Proyecciones Journal of Mathematics Vol. 31, N^o 1, pp. 51-63, March 2012. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172012000100006

The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds

JOSÉ ROSALES-ORTEGA Universidad de Costa Rica, Costa Rica Received : September 2011. Accepted : November 2011

Abstract

We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov.

Keywords : semisimple Lie groups, bi-invariant metric, local freeness.

Subjclass : [2000] Primary: 53C05; Secondary: 53C10.

1. Introduction

On a semisimple Lie group G the Killing–Cartan form is invariant by automorphisms, and it defines an Ad(g)-invariant scalar product on $Lie(G) = \mathbf{g}$. Then the left action of G on itself joint to the Killing–Cartan form of \mathbf{g} provide a pseudo-Riemannian structure on G which is bi-invariant. This permits us to study semisimple Lie groups from the point of view of geometry, i.e. we choose an appropriate pseudo-Riemannian metric and compute the various geometrical objects, such as curvature, and geodesics.

It is known that there is a bijective correspondence between the Ad(g)invariant nondegenerate symmetric bilinear forms on \mathbf{g} and the bi-invariant pseudo-Riemannian metrics on G. Under such correspondence, a bilinear form on \mathbf{g} which is not a multiple of the Killing–Cartan form defines a pseudo-Riemannian metric on G that might be expected to provides a geometry that differs from the one given by the Killing–Cartan form. The first thing we want to prove is the fact that such situation does not occur, i.e. every bi-invariant pseudo-Riemannian metric on a semisimple Lie group is a finite sum of Killling–Cartan forms.

We inquire about the relationship of the pseudo-Riemannian invariants of G and M, respectively, for some bi-invariant pseudo-Riemannian metric on G. In this work, we restrict our attention to the signature, which we will denote with (m_1, m_2) and (n_1, n_2) for M and G, respectively.

The second goal of this work is to obtain an estimate between the signatures of G and M, in the case of $G = G_1 \cdots G_l$ and each G_i is a connected simple Lie group and carries a bi-invariant pseudoRiemannian metric. If we denote $n_0^i = \min\{n_1^i, n_2^i\}$ and $m_0 = \min\{m_1, m_2\}$, then we are going to prove that $n_0^1 + \cdots + n_0^l \leq m_0$.

The organization of this article is as follows. In section 2 we collect some basic results about complexification of a real Lie algebra and invariant bilinear forms on a simple Lie algebra that will needed in the proof of the main theorem on that section. Also we give the classification of the Ad(g)invariant bilinear forms on a semisimple Lie algebra. This is mentioned in [2], but the generalization to semisimple Lie groups is new. As a consequence we give the classification of the bi-invariant pseudo-Riemannian metrics on G. In section 3 we use the results obtained previously to obtain an estimated between the signatures of the metrics on M and G, respectively.

I would like to thank Joseph Várilly for useful comments that allowed to simplify the exposition of this work.

2. Complexification of a real Lie algebra

Let V be a vector space over R of finite even dimension. A complex structure on V is an R-linear endomorphism J of V such that $J^2 = -I$. When there exist a complex structure J on V, we define V_J as the complex vector space associated to V by the rule: (a + ib)X = aX + bJX for $X \in V$ and $a, b \in R$.

A Lie algebra **g** over R is said to have a compatible complex structure J if J is a complex structure on the real vector space **g** and in addition [X, JY] = J[X, Y] for $X, Y \in \mathbf{g}$. It is easy to see that \mathbf{g}_C then becomes a complex Lie algebra.

If V is an arbitrary finite dimensional vector space over R, the R-linear map $J: (X, Y) \mapsto (-Y, X)$ is a complex structure on $V \times V$. The complex vector space $(V \times V)_J$ is called the complexification of V and will be denoted by V^C . We write X + iY instead of (X, Y) in V^C .

If **g** is a Lie algebra over R, owing to the conventions above, the complex space \mathbf{g}^C consists of all symbols X + iY with $X, Y \in \mathbf{g}$, and it is a complex Lie algebra whose Lie bracket is given by

$$[X + iY, Z + iT] = [X, Y] - [Y, T] + i([Y, Z] + [X, T]).$$

Definition 1. A real Lie algebra \mathbf{g}_0 is called a real form of a complex Lie algebra \mathbf{g} if its complexification $(\mathbf{g}_0)^C$ is isomorphic to \mathbf{g} as a complex Lie algebra.

