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Abstract

Let g be an arbitrary finite dimensional Lie algebra over the field
R. We give as an additional alternative a detailed overview of an
algorithm for finding derivations of g since such procedures are often
of interest.
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1. Introduction

All the necessary theoretical foundations for Lie algebras and results of
their algebraic characteristics in case of low-dimensions are well known. In
particular, derivations of Lie algebras are frequently considered in the liter-
ature, [4], [7], etc. On the other hand, the theoretical method to compute
derivations is obvious while their effective computation is not an easy task.
For this reason computer programs for calculation of Lie algebra character-
istics such as automorphisms, ideals, derivations, etc are in use for a long
time.

In the computer algebra system GAP1 it can be found a procedure to
compute derivations of Lie algebras defined either over finite fields (with
some restrictions) and over fields of char 0, but only for rationals. That
is, it does not compute with Lie algebras having pure real or complex
non-rational structure constants. Moreover, the program does not support
parameters.

With Matematica, there are also some procedures to compute deriva-
tions with reasonably limited applications since none of them has been
conceived to consider parameters.

In this paper we consider the structure tensor to obtain conditions that
a linear transformation must satisfy in order to be a derivation of a Lie
algebra over the field of reals. This, of course, leads to a case by case
analysis whenever we have parameters.

2. Derivations of Lie algebras

Let g be an n dimensional real Lie algebra and take a basis {X1, . . . ,Xn}
for g. By bilinearity, the bracket operation [·, ·] in g is completely deter-
mined once the values [Xi,Xj ], 1 ≤ i, j ≤ n are known. With the Einstein
notation, the coefficients ckij ∈ R, 1 ≤ i, j, k ≤ n, in [Xi,Xj ] = ckijXk (sum
over k) are uniquely determined and called the structure constants of g rel-
ative to the given basis. Then it follows that brackets of any two elements
can be obtained by using the n3 constants ckij . Also, a set of structure
constants satisfies:

ckij = −ckji, 1 ≤ i, j, k ≤ n,

cmil c
l
jk + cmjl c

l
ki + cmklc

l
ij = 0, 1 ≤ i, j, k, l,m ≤ n.

1For further information on GAP, see www.gap-system.org
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Definition 2.1. A linear transformation D : g→ g is said to be a deriva-
tion of g if it satisfies

D ([X,Y ]) = [D(X), Y ] + [X,D(Y )] for all X,Y in g.(2.1)

The matrix representation ofD with respect to the basis above is the n×
n matrix [D] = (dij)

T whose entries are defined by the equations D(Xi) =Pn
p=1 dipXp, 1 ≤ i ≤ n. Given a Lie algebra g, we denote by Der(g) the

Lie algebra of all derivations of g.
It is natural to divide the problem of computing derivations of a Lie

algebra g into two parts, namely,

1. Computing the inner derivations ad(g) = g/C(g) where ad means the
adjoint representation of g and here a basis of the center C(g) of g
can be read off immediately from the structure constants,

2. Computing the outer derivations Der(g)/ad(g).

Of course, these can be expressed as a cohomology space H1(g,g) for
which several algorithms exist in the literature. See, for example, the survey
paper by D. Leites and G. Post, [5]. For instance, if we consider Heisenberg
Lie algebra g of dimension 3 generated by the vector fields

X1 =
∂

∂x1
X2 =

∂

∂x2
+ x1

∂

∂x3
X3 =

∂

∂x3

with the only non-vanishing Lie bracket [X1,X2] = X3 it follows that we
obtain H1(g,g) = 4 from which it follows immediately by the procedure
sketched above that dimDer(g) = 6.

2.1. Outline of the derivation algorithm

A rough description or idea of an algorithm for finding derivations may be
found in Kolman-Beck, [2], but we find it convenient to provide a detailed
overview of this algorithm since such procedures are often of interest. We
suggest [3] as a reference for both theoretical and algorithmical aspects of
Lie algebras.

