The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds

JOSÉ ROSALES-ORTEGA
Universidad de Costa Rica, Costa Rica
Received: September 2011. Accepted: November 2011

Abstract

We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov.

Keywords : semisimple Lie groups, bi-invariant metric, local freeness.

Subjclass : [2000] Primary: 53C05; Secondary: 53C10.

1. Introduction

On a semisimple Lie group G the Killing-Cartan form is invariant by automorphisms, and it defines an $\operatorname{Ad}(g)$-invariant scalar product on $\operatorname{Lie}(G)=\mathbf{g}$. Then the left action of G on itself joint to the Killing-Cartan form of \mathbf{g} provide a pseudo-Riemannian structure on G which is bi-invariant. This permits us to study semisimple Lie groups from the point of view of geometry, i.e. we choose an appropiate pseudo-Riemannian metric and compute the various geometrical objects, such as curvature, and geodesics.

It is known that there is a bijective correspondence between the $\operatorname{Ad}(g)$ invariant nondegenerate symmetric bilinear forms on \mathbf{g} and the bi-invariant pseudo-Riemannian metrics on G. Under such correspondence, a bilinear form on \mathbf{g} which is not a multiple of the Killing-Cartan form defines a pseudo-Riemannian metric on G that might be expected to provides a geometry that differs from the one given by the Killing-Cartan form. The first thing we want to prove is the fact that such situation does not occur, i.e. every bi-invariant pseudo-Riemannian metric on a semisimple Lie group is a finite sum of Killing-Cartan forms.

We inquire about the relationship of the pseudo-Riemannian invariants of G and M, respectively, for some bi-invariant pseudo-Riemannian metric on G. In this work, we restrict our attention to the signature, which we will denote with $\left(m_{1}, m_{2}\right)$ and $\left(n_{1}, n_{2}\right)$ for M and G, respectively.

The second goal of this work is to obtain an estimate between the signatures of G and M, in the case of $G=G_{1} \cdots G_{l}$ and each G_{i} is a connected simple Lie group and carries a bi-invariant pseudoRiemannian metric. If we denote $n_{0}^{i}=\min \left\{n_{1}^{i}, n_{2}^{i}\right\}$ and $m_{0}=\min \left\{m_{1}, m_{2}\right\}$, then we are going to prove that $n_{0}^{1}+\cdots+n_{0}^{l} \leq m_{0}$.

The organization of this article is as follows. In section 2 we collect some basic results about complexification of a real Lie algebra and invariant bilinear forms on a simple Lie algebra that will needed in the proof of the main theorem on that section. Also we give the classification of the $\operatorname{Ad}(g)$ invariant bilinear forms on a semisimple Lie algebra. This is mentioned in [2], but the generalization to semisimple Lie groups is new. As a consequence we give the classification of the bi-invariant pseudo-Riemannian metrics on G. In section 3 we use the results obtained previously to obtain an estimated between the signatures of the metrics on M and G, respectively.

I would like to thank Joseph Várilly for useful comments that allowed to simplify the exposition of this work.

2. Complexification of a real Lie algebra

Let V be a vector space over R of finite even dimension. A complex structure on V is an R-linear endomorphism J of V such that $J^{2}=-I$. When there exist a complex structure J on V, we define V_{J} as the complex vector space associated to V by the rule: $(a+i b) X=a X+b J X$ for $X \in V$ and $a, b \in R$.

A Lie algebra \mathbf{g} over R is said to have a compatible complex structure J if J is a complex structure on the real vector space \mathbf{g} and in addition $[X, J Y]=J[X, Y]$ for $X, Y \in \mathbf{g}$. It is easy to see that \mathbf{g}_{C} then becomes a complex Lie algebra.

If V is an arbitrary finite dimensional vector space over R, the R-linear $\operatorname{map} J:(X, Y) \mapsto(-Y, X)$ is a complex structure on $V \times V$. The complex vector space $(V \times V)_{J}$ is called the complexification of V and will be denoted by V^{C}. We write $X+i Y$ instead of (X, Y) in V^{C}.