For semisimple Lie algebras over C the existence of a real form is proved in [1, Thm. III.6.3]. This real form is also compact, which means that the Killing-Cartan form of **g** is strictly negative definite.

If **g** is a real Lie algebra and $T: \mathbf{g} \to \mathbf{g}$ is a *R*-linear map, then there is a *C*-linear map $T^C: \mathbf{g}^C \to \mathbf{g}^C$ defined by $T^C(X + iY) = TX + iTY$.

The complexification of the adjoint representation $ad: \mathbf{g} \to \mathbf{gl}(\mathbf{g})$ is the *C*-linear map $ad^C: \mathbf{g}^C \to \mathbf{gl}(\mathbf{g}^C)$ given by

 $ad^{C}(X+iY)(Z+iW) = [X+iY, Z+iW]$

= [X, Z] - [Y, W] + i[X, W] + i[Y, Z].

A trivial calculation shows that if T and $ad^{C}(X)$ commute for every $X \in \mathbf{g}$, then $T^{C} \neq ad^{C}(X + iY)$ commute for every $X, Y \in \mathbf{g}$.

For an *R*-linear map $T: \mathbf{g} \to \mathbf{g}$ and a given complex structure J on \mathbf{g} , we can consider the *C*-linear map $T_J: \mathbf{g}_J \to \mathbf{g}_J$ defined by $T_J(X) = T(X) - JTJ(X)$. Consider also the adjoint representation $ad: \mathbf{g}_J \to \mathbf{gl}(\mathbf{g}_J)$. It is easy to show that if T and ad(X) commute for each $X \in \mathbf{g}$, then T_J commutes with ad(Z) for each $Z \in \mathbf{g}_J$.

The next proposition (for a proof see [1, Thm. X.1.5]) it will be useful later.

Proposition 1. For a simple Lie algebra \mathbf{g} over R there are two possibilities:

- 1. \mathbf{g}^C is simple;
- 2. \mathbf{g}^C is nonsimple; in this case \mathbf{g} admits a complex structure J whose associated complex Lie algebra \mathbf{g}_J is simple.

For the above proposition, the classification of Ad(G)-invariant bilinear forms should be separated into two cases. The first case is the following.

Theorem 1. Let \mathbf{g} be a simple Lie algebra over R which has simple complexification. Then the Ad(G)-invariant bilinear forms of \mathbf{g} are multiples of the Killing–Cartan form of \mathbf{g} .

Proof. Let D be an Ad(G)-invariant bilinear form on \mathbf{g} .

Since the Killing–Cartan form B of \mathbf{g} is nondegenerate, there is a linear map $T: \mathbf{g} \to \mathbf{g}$ such that D(X, Y) = B(X, TY) for each $X, Y \in \mathbf{g}$. Using the Ad(G)-invariance of D we obtain

B(X,TY) = D(X,Y)= D(Ad(g)X, Ad(g)Y) = B(Ad(g)X, T Ad(g)Y) = B(X, Ad(g^{-1})TAd(g)Y),

so $TY - Ad(g^{-1})TAd(g)Y = 0$. Therefore Ad(g)T = TAd(g) for each $g \in G$.

We claim that ad(X)T = Tad(X) for each $x \in \mathbf{g}$. Taking $g = \exp(tX)$ we obtain $Ad(\exp(tX))T = TAd(\exp(tX))$, and from the identity $Ad(\exp(X)) = e^{Ad(X)}$ we conclude that $Te^{tad(X)} = e^{tad(X)}T$.

Differentiating the last equation at t = 0, we obtain ad(X)T = Tad(X).

