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Universidad Católica del Norte
Antofagasta - Chile

Abstract

It is shown that the Holomorph of a C-loop is a C-loop if each
element of the automorphism group of the loops is left nuclear. Con-
dition under which an element of the Bryant-Schneider group of a
C-loop will form an automorphism is established. It is proved that
elements of the Bryant-Schneider group of a C-loop can be expressed
a product of pseudo-automorphisms and right translations of elements
of the nucleus of the loop. The Bryant-Schneider group of a C-loop is
also shown to be a kind of generalized holomorph of the loop.
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1. Introduction

Central loops(C-loops) are loops which satisfy one of the identities called
”Central identity” as named by F. Fenyves [9], [10]. Closely related to the
central identity are left central(LC) and right central (RC) identities. The
expressions for the mentioned identities are as follows;

(yx · x)z = y(x · xz) central identity(1.1)

i. xx · yz = (x · xy)z ≡
ii. (x · xy)z = x(x · yz) ≡
iii. (xx · y)z = x(x · yz)

LC- identities

(1.2)

i. yz · xx = y(zx . x) ≡
ii. (yz · x)x = y(zx · x) ≡
iii. (yz · x)x = y(z · xx)

RC- identities

(1.3)

Recently Phillips and Vojtechovsky [20], found out that in addition to
the identities above, LC and RC identity can also be defined respectively
by,

(y · xx)z = y(x · xz) and (yx · x)z = y(xx · z)(1.4)

C-loops are one of the least studied loops. Few publications that have
considered C-loops include Fenyves [9], [10], Phillips and Vojtechovsky [18]
[20] [19], Chein [5]. The difficulty in studying them is as a result of the
nature of their identities when compared with other Bol-Moufang identi-
ties(the element occurring twice on both sides has no other element sepa-
rating it from itself).

2. Preliminaries

Theorem 2.1. ([10], [20]) Let (L, ·) be an LC-loop(RC-loop). Then:

1. (L, ·) is a left (right) alternative loop,

2. (L, ·) is a left (right) inverse property loop,

3. (L, ·) is a left (right) nuclear square loop,

4. (L, ·) is a left (right) power alternative loop,
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5. (L, ·) is a middle square loop,

6. (L, ·) is power associative loop.

Definition 2.1. A triple (α, β, γ) of bijections is called an isotopism of
loop (L, ·) onto a loop (H, ◦) provided xα ◦ yβ = (x · y)γ ∀ x, y ∈ L. (H, ◦)
is called an isotope of (L, ·). The loops (L, ·) and (H, ◦) are said to be
isotopic to each other.

Definition 2.2. Let α and β be a permutation of L and let ι denotes the
identity map on L. Then (α, β, ι) is a principal isotopism of a loop (L, ·)
onto a loop (L, ◦) which imply that (α, β, ι) is an isotopism of (L, ·) onto
(L, ◦).

Definition 2.3. An isotopism of (L, ·) onto (L, ·) is called an autotopism
of (L, ·). The group of autotopisms of L is denoted by A(L).

Remark 2.1. The components of isotopism are usually denoted by lower
case Greek letters. However, we shall denote the components of autotopism
by capital letters, thus if T = (U, V,W ) is an autotopism of a loop (L, ·),
then

xU · yV = (xy)W,∀ x, y ∈ L.

The set of all autotopism of a loop is a group with the inverse of T T−1 =
(U, V,W )−1 = (U−1, V −1,W−1). The identity element of the group being
(I, I, I) where I is the identity map of L. If T = (U,U,U), then T is called
the automorphism (L, ·)

Definition 2.4. If hU, V,W i is autotopism of an inverse property loop
(L, .) then hW,JV J,Ui and hJUJ,W, V i are autotopism of L. Moreover
if hU, V,W i = hS, SRc, SRci the S is called a pseudoautomorphism of L
with companion c. The set of all pseudoautomorphisms of L is denoted by
PS(L, .).

Definition 2.5. Let (L, ·) be an inverse property loop with the nucleus
denoted by N. Then an automorphism α of(L, ·) is left nuclear iff aα·a−1 ∈
N for all a ∈ L.

