

(iii) T is bicontinuous (ie; homeomorphiism) from B onto T (B) = C

For,

(i) Let f, g ∈ B with Tf = Tg then f(x, z) = g(x, z) for every x, z ∈ X
implies f = g. So T is one-to-one.

(ii) For x1, x2, z1, z2 ∈ X, Define φ : D→ R by φ(λx,z) = λ(x1+x2,z1+z2)−
λx1,z1 − λx1,z2 − λx2,z1 − λx2,z2

Take u = λx,z then we have φ(u) = π(x1+x2,z1+z2)(u) − πx1,z1(u) −
πx1,z2(u)− πx2,z1(u)− πx2,z2(u)

Since π is continuous we have φ is continuous.

Define φ−1[0] = {λx,z ∈ D : λ(x1+x2,z1+z2) = λx1,z1 + λx1,z2 + λx2,z1 +
λx2,z2}. Then φ−1[0] is closed in D. Denote this closed set by C(x1,x2,z1,z2).

Similarly, for fixed v1, v2 ∈ X and α, β ∈ R the set {(λx,z)x,z∈X ;λαx1,βz1 =
αβλx1,z1} is closed in D. Denote it by C(v1,v2,α,β).
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Therefore, C = (∩C(x1,x2,z1,z2))∩(∩C(v1,v2,α,β)) where x1, x2, z1, z2, v1, v2
varies over X and α, β varies over R. Hence C is closed in D.

(iii) In the view of (i) T maps bijectively onto T (B) = C
Consider a sub basic neighbourhood of f0 for the relative weak* topol-

ogy on B of the form:
Let e ∈ X then V = {f ∈ B; kf(x0, y0)− f0(x0, y0), ek ≤ ε}
Therefore, T (V ) = {[f(x, y)]x,z ∈ X; f ∈ V }

={[f(x, y)]x,z∈X ; f ∈ B with kf(x0, y0)− f0(x0, y0), ek ≤ ε}
={[f(x, y)]x,z∈X ; f ∈ B with kπ(x0,y0)(Tf)−π(x0,y0)(Tf0), ek ≤ ε}

is a sub basic neighbourhood of Tf0 for the relative topology induced on
T (B) = C by the product topology on D. So,T is bicontinuous from B onto
T (B) = C

Theorem 3.11. Let X be a linear 2-normed space and x, y ∈ X then
for every z ∈ X, kx, zk ≤ kx+αy, zk for every α > 0 iff there is F ∈ I(x, z)
such that Re((y, z), F ) ≥ 0 [ ”Re” means ”real part of” ]

Proof:
If x = 0 then the result holds true.
Assume that x 6= 0. Suppose Re((y, z), F ) ≥ 0 for some F ∈ I(x, z)

then
kx, zk2 = F (x, z) = Re(F (x, z)) ≤ Re(F (x+αy)) ≤ kFkkx+αy, zk for

α > 0
Since, kFk = kx, zk we have kx, zk ≤ kx+ αy, zk for α > 0
Conversely, suppose that kx, zk ≤ kx+ αy, zk for α > 0
For each α > 0 let Fα ∈ I(x+ αy, z) and gα =

Fα
kFαk then kgαk = 1

Then,
kx, zk ≤ kx + αy, zk = gα(x + αy, z) = Re[gα(x, z)] + αRe[gα(y, z)] ≤

kx, zk+ αRe[gα(y, z)]
implies lim{inf(α↓0)Re[(x, z), gα]} ≥ kx, zk and Re[(y, z), gα] ≥ 0
By the above theorem, the closed unit ball of X∗

z is weak* compact then
the net {gα} has a cluster point g with kgk = 1.

Re[(x, z), gα ≥ kx, zk and Re[(y, z), gα] ≥ 0 implies Re[ (x,z)kx,zk , gα] ≥ 1
implies kgk = 1 and g(x, z) = kx, zk
Take F = kx, zkg then F (x, z) = kx, zkg(x, z) = kx, zk2. Therefore,

F ∈ I(x, z) and Re[(y, z), F ] ≥ 0

Remark 3.12. From the above theorem we get ”A is an accretive op-
erator in a linear 2-normed space X iff for every u, v ∈ D(A) there exists
f ∈ I(u− v, z) such that Re[f(Au−Av, z)] ≥ 0”.



326 P. K. Harikrishnan, B. L. Guillén and K. T. Ravindran

References

[1] Berbarian, Lectures in Operator theory, Springer, 1973.

[2] Fatemeh Lael and Kourosh Nourouzi, Compact Operators Defined on
2-Normed and 2-Probabilistic Normed Spaces, Hindawi Publishing Cor-
poration,Mathematical Problems in Engineering, Volume 2009 (2009),
Article ID 950234, 17 pages.

[3] Raymond W. Freese,Yeol Je Cho, Geometry of linear 2-normed spaces,
Nova Science publishers, Inc, Newyork, (2001).
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