If \mathbf{g} is a Lie algebra over R, owing to the conventions above, the complex space \mathbf{g}^{C} consists of all symbols $X+i Y$ with $X, Y \in \mathbf{g}$, and it is a complex Lie algebra whose Lie bracket is given by

$$
[X+i Y, Z+i T]=[X, Y]-[Y, T]+i([Y, Z]+[X, T])
$$

Definition 1. A real Lie algebra \mathbf{g}_{0} is called a real form of a complex Lie algebra \mathbf{g} if its complexification $\left(\mathbf{g}_{0}\right)^{C}$ is isomorphic to \mathbf{g} as a complex Lie algebra.

For semisimple Lie algebras over C the existence of a real form is proved in [1, Thm. III.6.3]. This real form is also compact, which means that the Killing-Cartan form of \mathbf{g} is strictly negative definite.

If \mathbf{g} is a real Lie algebra and $T: \mathbf{g} \rightarrow \mathbf{g}$ is a R-linear map, then there is a C-linear map $T^{C}: \mathbf{g}^{C} \rightarrow \mathbf{g}^{C}$ defined by $T^{C}(X+i Y)=T X+i T Y$.

The complexification of the adjoint representation $a d: \mathbf{g} \rightarrow \mathbf{g l}(\mathbf{g})$ is the C-linear map $a d^{C}: \mathbf{g}^{C} \rightarrow \mathbf{g l}\left(\mathbf{g}^{C}\right)$ given by
$\operatorname{ad}^{C}(X+i Y)(Z+i W)=[X+i Y, Z+i W]$ $=[X, Z]-[Y, W]+i[X, W]+i[Y, Z]$.

A trivial calculation shows that if T and $a d^{C}(X)$ commute for every $X \in \mathbf{g}$, then T^{C} y $a d^{C}(X+i Y)$ commute for every $X, Y \in \mathbf{g}$.

For an R-linear map $T: \mathbf{g} \rightarrow \mathbf{g}$ and a given complex structure J on \mathbf{g}, we can consider the C-linear map $T_{J}: \mathbf{g}_{J} \rightarrow \mathbf{g}_{J}$ defined by $T_{J}(X)=$ $T(X)-J T J(X)$. Consider also the adjoint representation $a d: \mathbf{g}_{J} \rightarrow \mathbf{g l}\left(\mathbf{g}_{J}\right)$. It is easy to show that if T and $a d(X)$ commute for each $X \in \mathbf{g}$, then T_{J} commutes with $\operatorname{ad}(Z)$ for each $Z \in \mathbf{g}_{J}$.

The next proposition (for a proof see [1, Thm. X.1.5]) it will be useful later.

Proposition 1. For a simple Lie algebra \mathbf{g} over R there are two possibilities:

1. g^{C} is simple;
2. \mathbf{g}^{C} is nonsimple; in this case \mathbf{g} admits a complex structure J whose associated complex Lie algebra \mathbf{g}_{J} is simple.

For the above proposition, the classification of $\operatorname{Ad}(G)$-invariant bilinear forms should be separated into two cases. The first case is the following.

Theorem 1. Let \mathbf{g} be a simple Lie algebra over R which has simple complexification. Then the $\operatorname{Ad}(G)$-invariant bilinear forms of \mathbf{g} are multiples of the Killing-Cartan form of \mathbf{g}.