Definition 2.6. Let (L, .) be a loop and BS(L, .) be the set of all permu-
tations θ of Q such that

< θR−1g , θL−1f , θ >

is an autotopism of (L, .) for some f, g ∈ L, then BS(L, .) is called the
Bryant-Schneider group of the loop.
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Definition 2.7. Let (L, ·) be a loop, A(L) a group of automorphisms of
loop (L, ·) and let H H = A(L)× L and define

(α, x) o (β, y) = (αβ, xβ · y)

∀ (α, x), (β, y) ∈ H. Then the loop (H, o) is called the A(L)-holomorph
of (L, ·) or simply holomorphy of (L, .).

3. Holomorphy

Theorem 3.1. Let (L, ·) be a an LC-loop and A(L) be a group of auto-
morphism of (L, ·). Then the A(L)-holomorph (H,o) of (L, ·) is an LC-loop
if and only if

(xα · xy)z = xα(x · yz)(3.1)

∀ x, y, z ∈ L and ∀ α ∈ A(L).

Proof.
Suppose A(L)-holomorph (H,o) of (L, ·) is an LC-loop we have

{(α, x)o[(α, x)o(β, y)]}o(γ, z) = (α, x)o{(α, x)o[(β, y)o(γ, z)]}(3.2)

∀ x, y, z ∈ L and ∀ α, β, γ ∈ A(L). Thus

{(α, x)o(αβ, xβ . y)}o(γ, z) = (α, x)o{(α, x)o(βγ, yγ · z)}

{α · αβ, xαβ · (xβ · y)}o(γ, z) = (α, x)o{(α · βγ, xβγ · (yγ · z))}

{(α · αβ)γ, [xαβ · (xβ·

y)]γ · z} = {α(α ·βγ), xα ·βγ ·xβγ(yγ · z)}∀ x, y, z ∈ L and ∀ α, β, γ ∈

A(L). Therefore

{xαβ · (xβ · y)}γ · z = xα · βγ.xβγ(yγ · z)

∀ x, y, z ∈ L and ∀ α, β, γ ∈ A(L).
Therefore,

{xα · βγ · (xβγ · yγ)} · z = xα · βγ · xβγ · (yγ · z)

putting φ = βγ, gives

{xαφ · (xφ · yγ)}z = xαφ · xφ(yγ · z)
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hence

{xα · (x · yγφ−1)} · zφ−1 = {xα · x(yγφ−1 · zφ−1}

∀ x, y, z ∈ L and ∀ α, φ, γ ∈ A(L). If we put y = yγφ−1 and z = zφ−1, we
obtain

(xα · xy)z = xα · (x · y z)

And replacing y and z by y and z respectively we have

(xα · xy)z = xα(x · yz)

∀ x, y, z ∈ L and ∀ α ∈ A(L), which is equation (3.1).

The converse is obtained by reversing the process.

Corollary 3.1. Let (L, ·) be a loop, and A(L) be the group of all auto-
morphism of L, then L is an LC-loop if

B = hLxLxα, I, LxLxαi(3.3)

is an autotopism of L, ∀ x, y, z ∈ L and ∀ α ∈ A(L)

Proof. This is a consequence of (3.1)

Theorem 3.2. Let (L, ·) be a loop and A(L) be a group of automorphism
of (L, ·). Then the A(L)-holomorph (H,o) of (L, ·) is an RC-loop if and only
if

y((z · xα)x) = (yz · xα)x(3.4)

∀ x, y, z ∈ L and ∀ α ∈ A(L).

Proof.

The procedure for the proof is like that of Theorem 3.1 above hence it
is omitted.

Corollary 3.2. Let (L, ·) be any loop and A(L) be the group of all auto-
morphisms of L, then L is an RC-loop if and only if

B = hI,RxαRx, RxαRxi(3.5)

is an autotopism of L, for all x, y, z ∈ L and all α ∈ A(L)
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Proof.
From 3.4)

y((z · xα)x) = (yz · xα)x
⇒ y · zRxαRx = yzRxαRx

∀ x, y, z ∈ L and ∀ α ∈ A(L).

⇒ hI,RxαRx, RxαRxi
is an autotopism of (L, ·) ∀ x ∈ L and ∀ α ∈ A(L).