It is clear that in order to determine derivations of g it is enough to
verify the condition in (2.1) only for brackets [Xi,Xj ] between basis ele-
ments of g. On the other hand, since we are concerned with an algorithm
that calculate with Lie algebras we need to represent Lie algebras in such a
way that they can be dealt with by a computer, that is, as lists of numbers.
Hence, we take into account structure constants of g and express below the
condition (2.1) in terms of these numbers.
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Proposition 2.2. Let g be a n-dimensional real Lie algebra and fix a basis
{X1,X2, . . . ,Xn} for it. Let D denote a linear transformation on g whose
matrix relative to this basis is (dij)

T . Then D is a derivation of g if and
only if

nX
k=1

ckijdkp =
nX

k=1

³
dikc

p
kj + djkc

p
ik

´
(2.2)

for every 1 ≤ i, j, p ≤ n.

The preceding proposition simply says that a derivation is a solution of
the homogeneous system (2.2) consisting of n3 linear equations for the n2

unknowns dij .

For computer purposes a n×n2 matrix A = (aij) whose entries are the
structure constants of g is needed. Actually, since cpii = 0, 1 ≤ i, p ≤ n, the
matrix A has the following face:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n c11j c21j ... cn1j ...

c12j c22j ... cn2j ...

: : :
c1i1 c2i1 ... cni1 ... c1ij c2ij ... cnij ... c1in c2in ... cnin

: : :
c1nj c2nj ... cnnj ... 0n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 0n denotes the zero sequence (0, 0, . . . , 0).

It follows that the structure constants ckij on the left side of (2.2) corre-
spond to i, (j − 1)n+ kth entries of A. Hence, the sum over k corresponds
to vector multiplication of pth column (1 ≤ p ≤ n) of the matrix (dij) with
(ai,jn−n+1, ai,jn−n+2, . . . , ai,jn).

Analogously, the sum
Pn

k=1 dikc
p
kj means the multiplication of the ith

row of (dij) with jn− n+ pth column of the matrix A.

Finally,
Pn

k=1 djkc
p
ik states the multiplication of jth row of (dij) with

the vector (cpi1 c
p
i2 . . . cpin) , 1 ≤ p ≤ n.

If we have a look at the ith row of the matrix A it becomes clear that
for each p, coordinates of the vector (cpi1 c

p
i2 . . . cpin) are obtained through

the entries of A as follows: Starting from the pth column of A we skip n
column each time and pick the entry of A located therein. This implies
that cpik corresponds to i, (k − 1)n+ pth entry of A, and hence

(cpi1 c
p
i2 . . . cpin) =

³
ai,p ai,n+p . . . ai,n2−n+p

´
.
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It follows that
Pn

k=1 djkc
p
ik is the same as multiplication of jth row of

(dij) with
³
ai,p ai,n+p . . . ai,n2−n+p

´
.

Remark: Those structure constants for which i ≥ j can even be deduced
from the others due to reflexivity and anti-symmetry property of Lie paren-
thesis [, ]. Therefore, we are allowed to reduce the number of equations in
(2.2) and consider only n2(n− 1)/2 equations instead of n3.

Let l denotes the left side of (2.2) while the sum r1 + r2 stands for the
right side. Then a formal description of derivation algorithm may be given
in the following way.

Step1. Input the dimension n
Step2. Define an n× n matrix (dij)
Step3. Input the n× n2 matrix A = (aij)
Step4. Let i = 1, 2, . . . , n− 1, j = i+1, i+2, . . . , n, and 1 ≤ p, k ≤ n.
Determine the sums

l =
nX

k=1

dkp ai,(j−1)n+k

r1 =
nX

k=1

dik ak,(j−1)n+p

r2 =
nX

k=1

djk ai,(k−1)n+p

and display (n-times) l and r1 + r2 for each (i, j).