Proof. Let D be an $\operatorname{Ad}(G)$-invariant bilinear form on \mathbf{g}.
Since the Killing-Cartan form B of \mathbf{g} is nondegenerate, there is a linear map $T: \mathbf{g} \rightarrow \mathbf{g}$ such that $D(X, Y)=B(X, T Y)$ for each $X, Y \in \mathbf{g}$. Using the $A d(G)$-invariance of D we obtain
$\mathrm{B}(\mathrm{X}, \mathrm{TY})=\mathrm{D}(\mathrm{X}, \mathrm{Y})$
$=\mathrm{D}(\operatorname{Ad}(\mathrm{g}) \mathrm{X}, \operatorname{Ad}(\mathrm{g}) \mathrm{Y})$
$=\mathrm{B}(\operatorname{Ad}(\mathrm{g}) \mathrm{X}, \mathrm{T} \operatorname{Ad}(\mathrm{g}) \mathrm{Y})$
$=\mathrm{B}\left(\mathrm{X}, \operatorname{Ad}\left(\mathrm{g}^{-1}\right) \operatorname{TAd}(g) Y\right)$,
so $T Y-A d\left(g^{-1}\right) T A d(g) Y=0$. Therefore $\operatorname{Ad}(g) T=T A d(g)$ for each $g \in G$.

We claim that $a d(X) T=\operatorname{Tad}(X)$ for each $x \in \mathbf{g}$. Taking $g=\exp (t X)$ we obtain $A d(\exp (t X)) T=T A d(\exp (t X))$, and from the identity $A d(\exp (X))=e^{A d(X)}$ we conclude that $T e^{\operatorname{tad}(X)}=e^{\operatorname{tad}(X)} T$.

Differentiating the last equation at $t=0$, we obtain $a d(X) T=\operatorname{Tad}(X)$.
From the first remark above we obtain that T^{C} y $a d^{C}(X+i Y)$ commute for every $X, Y \in \mathbf{g}$. Let $\lambda \in C$ be an eigenvalue of T^{C}. Since \mathbf{g}^{C} is simple and $a d^{C}$ is an irreducible representation, by Schur's Lemma we conclude that $T^{C}=\lambda I$, then $T^{C}(X+i Y)=\lambda(X+i Y)$. If we write $\lambda=\lambda_{1}+i \lambda_{2}$, then it is very easy to conclude that $T=\lambda_{1} I$, where $\lambda_{1} \in R$, and then $D=\lambda_{1} B$.

Theorem 2. Let \mathbf{g} be a simple Lie algebra over R which has nonsimple complexification and let J be a fixed complex structure on \mathbf{g}. Let D be an $A d(G)$-invariant bilinear form on \mathbf{g}, then $D(X, Y)=a B(X, Y)+b B(X, J Y)$ for some $a, b \in R$ and for each $X, Y \in \mathbf{g}$.

Proof. There is a linear map $T: \mathbf{g} \rightarrow \mathbf{g}$ such that $D(X, Y)=B(X, T Y)$ for each $X, Y \in \mathbf{g}$, where B is the Killing-Cartan form of \mathbf{g}.

We shall prove that T satisfies $T J+J T=\lambda_{1} I+\lambda_{2} J$ for some $\lambda_{1}, \lambda_{2} \in R$.
By the $A d(G)$-invariance of D we conclude that T and $A d(g)$ commute for each $g \in G$. From the second remark above we obtain that T_{J} and $a d(X)$ commute for each $X \in \mathbf{g}_{J}$.

Using the irreducibility of the adjoint representation of $a d_{J}$, its follow by Schur's Lemma that there is $\lambda=\lambda_{2}-i \lambda_{1} \in C$ such that $T_{J}=\lambda I$. From this we obtain $T J+J T=\lambda_{1} I+\lambda_{2} J$, where $\lambda_{1}, \lambda_{2} \in R$.

Define $\widehat{T}=T-\frac{1}{2} \lambda_{2} I+\frac{1}{2} \lambda_{1} J$. Then \widehat{T} and $a d(X)$ commute for each $X \in \mathbf{g}$ and it is easy to check that $\widehat{T} J+J \widehat{T}=0$.