From the first remark above we obtain that $T^C ext{ y } ad^C(X+iY)$ commute for every $X, Y \in \mathbf{g}$. Let $\lambda \in C$ be an eigenvalue of T^C . Since \mathbf{g}^C is simple and ad^C is an irreducible representation, by Schur's Lemma we conclude that $T^C = \lambda I$, then $T^C(X + iY) = \lambda(X + iY)$. If we write $\lambda = \lambda_1 + i\lambda_2$, then it is very easy to conclude that $T = \lambda_1 I$, where $\lambda_1 \in R$, and then $D = \lambda_1 B$. \Box **Theorem 2.** Let \mathbf{g} be a simple Lie algebra over R which has nonsimple complexification and let J be a fixed complex structure on \mathbf{g} . Let D be an Ad(G)-invariant bilinear form on \mathbf{g} , then D(X,Y) = aB(X,Y)+bB(X,JY) for some $a, b \in R$ and for each $X, Y \in \mathbf{g}$.

Proof. There is a linear map $T: \mathbf{g} \to \mathbf{g}$ such that D(X, Y) = B(X, TY) for each $X, Y \in \mathbf{g}$, where B is the Killing–Cartan form of \mathbf{g} .

We shall prove that T satisfies $TJ+JT = \lambda_1 I + \lambda_2 J$ for some $\lambda_1, \lambda_2 \in R$. By the Ad(G)-invariance of D we conclude that T and Ad(g) commute for each $g \in G$. From the second remark above we obtain that T_J and ad(X) commute for each $X \in \mathbf{g}_J$.

Using the irreducibility of the adjoint representation of ad_J , its follow by Schur's Lemma that there is $\lambda = \lambda_2 - i\lambda_1 \in C$ such that $T_J = \lambda I$. From this we obtain $TJ + JT = \lambda_1 I + \lambda_2 J$, where $\lambda_1, \lambda_2 \in R$.

Define $\widehat{T} = T - \frac{1}{2}\lambda_2 I + \frac{1}{2}\lambda_1 J$. Then \widehat{T} and ad(X) commute for each $X \in \mathbf{g}$ and it is easy to check that $\widehat{T}J + J\widehat{T} = 0$.

We can find an orthogonal basis $\{X_1, \ldots, X_r\}$ of the complex Lie algebra \mathbf{g}_J such that $\{X_1, \ldots, X_r, J(X_1), \ldots, J(X_r)\}$ is a basis of \mathbf{g} over R. Let \mathbf{g}_k be the R-linear subspace given by

$$\mathbf{g}_k := \sum_{x \in \Delta} R(iH_\alpha) + \sum_{x \in \Delta} R(X_\alpha - X_\alpha) + \sum_{x \in \Delta} R(i(X_\alpha + X_\alpha)),$$

where Δ is the corresponding set of nonzero roots of \mathbf{g}_J , and for each $\alpha \in \Delta$ we select $X_{\alpha} \in \mathbf{g}^{\alpha}$ with the properties of [1, Thm. III.5.5]. It follows that B, the Killing-Cartan form of \mathbf{g}_J , is strictly negative definite on \mathbf{g}_k . Moreover, $\mathbf{g}_J = \mathbf{g}_k \oplus J\mathbf{g}_k$. Normalizing the basis given by \mathbf{g}_k we obtain a new basis of \mathbf{g}_J given by $\{X_1, \ldots, X_r\}$ such that $\{X_1, \ldots, X_r, J(X_1), \ldots, J(X_r)\}$ is a basis of \mathbf{g} over R. It is clear that $B_{\mathbf{g}_k}(Y_i, Y_j) = \delta_{ij}\epsilon_i$, for $Y_i, Y_j \in \mathbf{g}$, where $\epsilon_i = 1$ if $i = 1, \ldots, r$ and $\epsilon_i = -1$ if $i = r + 1, \ldots, 2r$. Using [1, Lm. III.6.1]) we conclude that $B_{\mathbf{g}}(X, Y) = (B(X, Y))(B(X, Y))$ for $X, Y \in \mathbf{g}$.