Apart from this description it becomes easy to establish, for example,
a maple code for such an algorithm. We left this part to interested users.
Just observe that the printout of the above algorithm lists for each (i, j) a
line of type l = r1+ r2 and hence n2(n− 1)/2 equations in total appearing
in (2.2).

3. Examples

1. The orthogonal Lie algebra o(3).

Let X1,X2 and X3 denote three infinitesimal rotations around the x,
y and z-axis. They are a basis for o(3), 3×3 real skew matrices. One
computes [X1,X2] = X3, [X2,X3] = X1 and [X3,X1] = X2. Hence
the non-vanishing structure constants are

c312 = c123 = c231 = 1
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and derivations of o(3) can be obtained through the matrix

A =

⎛⎜⎝ 0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎞⎟⎠
which gives us the following table

(i, j) = (1, 2) (i, j) = (1, 3) (i, j) = (2, 3)

d31 = −d13
d32 = −d23
d33 = d11 + d22

−d21 = d12
−d22 = −d11 − d33
−d23 = d32

d11 = d22 + d33
d12 = −d21
d13 = −d31

.

This table contains inside the following homogeneous system

d11 + d22 − d33 = 0

−d11 + d22 − d33 = 0

d11 − d22 − d33 = 0

whose matrix of coefficients is invertible. Thus, it has only trivial
solution resulting that d11 = d22 = d33 = 0 while d21 = −d12, d31 =
−d13 and d32 = −d23. Therefore, a derivation of the orthogonal Lie
algebra has the following face

D =

⎛⎜⎝ 0 z y
−z 0 x
−y −x 0

⎞⎟⎠
Working out the adjoint representation one obtains D1 = ad(X1),
D2 = ad(X2) and D3 = ad(X3). This means that any derivation
of o(3) is inner, a general fact that occurs for semi-simple Lie alge-
bras. Hence we have just seen that this fact confirms the printout of
algorithm.

2. The Heisenberg Lie algebra of dimension 3.

Let g denote the Heisenberg Lie algebra generated by the vector fields
X1 =

∂
∂x1
, X2 =

∂
∂x2

+ x1
∂
∂x3

and X3 =
∂
∂x3
. The only non empty

Lie bracket is [X1,X2] = X3. Hence one has the relations listed as
follows:

(i, j) = (1, 2) (i, j) = (1, 3) (i, j) = (2, 3)

d31 = 0
d32 = 0
d33 = d11 + d22

0 = 0
0 = 0
0 = d32

0 = 0
0 = 0
0 = −d31
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A simple algebraic manipulation shows that a derivation D of g in
its matrix form is given by

[D] =

⎛⎜⎝ x y 0
z t 0
u v x+ t

⎞⎟⎠ .
Since we have only six different parameters it follows at once that the
dimension of the Lie algebra Der(g) is equal to 6.

Remark: We note that the Lie algebras considered in examples 1 and
2 are such that any nonvanishing Lie bracket is one of the algebra
generators. This lets the printout of the algorithm much easier to
determine a basis for the Lie algebra of derivations.

Next, we consider an example of a Lie algebra admitting also Lie
brackets as linear combination of its generators.

3. Let g be the Lie algebra of dimension 4 with the bracket rules

[X4,X2] = X4

[X3,X2] = X4 +X3

[X1,Xi] = Xi+1 for i = 2, 3

Therefore we have a 4×16 matrix A that yields the following relations:

(i, j) = (1, 2) (i, j) = (1, 3)

d31 = 0
d32 = 0
d33 = d11 + d13 + d22
d34 = d13 + d14 + d23

d41 = 0
d42 = 0
d43 = −d12 + d32
d44 = d11 − d12 + d33

(i, j) = (1, 4) (i, j) = (2, 3)

0 = 0
0 = 0
0 = d42
0 = −d12 + d43

−d31 − d41 = 0
−d32 − d42 = 0
−d33 − d43 = −d22 − d31 − d33
−d34 − d44 = d21 − d22 − d33 − d34

(i, j) = (2, 4) (i, j) = (3, 4)

−d41 = 0
−d42 = 0
−d43 = −d41 − d43
−d44 = −d22 − d43 − d44

0 = 0
0 = 0
0 = 0
0 = −d32 − d41 + d42
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A simple computation shows that a derivation D has the following
matrix

[D] =

⎛⎜⎜⎜⎝
x −x 0 0
0 0 0 0
y t x+ y 0
z u y + z + t 2x+ y

⎞⎟⎟⎟⎠
and hence Der(g) is a 5 dimensional Lie algebra.