Conversely, suppose (3.5) hold, then ∀ y, z ∈ L we have

yI · zRxαRx = yzRxαRx

y((z · xα)x) = yz(xα · x)
∀ x, y, z ∈ L and ∀ α ∈ A(L).

Theorem 3.3. Let (L, ·) be a loop and A(L) be a group of automorphism
of (L, ·). Then the A(L)-holomorph (H,o) of (L,.) is a C-loop if and only if

(y · xα)x · z = y(xα · xz)(3.6)

∀ x, y, z ∈ L and ∀ α ∈ A(L).

Proof.
The procedure for the proof is like that of theorem 3.1 hence it is omitted.

Corollary 3.3. Let (L,.) be a loop and A(L) be the group of all automor-
phisms of L, then L is a C-loop if and only if

B = hRxαRx, L
−1
xαLx−1 , Ii(3.7)

is an autotopism of L, for all x, y, z ∈L and all α ∈A(L)

Proof. From (3.6)
(y · xα)x · z = y(xα · xz)
⇒ yRxαRx · z = y · zLxLxα

∀ x, y, z ∈ L and ∀ α ∈ A(L).
substituting z = zLxLxα we have

yRxαRx · zL(xα)−1Lx−1 = yz
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∀ x, y, z ∈ L and ∀ α ∈ A(L).

⇒ hRxαRx, L(xα)−1Lx−1 , Ii

is an autotopism of (L, ·) ∀ x ∈ L and ∀ α ∈ A(L).

Conversely, suppose equation (3.7) is an autotopism of (L, ·), therefore
‘∀ y, z ∈ L we have

yRxαRx · zL−1xαLx−1 = yz · I

yRxαRx · z = y · zLxLxαI

(y · xα)z = y(xα · xz)

∀ x, y, z ∈ L and ∀ α ∈ A(L) hence (L, ·) is a C-loop.

3.1. Nuclear Automorphism

Theorem 3.4. Let (L, ·) be a loop and A(L) be a group of automorphism
of (L, ·). Then the A(L)-holomorph (H,o) of (L, ·) is a C-loop iff (L, ·) is
a C-loop and each α ∈ A(L) is a left nuclear automorphism of (L, ·).

Proof. Suppose (H, o) is a C-loop. Since (L, ·) is isomorphic to a subloop
of (H, o), it follows that (L, ·) must be a C-loop. From Theorem (3.1),
equation (3.1) holds ∀ x, y, z ∈ L and ∀ α ∈ A(L). Furthermore, by
Theorem (3.1) and Corollary (3.3),

A(x) = hR2x, L−2x , Ii and B(x) = hRxRxα, L
−1
x L−1xα , Ii

are autotopisms of (L, ·),∀ x ∈ L and ∀ α ∈ A(L). Therefore by Theorem
(3.1)and we have
Aλ(x) = hL−2x , I, L−2x i, A−1µ (x) = hI,R2x, R2xi,
B−1λ (x) = hLxαLx, I, LxαLxi and Bµ(x) = hI,RxRxα, RxRxαi
are also autotopisms of (L, ·),∀ x ∈ L and ∀ α ∈ A(L). If these are
combined we have

Aλ(x)B
−1
λ (x) = hL−2x , I, L−2x ihLxLxα, I, LxLxαi

Aλ(x)B
−1
λ (x) = hL−1x Lxα, I, L

−1
x Lxαi(3.8)

and
Bµ(x)A

−1
µ (x) = hI,RxαRx, RxαRxihI,R−2x , R−2x i
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Bµ(x)A
−1
µ (x) = hI,RxαR

−1
x , Rxα)R

−1
x i(3.9)

as autotopisms of (L, ·),∀ x ∈ L and ∀ α ∈ A(L). Now if we apply (3.8)
and (3.9) to 1 · b and a · 1 respectively, we have

1L−1x Lxα · b = (1 · b)L−1x Lxα

(xα · x−1)b = bL(x)−1Lxα

bLxαL
−1
x = bL−1x Lxα

and

a · 1RxαR
−1
x = (a · 1)RxαR

−1
x

a(xα · x−1) = aRxαR
−1
x

aRxα·x−1 = aRxαR
−1
x

and respectively we have

Lxα·x−1 = L−1x Lxα(3.10)