We can find an orthogonal basis $\left\{X_{1}, \ldots, X_{r}\right\}$ of the complex Lie algebra \mathbf{g}_{J} such that $\left\{X_{1}, \ldots, X_{r}, J\left(X_{1}\right), \ldots, J\left(X_{r}\right)\right\}$ is a basis of \mathbf{g} over R. Let \mathbf{g}_{k} be the R-linear subspace given by

$$
\mathbf{g}_{k}:=\sum_{x \in \Delta} R\left(i H_{\alpha}\right)+\sum_{x \in \Delta} R\left(X_{\alpha}-X_{\alpha}\right)+\sum_{x \in \Delta} R\left(i\left(X_{\alpha}+X_{\alpha}\right)\right)
$$

where Δ is the corresponding set of nonzero roots of \mathbf{g}_{J}, and for each $\alpha \in \Delta$ we select $X_{\alpha} \in \mathbf{g}^{\alpha}$ with the properties of [1, Thm. III.5.5]. It follows that B, the Killing-Cartan form of \mathbf{g}_{J}, is strictly negative definite on \mathbf{g}_{k}. Moreover, $\mathbf{g}_{J}=\mathbf{g}_{k} \oplus J \mathbf{g}_{k}$. Normalizing the basis given by \mathbf{g}_{k} we obtain a new basis of \mathbf{g}_{J} given by $\left\{X_{1}, \ldots, X_{r}\right\}$ such that $\left\{X_{1}, \ldots, X_{r}, J\left(X_{1}\right), \ldots, J\left(X_{r}\right)\right\}$ is a basis of \mathbf{g} over R. It is clear that $B_{\mathbf{g}_{k}}\left(Y_{i}, Y_{j}\right)=\delta_{i j} \epsilon_{i}$, for $Y_{i}, Y_{j} \in \mathbf{g}$, where $\epsilon_{i}=1$ if $i=1, \ldots, r$ and $\epsilon_{i}=-1$ if $i=r+1, \ldots, 2 r$. Using [1, Lm. III.6.1]) we conclude that $B_{\mathbf{g}}(X, Y)=(B(X, Y))(B(X, Y))$ for $X, Y \in \mathbf{g}$.

In this basis the matrix representation of the complex structure J and the Killing-Cartan form of \mathbf{g} are given by

$$
J=\left(\begin{array}{cc}
0 & -I_{r} \\
I_{r} & 0
\end{array}\right), \quad B_{\mathbf{g}}=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{r}
\end{array}\right)
$$

If the matrix representation of T in that basis has the form

$$
T=\left(\begin{array}{cc}
A_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right)
$$

then we deduce from the identity $T J+J T=\lambda_{1} I+\lambda_{2} J$ that

$$
T=\left(\begin{array}{cc}
A_{0} & C_{0}+\lambda_{1} I \\
C_{0} & -A_{0}+\lambda_{2} I
\end{array}\right) .
$$

If we rewrite T in the following form

$$
\begin{aligned}
& 2 \mathrm{~T}=\left(\begin{array}{cc}
2 A_{0}-\lambda_{2} I_{r} & 2 C_{0}+\lambda_{1} I_{r} \\
2 C_{0}+\lambda_{1} I_{r} & -2 A_{0}+\lambda_{2} I_{2}
\end{array}\right)+\lambda_{1}\left(\begin{array}{cc}
0 & I_{r} \\
-I_{r} & 0
\end{array}\right) \\
+ & \lambda_{2}\left(\begin{array}{cc}
I_{r} & 0 \\
0 & I_{r}
\end{array}\right),
\end{aligned}
$$

and we denote $2 E_{0}=2 A_{0}-\lambda_{2} I_{r}$ and $2 L_{0}=2 C_{0}+\lambda_{1} I_{r}$, then we have

$$
2 T=\left(\begin{array}{cc}
2 E_{0} & 2 L_{0} \\
2 L_{0} & -2 E_{0}
\end{array}\right)-\lambda_{1} J+\lambda_{2} I
$$

Define $\widehat{T}=T-\frac{1}{2} \lambda_{2} I+\frac{1}{2} \lambda_{1} J$. Then \widehat{T} and $\operatorname{ad}(X)$ commute for each $X \in \mathbf{g}$ and it is easy to check that $\widehat{T} J+J \widehat{T}=0$.