4. Final comments

The above algorithm is interesting because it gives the relations and thus
one can easily look for a basis. It would also be helpful, for example, for
control systems on Lie groups as follows.

1. Derivations of Lie algebras together with an algorithm to facilitate
their efficient computation may be a quite useful tool for linear con-
trol systems on Lie groups introduced by Ayala-Tirao in [1]. More
precisely, for a connected Lie group G the notion of a linear control
system

Σ = (G,D)
where G is the state space and D is the dynamic given by a family of
differential equations parametrized by control functions has its drift
vector field X as an element of the normalizer

n = {Z ∈ Vect∞(G) : [Z,g] ⊂ g}

of g in the set of smooth vector fields Vect∞(G) of G. Here g is
considered as the set of left invariant vector fields. It turns out that
every element of Der(g) induces an element X ∈ n. In fact, the
authors prove in [1] that

n = g ×s Der(g)

where ×s stands for semi-direct product. On the other hand, by
considering one parameter groups of inner automorphisms on G it
is very easy to construct a subclass of drift vector fields in Der(g),
which are related to the adjoint representation of the Lie algebra g.
However, we stress that this subclass is far from determining Der(g).
Moreover, it is given in [1] an explicit formula for trajectories of Σ
in which derivations of g defining X appear. In general, it is hard to
compute these trajectories but having concrete derivations at hand
would make this difficult task become relatively easier.
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2. Derivations can also help to determine local controllability. Indeed,
according to Theorem 3,5 in [1] any (transitive) linear control system
Σ on a connected Lie groupG with Lie algebra g is locally controllable
if it satisfies ad-rank condition

dim
n
Span{Y j , adk(X)(Y j) : 1 ≤ k ≤ p, 1 ≤ j ≤ m

o
= dim(G)

where p is an integer such that 0 < p < dim(G).

Since ad(X)(Y ) = D(Y ) where D ∈ Der(g) it follows that one can
determine explicitly ad-rank sequence just by matrix multiplication
with consecutive iterations.

3. A linear control system Σ on a connected Lie group G is said to be
null controllable if for each g ∈ G there exists a control function u ∈ U
and t > 0 such that the integral curve x(g, u, t) = e ∈ G, the identity
element. When G is a connected and simply connected nilpotent Lie
group, it is known that the exponential map expG : g→ G is an iso-
morphism from the Abelian Lie group g onto G. It seems natural to
us that local controllability from e ∈ G together with some spectrum
condition on derivations (for example, derivations whose eigenvalues
have negative real part) could provide globally null controllable sys-
tems on this particular class of Lie groups.
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90 Víctor Ayala, Eyup Kizil and Ivan de Azevedo

[5] D. Leites and G. Post, Cohomology to compute, Proceedings of the
third conference on Computers and Mathematics, pp. 73-81, (1989).

[6] A. O. Nielsen, Unitary representations and coadjoint orbits of low di-
mensional nilpotent Lie groups, Queen’s Papers in Pure and Applied
Mathematics 63, (1983).
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Universidade de São Paulo.
Cx. Postal 668. 13.560-970,
São Carlos-SP,
Brasil
e-mail : kizil@icmc.usp.br

and

Ivan de Azevedo Tribuzy
Instituto de Ciências Exatas.
Universidade Federal de Amazonas.
Manaus,
Brasil
e-mail : ivan@argo.com.br