Rxα·x−1 = RxαR
−1
x(3.11)

∀ x ∈ L and ∀ α ∈ A(L). If we put equations(3.10) and (3.11) into
equations(3.8) and (3.9) respectively, we have

Aλ(x)B
−1
λ (x) = hLxα·x−1 , I, Lxα·x−1i

and

Bµ(x)A
−1
µ (x) = hI,Rxα·x−1 , Rxα·x−1i

∀ x ∈ L and ∀ α ∈ A(L). These therefore imply that xα ·x−1 ∈ Nλ(L) and
xα · x−1 ∈ Nρ(L). Consequently, xα · x−1 ∈ N(L) since (L, ·) is an inverse
property loop. Hence α ∈ A(L), is left nuclear.

Conversely, suppose (L, ·) is a C-loop and each α ∈ A(L) is left nuclear.
Then for each α ∈ A(L) and each x ∈ L the element xα · x−1 ∈ Nµ(L),
thus

xα · y = ((xα · x−1)x)y

xα · y = (xα · x−1)xy

∀ y ∈ L

yLxα = yLxLxα·x−1 ⇒ L−1x Lxα = Lxα·x−1



On certain isotopic maps of central loops 311

∀ x ∈ L and ∀ α ∈ A(L). But for ∀ x ∈ L and ∀ α ∈ A(L), we know that
xα · x−1 ∈ Nλ(L). Hence,

C = hLα·x−1 , I, Lxα·x−1i = hL−1x Lxα, I, L
−1
x Lxαi

is an autotopism of (L, ·),∀ x ∈ L and ∀ α ∈ A(L). But again , A =
hL2x, I, L2xi is an autotopism of (L, ·),∀ x ∈ L. Therefore,

AC = hLxLxα, I, LxLxαi
is an autotopism of (L, ·),∀ x ∈ L and ∀ α ∈ A(L). So also is (AC)−1λ =
hRxαRx, L

−1
xαL

−1
x , Ii. Therefore of yz,∀ y, z ∈ L, we have

yRxαRx · zL−1xαL−1x = yz

if we put z = zL−1xαL
−1
x , in this we have

yRxαRx · z = y · zLxLxα

((y · xα)x)z = y(xα · xz)
∀ x, y, z ∈ L and ∀ α ∈ A(L). Replacing z by z, ∀ x, y, z ∈ L and
∀ α ∈ A(L) and we have a central identity. Hence, (H, o) is a C-loop.

Theorem 3.5. The set S(L) of all left nuclear automorphism of an C-loop
(L, ·), is a normal subgroup of the automorphism group of (L, ·).

Proof. S(L) 6= ∅, from the Theorem 3.4 it was shown that

Luα·u−1 = L−1u Luα

∀ u ∈ L and ∀ α ∈ S(L) (since for an inverse property loop L, Lu−1 = L−1u
∀u ∈ L). Then uα · u−1 ∈ Nλ(L, ·),∀ u ∈ L and ∀ α ∈ S(L). It follows
then that

A(α, u) = hLuα·u−1 , I, Luα·u−1i = hL−1u Luα, I, L
−1
u Luαi

∀ u ∈ L and forall α ∈ L. Hence if α, β ∈ S(L), we have

A(α, u)A(β, uα) = hL−1u Luα, I, L
−1
u LuαihL−1uαLuαβ, I, L

−1
uαLuαβi

A(α, u)A(β, uα) = hL−1u Luαβ, I, L
−1
u Luαβi(3.12)
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is an autotopism of (L, ·),∀ u ∈ L. Therefore ∀ y ∈ L we have

1L−1u Luαβ · y = (1 · y)L−1u Luαβ

(uαβ · u−1) · y = yL−1u Luαβ

yLuαβ·u−1 = yL−1u Luαβ

⇒ Luαβ·u−1 = Lu−1Luαβ

(3.13)

Thus, (3.13) into (3.12) gives

A(α, u)A(β, uα) = hLuαβ.u−1 , I, Luαβ.u−1i(3.14)

From equation (3.14), uαβ.u−1 ∈ Nλ(L, ·), ∀u ∈ L, hence uαβ.u−1 ∈ N ,
for all u ∈ L and so αβ ∈ S(L), since (L, ·) is an inverse property loop.