In this basis the matrix representation of the complex structure J and the Killing-Cartan form of **g** are given by

$$J = \begin{pmatrix} 0 & -I_r \\ I_r & 0 \end{pmatrix}, \qquad B_{\mathbf{g}} = \begin{pmatrix} I_r & 0 \\ 0 & I_r \end{pmatrix}.$$

If the matrix representation of T in that basis has the form

$$T = \left(\begin{array}{cc} A_0 & B_0 \\ C_0 & D_0 \end{array}\right),$$

then we deduce from the identity $TJ + JT = \lambda_1 I + \lambda_2 J$ that

$$T = \left(\begin{array}{cc} A_0 & C_0 + \lambda_1 I \\ C_0 & -A_0 + \lambda_2 I \end{array}\right).$$

If we rewrite T in the following form

$$2\mathbf{T} = \begin{pmatrix} 2A_0 - \lambda_2 I_r & 2C_0 + \lambda_1 I_r \\ 2C_0 + \lambda_1 I_r & -2A_0 + \lambda_2 I_2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 0 & I_r \\ -I_r & 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} I_r & 0 \\ 0 & I_r \end{pmatrix},$$

and we denote $2E_0 = 2A_0 - \lambda_2 I_r$ and $2L_0 = 2C_0 + \lambda_1 I_r$, then we have

$$2T = \begin{pmatrix} 2E_0 & 2L_0 \\ 2L_0 & -2E_0 \end{pmatrix} - \lambda_1 J + \lambda_2 I.$$

Define $\widehat{T} = T - \frac{1}{2}\lambda_2 I + \frac{1}{2}\lambda_1 J$. Then \widehat{T} and ad(X) commute for each $X \in \mathbf{g}$ and it is easy to check that $\widehat{T}J + J\widehat{T} = 0$.

We prove now that $\hat{T} = 0$, and from this the theorem follows.

Let **u** be a real form of \mathbf{g}_J (for a proof see [1, Thm. III.6.3]). Then for the map $\widehat{T}: \mathbf{g} \to \mathbf{g}$ there are *R*-linear maps $E_0, L_0: \mathbf{u} \to \mathbf{u}$ such that $\widehat{T}(X) = E_0(X) + JL_0(X)$ for each $X \in \mathbf{u}$.

Let X, Y be in \mathbf{u} , then $[X, Y] \in \mathbf{u}$ and $\widehat{T}([X, Y]) = E_0[X, Y] + JL_0[X, Y]$. On the other hand, $[\widehat{T}X, Y] = [E_0X, Y] + J[L_0X, Y]$, because \widehat{T} and ad(X) commute for each $X \in \mathbf{g}$. It follows that

$$\widehat{T}([X,Y]) - [\widehat{T}X,Y] = E_0[X,Y] - [E_0X,Y] + JL_0[X,Y] - J([L_0X,Y]).$$

The relationship $\widehat{T} \circ ad(X) = ad(X) \circ \widehat{T}$, for all $X \in \mathbf{g}$, shows that $\widehat{T}([X,Y]) = [\widehat{T}X,Y]$, therefore we conclude that

(2.1)
$$E_0[X,Y] = [E_0X,Y], \quad L_0[X,Y] = [L_0X,Y].$$

It follows from the above relationship that $\widehat{T}([JX, JY]) = -\widehat{T}([JY, JX])$ $= -\widehat{T}ad(JY)(JX)$ $= -ad(JY)\widehat{T}(JX)$ $= [\widehat{T}(JX), JY]$ From this and the direct sum, $\mathbf{g} = \mathbf{u} \oplus J\mathbf{u}$, we can conclude that

(2.2)
$$E_0[X,Y] = -[E_0X,Y], \quad L_0[X,Y] = -[L_0X,Y]$$

It is easy to conclude from (2.1) and (2.2) that $E_0 = 0 = L_0$ on $[\mathbf{u}, \mathbf{u}]$. Since **u** is a semisimple Lie algebra we have $[\mathbf{u}, \mathbf{u}] = \mathbf{u}$. Hence $\widehat{T} = 0$. Therefore $T = \frac{1}{2}\lambda_2 I + \frac{1}{2}\lambda_1 J$, and

$$D(X,Y) = B(X,TY) = aB(X,Y) + bB(X,JY).$$

The classification of the Ad(G)-invariant bilinear forms on a simple Lie algebra was done in the previous theorems. The next result gives the classification of the Ad(G)-invariant bilinear forms on a semisimple Lie algebra, but before that we will need the following easily proved result.

Lemma 1. Let $F: \mathbf{g} \times \mathbf{g} \to R$ be a symmetric bilinear form that is Ad(G)invariant, then F([X, W], Y) = F(X, [W, Y]) for $W, X, Y \in \mathbf{g}$. The converse holds if G is connected.

It is sufficient to show that F([W, X], X) = 0 for all $W, X \in \mathbf{g}$. Proof. We consider the following function

$$f(s) = F(Ad(\alpha(s))X, Ad(\alpha(s))X),$$

We affirm that f is constant on each one-parameter subgroup α of G. From this the direct assertion follows. \Box

Theorem 3. Let $\mathbf{g} = \mathbf{g}_1 \oplus \mathbf{g}_2 \oplus \cdots \oplus \mathbf{g}_l$ be a Lie algebra, where each \mathbf{g}_i is a simple ideal of **g**. We shall suppose the following:

- The complexification of each \mathbf{g}_i , for $i = 1, \ldots, k$ is simple; and
- The complexification of each \mathbf{g}_i , for $i = k + 1, \dots, l$ is not simple and so there exists a complex structure J_i for each \mathbf{g}_i .

Then every Ad(G)-invariant bilinear form D on g is given by the following

 $D = \lambda_1 B_{\mathbf{g}_1} \oplus \cdots \oplus \lambda_k B_{\mathbf{g}_k}$ $\oplus (\mu_1^{k+1} B_{\mathbf{g}_{k+1}} + \mu_2^{k+1} B_{\mathbf{g}_{k+1}}^{J_{k+1}}) \oplus \cdots \oplus (\mu_1^l B_{\mathbf{g}_l} + \mu_2^l B_{\mathbf{g}_l}^{J_l}), \text{ where each } B_{\mathbf{g}_i} \text{ is the}$ Killing–Cartan form on \mathbf{g}_i , for $i = 1, \ldots, l$; all λ_i and μ_i^j are real numbers, and $B_{\mathbf{g}_i}^{J_i}(X, Y) = B_{\mathbf{g}_i}(X, J_i Y).$

Proof. It follows from Lemma 1 that

$$D(X, [Y, Z]) = D([X, Y], Z),$$
 for all $X, Y, Z \in \mathbf{g}$.

On the other hand, it is easy to show the following properties:

- 1. $[\mathbf{g}_i, \mathbf{g}_j] = \{0\}$ for all $i \neq j$; and
- 2. $[\mathbf{g}_i, \mathbf{g}_i] = \mathbf{g}_i$, for all *i*.

Using the above information we have for $Y \in \mathbf{g}_j$ that there exist $Z, W \in$ \mathbf{g}_j such that Y = [Z, W], and for $X \in \mathbf{g}_i$ we conclude that

$$D(X,Y) = D(X,[Z,W]) = D([X,Z],W) = 0.$$

Therefore $\mathbf{g}_i \perp \mathbf{g}_j$ for all $i \neq j$ with respect to D. From this it follows that

$$D=B\Big|_{\mathbf{g}_1}\oplus\cdots\oplus B\Big|_{\mathbf{g}_l}.$$

Now we use the classification of Ad(G)-invariant bilinear forms on a simple Lie algebra given in theorems 1 and 2. From this the result follows.

From [3, Ch.11]) we obtain a relation between the geometry of G and its Lie algebra g. Also we can deduce that the geometry of all bi-invariant metrics on G share most of the pseudo-Riemannian invariant.

We are going to give a classification of the bi-invariant pseudoRiemannian metrics on a semisimple Lie group based on the classification of the bilinear Ad(G)-invariant forms on a semisimple Lie algebra.

Theorem 4. Let G be a semisimple Lie group such that $Lie(G) = \mathbf{g} =$ $\mathbf{g}_1 \oplus \mathbf{g}_2 \oplus \cdots \oplus \mathbf{g}_l$, where each \mathbf{g}_i is a simple ideal of the Lie algebra \mathbf{g} . We shall suppose the following:

- The complexification of each \mathbf{g}_i , for $i = 1, \ldots, k$ is simple; and
- The complexification of each \mathbf{g}_i , for $i = k + 1, \dots, l$ is not simple and so there exists a complex structure J_i for each \mathbf{g}_i .