If α ∈ S(L), then A(α, u) is an autotopism of (L, ·)∀ u ∈ L, so also is
A(α, uα−1)−1 ∀ u ∈ L, i.e

A(α, uα−1)−1 = hL−1uα−1Luα−1.α, I, L
−1
uα−1Lα−1.αi−1

= hL−1uα−1Lu, I, L
−1
uα−1Lui−1

= hL−1u Luα−1 , I, L
−1
u L−1uαi

= hL(uα−1.u−1), I, L(uα−1.u−1)i
Hence it follows that α−1 ∈ S(L). Thus S(L) is a subgroup of the

automorphism group of (L, ·).
Let α ∈ S(L), then uα · α−1 ∈ Nλ(L, ·),∀ u ∈ L and

(uα.u−1)xy = (uα.u−1)x.y

∀ u, x, y ∈ L, if γ is an automorphism of (L, ·), then we have
{uαγ · (uγ)−1)}(xγ · yγ) = {uαγ · (uγ)−1}xγ · yγ

∀ u, x, y ∈ L, and if we replace u by uγ−1 in the last expression, we have

(uγ−1αγ · u−1)(xγ · yγ) = (uγ−1αγ · u−1)xγ · yγ
Thus, uγ−1αγ · u−1 ∈ Nλ(L, ·) and since L is an inverse property loop, the
three nuclei coincide, then uγ−1αγ · u−1 ∈ N(L, ·) for all u ∈ L and all
automorphism γ of (L, ·). Hence γ−1αγ ∈ S(L) for all α ∈ S(L) and all
automorphism γ of (L, ·). So S(L) is indeed normal in the automorphism
group of A(L) of (L, .).
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4. Bryant-Schneider group

Theorem 4.1. Let (L, ·) be a C-loop, an element θ of the Bryant-Schneider
group of L is an automorphism of L provided

< θRg−1 , θLf−1 , θ >

is an autotopism of (L, .) if f and g are elements of the nucleus of (L, .).

Proof : Let (L, .) is a C-loop then

< Ry−1Ry−1 , LyLy, I >

is an autotopism for all x ∈ L. θ ∈ BS(L, .) imply that < θRg−1 , θLf−1 , θ >
is also an autotopism for some g, f ∈ (L, .)

Hence < θRg−1 , θLf−1 , θ >< Ry−1Ry−1 , LyLy, I >=
< θRg−1Ry−1Ry−1 , θLf−1LyLy, θ > is an autotopism of for all y ∈ L and
some g, f ∈ L. Since (L, .) is an alternative property loop, then

Ry−1Ry−1 = R(y−1)2 = R(y2)−1

and LyLy = Ly2 therefore < θRg−1Ry−1Ry−1 , θLf−1LyLy, θ >=
< θRg−1R(y2)−1 , θLf−1Ly2 , θ >. If g = (y2)−1 and f = y2 we obtain <
θ, θ, θ > Hence θ is an automorphism of (L, .). g = (y2)−1 and f = y2

implies that f = g−1 = y2. Then it follows that f and g are elements of
N(L, .) the nucleus of (L, .) since the square of every element y ∈ L belongs
to N(L, .).

Theorem 4.2. Let (L, .) be a C-loop and let θ ∈ S(L, .) (the symmetric
group of L). Then θ ∈ BS(L, .) if there is a unique α ∈ P (L, .) (the
set pseudo-automorphisms of (L, .)) and a unique f ∈ N(L, .) such that
θ = αRf (α = θR−1f ).

Proof :
Let (L, .) be a C-loop then

A =< Rx−1Rx−1 , LxLx, I >

an autotopism of (L, .) for all x ∈ L.
B =< I,Rx2 , Rx2 >=< Rx2 , ρRx2ρ, I > is also an autotopism for all x ∈ L.
Therefore by Bruck[4]

BA =< Rx2 , ρRx2ρ, I >< Rx−1Rx−1 , LxLx, I >=< I, ρRx2ρLxLx, I >
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is an autotopism for all x ∈ L. θ ∈ BS(L, .) implies that