Then every bi-invariant pseudoRiemannian metric ϕ on **g** is given by $\phi =$

 $\lambda_1 B_{\mathbf{g}_1} \oplus \cdots \oplus \lambda_k B_{\mathbf{g}_k} \\ \oplus (\mu_1^{k+1} B_{\mathbf{g}_{k+1}} + \mu_2^{k+1} B_{\mathbf{g}_{k+1}}^{J_{k+1}}) \oplus \cdots \oplus (\mu_1^l B_{\mathbf{g}_l} + \mu_2^l B_{\mathbf{g}_l}^{J_l}), \text{ where each } B_{\mathbf{g}_i} \text{ is the }$ Killing–Cartan form on \mathbf{g}_i , for $i = 1, \ldots, l$, all λ_i and μ_i^j are real numbers, and $B_{\mathbf{g}_i}^{J_i}(X, Y) = B_{\mathbf{g}_i}(X, J_i Y).$

3. Group action

From now on $G = G_1 \cdots G_l$ will be a connected noncompact semisimple Lie group with Lie algebra $\mathbf{g} = \mathbf{g}_1 \oplus \mathbf{g}_2 \oplus \cdots \oplus \mathbf{g}_l$. We know that G admits bi-invariant pseudoRiemannian metrics and all of them can be described in terms of the Killing-Cartan form on each \mathbf{g}_i .

Let M be a connected compact smooth manifold. We always assume that the action of G on M is smooth, faithful, and preserve a finite measure on M.

Definition 2. The dimension of maximal lightlike tangent subspaces for M will be denoted with $m_0 = \min\{m_1, m_2\}$, where (m_1, m_2) represent the signature of M, i.e., that m_1 correspond to the dimension of maximal timelike tangent subspaces and m_2 correspond to the dimension of the maximal spacelike tangent subspaces.

Definition 3. The dimension of maximal lightlike tangent subspaces for G_i , i = 1, ..., l, will be denoted with $n_0^i = \min\{n_1^i, n_2^i\}$, where (n_1^i, n_2^i) represent the signature of G_i .

Gromov remarked in [2] that if (n_1, n_2) is the signature of the metric given by the Killing–Cartan form on **g**, then any other bi-invariant pseudoRiemannian metric on *G* has signature given by either (n_1, n_2) or (n_2, n_1) .

We are interested in comparing the numbers m_0 and $n_0^1 + \cdots n_0^l$. To better understand this result we are going to prove the following very useful lemma.

Lemma 2. Let (V,g) be a scalar product space, i.e, V is a finite dimensional vector space and g a nondegenerate symmetric bilinear form. Suppose that $V = V_1 \oplus \cdots \oplus V_l$, where each V_i is a subspace of V and $g = g_1 \oplus \cdots \oplus g_l$, where each g_i is a scalar product in V_i , for $i = 1, \ldots, l$. Let n_0 be the dimension of the maximal subspace of null vectors with respect to g in V, and n_0^i , for $i = 1, \ldots, l$, is defined in a similar way for each V_i . Then the following inequality holds: $n_0 \ge n_0^1 + \cdots + n_0^l$

Proof. The idea for this is to realize that for each i we have $n_0^i = \min\{n_-^i, n_+^i\}$, where n_-^i is the number of -1 and n_+^i the number of +1 when g is diagonalized. Without loss of generality we can suppose that for $i = 1, \ldots, k$ we have that $n_0^i = n_-^i$, and for $j = k + 1, \ldots, l$ also $n_0^j = n_+^j$.

It follows that $\mathbf{n}_{-} = n_{-}^{1} + \dots + n_{-}^{l}$ $\geq n_{0}^{1} + \dots + n_{0}^{l}$, and in a similar way we have $\mathbf{n}_{+} = n_{+}^{1} + \dots + n_{+}^{l}$ $\geq n_{0}^{1} + \dots + n_{0}^{l}$.

From this it follows that $n_0 = \min\{n_-, n_+\} \ge n_0^1 + \dots + n_0^l$. \Box

We will denote with TO the tangent bundle to the orbits of the G-action on M. If $X \in \mathbf{g}$, we define the infinitesimal generator X^* as the vector field on M induced by X. This new vector field is given by

$$X_p^* = \frac{d}{dt} |_{t=0} \exp(tX) \cdot p$$

It is clear that X^* is a Killing vector field, and $X_p^* \in T_p(G \cdot p)$, for $p \in M$.

We will use the following two maps: $\varphi : M \times \mathbf{g} \to TO$, given by $\varphi(p, X) = X_p^*$, and $\psi : M \to \mathbf{g}^* \otimes \mathbf{g}^*$, given by $\psi(p) = B_p$, where $B_p(X, Y) = h_p(X_p^*, Y_p^*)$, and h is the metric on M.

We can conclude from the next lemma that $\psi(p)$ is an Ad(G)-invariant bilinear form on \mathbf{g} , for every $p \in M$.

Lemma 3. For every $p \in M$, $\psi(p)$ is Ad(G)-invariant.

Proof. This is a consequence of lemma 1 if we prove the following: $\psi(p)(ad(W)X, X) = 0$, for all $X, W \in \mathbf{g}$.

$$\psi(p)(ad(W)X, X) = h_p((ad(W)X)_p^*, X_p^*)$$

= $h_p(-(ad(W^*)X^*)_p, X_p^*)$
= $-h_p(X_p^*, (ad(W)X)_p^*)$
= $-\psi(p)(ad(W)X, X).$

We obtain a foliation of M by orbits from the action of G on M. If we restrict the given metric on M to each orbit of M we obtain a nondegenerate metric, therefore we can apply the classification given in the past section.

Theorem 1. For G and M as before suppose G acts topologically transitively on M, i.e., there is a dense G-orbit, preserving its pseudoRiemannian metric and satisfying $n_0^1 + \cdots + n_0^l = m_0$. Then G acts everywhere locally free with nondegenerate orbits.

Proof. Since the action is topologically transitively on M, it follows from a result in [5] that the action is everywhere locally free. open subset $U \subset M$, so that the the G-orbit of every point in U is nondegenerate.

We are going to prove that there exist a G-invariant open subset U on M so that the G-orbit of every point in U is nondegenerate.

Every basis of **g** induces at every point $p \in M$ a family of vectors that also defines a base for the tangent space to the orbit at M. In particular, φ trivializes TO.

We consider the G-action on $M \times \mathbf{g}$ given by g(p, X) = (gp, Ad(g)(X)). The map φ is *G*-equivariant,

 $g\varphi(p,X) = gX_n^*$ $= g \frac{d}{dt} |_{t=0} (\exp(tX)p)$ = $\frac{d}{dt} |_{t=0} (g \exp(tX)p)$ = $\frac{d}{dt} |_{t=0} (g \exp(tX)g^{-1}gp)$ = $\frac{d}{dt} |_{t=0} (\exp tAd(g)(X)gp)$

- $= Ad(g)(X)_{qp}^* = \varphi(g(p, X)).$

The map ψ , defined above, is G-equivariant. For $g \in G, X, Y \in \mathbf{g}$ and $p \in M$ we have:

 $\psi(gp)(X,Y) = h_{gp}(X_{gp}^*,Y_{gp}^*)$ = $h_p(Ad(g^{-1})(X)_p^*,Ad(g^{-1})(Y)_p^*)$ $= \psi(p)(Ad(g^{-1})(\dot{X}), Ad(g^{-1})(\dot{Y})).$

Hence, since the *G*-action is tame on $\mathbf{g}^* \otimes \mathbf{g}^*$, such map is essentially constant on the support of almost every ergodic component of M, see [6, Ch.2]).

By the lemma 3, there is an Ad(G)-invariant bilinear form B_U on g so that the metric on $TO|_U \cong U \times \mathbf{g}$ induced by M is almost everywhere given by B_U on each fiber, where U is the support of one ergodic component of M. It is very easy to prove that the kernel of B_U is an ideal of **g**. If such kernel is g, then $TO|_U$ is lightlike which implies dim $g \leq m_0$. This contradicts the condition $n_0^1 + \cdots + n_0^l = m_0$ since $n_0 < \dim \mathbf{g} = \dim \mathbf{g}_1 + \cdots + \dim \mathbf{g}_l$. Hence, being g semisimple, it follows that B_U is nondegenerate, and so almost every G-orbit contained in S is nondegenerate. We can conclude that almost every G-orbit in M is nondegenerate. As a consequence, the set U as defined before is conull and so nonempty.