C =< θRf−1 , θLg−1 , θ >

is an autotopism for some f, g ∈ L

CBA = θRf−1 , θLg−1 , θ >< I, ρRx2ρLxLx, I >=

< θRf−1 , θLg−1ρRx2ρLxLx, θ >

which implies that < α, θLg−1ρRx2ρLxLx, αRf > is autotopism of for some
f, g ∈ Q and all x ∈ L. Now if

< α, θLg−1ρRx2ρLxLx, αRf >

is an autotopism we have sα.tβ = (s.t)αRf for all s, t ∈ L where β =
θLg−1ρRx2ρLxLx. If s is set to be e in the last autotopism and noting
that eα = eθReθ = e we get β = αRf therefore < α,αRf , αRf > is an
autotopism of (L, .) for some f ∈ L hence α is a pseudo-automorphism with
companion f . θ = αRf implies that the elements of the Bryant-Schneider
group of a C-loop (L, .) can be expresses in terms of pseudo-automorphisms
P (L, .) and right translations of elements of the nucleus of (L, .). To show
uniqueness, let α1Rx1 = α2Rx2 where α1, α2 ∈ P (L, .) and x1, x2 ∈ N(L, .).
Then α−12 α1 = Rx2R

−1
x1 which implies that eα

−1
2 α1 = eRx2R

−1
x1 . Then we

observe that e = x2x
−1
1 and therefore x1 = x2. It the follows that α1 = α2.

Remark 4.1. Robinson[21] considered the Bryant-Schneider group of a
Bol loop and found out that they can be expressed as a product of pseudo-
automorphisms and right translations. Theorem 2.2 above shows that the
Bryant-Schneider group of a C-loop can also be expressed in the same way.
This further emphasis the fact that C-loops are analogous to Moufang loops
since Moufang loops satisfies the Bol identities(right and left).

Theorem 4.3. Let (L, .) be a C-loop . If x, y ∈ Q, let ¯ be a binary
operation defined on the pseudo-automorphism PS(L, .) by

α¯ β = αRxβRyR(xβ.y)−1

for all αβ ∈ PS(L, .). Let H = PS(L, .)×Q and for

(α, x) ◦ (β, y) = (α¯ β, xβ.y).

Then (H, ◦) a group which is isomorphic to BS(L, .).
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Proof :
Let α, β ∈ PS(L, .) and let x, y ∈ N(L, .) the nucleus of (L, .). Then
we know from the immediate preceding theorem that there exist unique
δ ∈ PS(L, .) and unique z ∈ N(L, .) such that αRxβRy = δRz. Thus we
observe that

(uα.x)βy = uδ.z

for all u ∈ L. If we set u = e we obtain xβ.y = z. Therefore αRxβRy =
δR(xβ.y)−1 and so

δ = αRxβRyR(xβ.y)−1 = α¯ β

Hence ¯ is a closed binary operation of PS(L, .). It is also obvious now that
(α, x) 7→ αRx provided x ∈ N(L, .) gives an isomorphism of (H, ◦) onto the
BS(L, .) of a C-loop. Hence the Bryant-Schneider group of a C-loop is a
form generalized holomorph of the loop.

Theorem 4.4. A finite C-loop is isomorphic to all its loop isotopes if

[(L, .) : N(L, .)]2 = [PS(L, .) : A(L)]

where A(L) is the automorphism group of (L, .)

Proof :
By Theorem 4.2 it is clear that | BS(L, .) |=| L || PS(L, .) |. By Bryant &
Schneider[2] (L, .) is isomorphic to all its loop isotopes if

|L|2|A(L, .)| = |BS(L, .)||Nµ(L, .)|

But in a C-loop the nuclei coincide hence | Nµ(L, .) |=| N(L, .) |. Now by
Theorem 4.2 |BS(L, .)| = |PS(L, .)||N(L, .)| and therefore we have

|L|2|A(L, .)| = |PS(L, .)||N(L, .)|2

which implies that ∙ |L|
|N(L, .)|

¸2
=
|PS(L, .)|
|A(L, .)|

which is the same as

[L : N(L, .)]2 = [PS(L, .) : A(L, .)]

as required.

Corollary 4.1. Let (L, .) be a C-loop then

[PS(L, .) : A(L, .)] 6= 4

Proof :
The proof follows directly from Lemma 2.9 of [20] and Theorem 4.4
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