The previous argument shows that the image under ψ of a conull and hence dense, subset of M lies in the set of Ad(G)-invariant elements of $\mathbf{g}^* \otimes \mathbf{g}^*$. It follows that $\psi(M)$ lies on it, since such set is closed. In particular, on every G-orbit the metric induced from that of M is given by Ad(G)invariant symmetric bilinear form on **g**.

Using topological transitivity, we obtain an G-orbit O_{α} . This G-orbit is dense and so it must intersect U. It is clear that $O_{\alpha} \subset U$ since U is G-invariant.

The metric restricted to O_{α} , under the map φ , is given by the nondegenerate bilinear form B_{α} on **g**. It follows that $\psi(O_{\alpha}) = B_{\alpha}$ and so the the continuity of ψ together with the density of O_{α} imply that ψ is the constant map given by B_{α} .

We now prove the principal result in this work.

Theorem 2. Let $G = G_1 \cdots G_l$ be a connected semisimple Lie group without compact factors acting by isometries on a finite volume pseudoRiemannian manifold M and no factor of G acts trivially. Then $n_0^1 + \cdots + n_0^l \leq m_0$.

Proof. By results in [6] we have local freeness on an open subset $U \subset X$. Then the map $\psi: U \to \mathbf{g}^* \otimes \mathbf{g}^*$, defined above, is constant on the ergodic components in U for the G-action. On any such ergodic component, the metric along the G-orbits comes from an Ad(G)-invariant bilinear form B_U on \mathbf{g} .

Let η be the kernel of B_U . It is known that η is an ideal of **g**. Since **g** is semisimple we have to consider the following cases.

(1) $\eta = \mathbf{g}$. In this case it follows easily that $B_U = 0$, then $\dim \mathbf{g} \leq m_0$. Since, $\dim \mathbf{g}_i \geq n_0^i$ and $\dim \mathbf{g} = \dim \mathbf{g}_1 + \cdots + \dim \mathbf{g}_l$, we conclude that

$$n_0^1 + \dots + n_0^l < m_0.$$

- (2) $\eta = \{0\}$. In this case B_U is nondegenerate and the *G*-orbits are nondegenerate submanifolds of *X*. Then we have that $n_0 \leq m_0$ and by Lemma 2 the claim follows.
- (3) $\eta = \bigoplus_{j \in J} \mathbf{g}_j$ where $J \subset \{1, \ldots, l\}$. From this it follows that there is a subspace of null vectors in the tangent space to the *G*-orbits which has a dimension dim $\bigoplus_{j \in J} \mathbf{g}_j + n_0^{j_1} + \cdots + n_0^{j_s}$. Therefore,

$$\dim \bigoplus_{j \in J} \mathbf{g}_j + n_0^{j_1} + \dots + n_0^{j_s} \le m_0,$$

where $j_1, \ldots, j_s \in \{1, \ldots, l\} \setminus J$. On the other hand,

$$\dim \bigoplus_{j \in J} \mathbf{g}_j + n_0^{j_1} + \dots + n_0^{j_s} > n_0^1 + \dots + n_0^l.$$

References

- S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, (1978).
- [2] M. Gromov, Rigid transformations groups, Géométrie différentielle (Paris 1986), Travaux en Cours 33, Hermann, Paris, pp. 65–139, (1988).
- [3] B. O'neill, SEMI-RIEMANNIAN GEOMETRY, Academic Press, New York, (1983).
- [4] J. Rosales-Ortega, The Gromov's Centralizer theorem for semisimple Lie group actions. Ph.D. Thesis, CINVESTAV-IPN, (2005).
- [5] J. Szaro, Isotropy of semisimple group actions on manifolds with geometric structures, Amer. J. Math. 120, pp. 129–158, (1998).
- [6] R. J. Zimmer, Ergodic Theory and Semisimple Lie Groups, Birkhäuser, Boston, (1984).

José Rosales-Ortega

Department of Mathematics ITCR Universidad de Costa Rica e Instituto Tecnológico de Costa Rica San José Cartago, Costa Rica e-mail : jrosales@itcr.ac.cr jose.rosales@ucr.ac.cr