We prove now that $\widehat{T}=0$, and from this the theorem follows.
Let \mathbf{u} be a real form of \mathbf{g}_{J} (for a proof see [1, Thm. III.6.3]). Then for the map $\widehat{T}: \mathbf{g} \rightarrow \mathbf{g}$ there are R-linear maps $E_{0}, L_{0}: \mathbf{u} \rightarrow \mathbf{u}$ such that $\widehat{T}(X)=E_{0}(X)+J L_{0}(X)$ for each $X \in \mathbf{u}$.

Let X, Y be in \mathbf{u}, then $[X, Y] \in \mathbf{u}$ and $\widehat{T}([X, Y])=E_{0}[X, Y]+J L_{0}[X, Y]$. On the other hand, $[\widehat{T} X, Y]=\left[E_{0} X, Y\right]+J\left[L_{0} X, Y\right]$, because \widehat{T} and $a d(X)$ commute for each $X \in \mathbf{g}$. It follows that

$$
\widehat{T}([X, Y])-[\widehat{T} X, Y]=E_{0}[X, Y]-\left[E_{0} X, Y\right]+J L_{0}[X, Y]-J\left(\left[L_{0} X, Y\right]\right) .
$$

The relationship $\widehat{T} \circ a d(X)=a d(X) \circ \widehat{T}$, for all $X \in \mathbf{g}$, shows that $\widehat{T}([X, Y])=[\widehat{T} X, Y]$, therefore we conclude that

$$
\begin{equation*}
E_{0}[X, Y]=\left[E_{0} X, Y\right], \quad L_{0}[X, Y]=\left[L_{0} X, Y\right] . \tag{2.1}
\end{equation*}
$$

It follows from the above relationship that
$\widehat{T}([J X, J Y])=-\widehat{T}([J Y, J X])$
$=-\widehat{T} a d(J Y)(J X)$
$=-\operatorname{ad}(J Y) \widehat{T}(J X)$
$=[\widehat{T}(J X), J Y]$

From this and the direct sum, $\mathbf{g}=\mathbf{u} \oplus J \mathbf{u}$, we can conclude that

$$
\begin{equation*}
E_{0}[X, Y]=-\left[E_{0} X, Y\right], \quad L_{0}[X, Y]=-\left[L_{0} X, Y\right] \tag{2.2}
\end{equation*}
$$

It is easy to conclude from (2.1) and (2.2) that $E_{0}=0=L_{0}$ on $[\mathbf{u}, \mathbf{u}]$. Since \mathbf{u} is a semisimple Lie algebra we have $[\mathbf{u}, \mathbf{u}]=\mathbf{u}$. Hence $\widehat{T}=0$. Therefore $T=\frac{1}{2} \lambda_{2} I+\frac{1}{2} \lambda_{1} J$, and

$$
D(X, Y)=B(X, T Y)=a B(X, Y)+b B(X, J Y)
$$

The classification of the $A d(G)$-invariant bilinear forms on a simple Lie algebra was done in the previous theorems. The next result gives the classification of the $\operatorname{Ad}(G)$-invariant bilinear forms on a semisimple Lie algebra, but before that we will need the following easily proved result.

Lemma 1. Let $F: \mathbf{g} \times \mathbf{g} \rightarrow R$ be a symmetric bilinear form that is $A d(G)$ invariant, then $F([X, W], Y)=F(X,[W, Y])$ for $W, X, Y \in \mathbf{g}$. The converse holds if G is connected.

Proof. It is sufficent to show that $F([W, X], X)=0$ for all $W, X \in \mathbf{g}$.
We consider the following function

$$
f(s)=F(A d(\alpha(s)) X, A d(\alpha(s)) X)
$$

We affirm that f is constant on each one-parameter subgroup α of G.
From this the direct assertion follows.

Theorem 3. Let $\mathbf{g}=\mathbf{g}_{1} \oplus \mathbf{g}_{2} \oplus \cdots \oplus \mathbf{g}_{l}$ be a Lie algebra, where each \mathbf{g}_{i} is a simple ideal of \mathbf{g}. We shall suppose the following:

- The complexification of each \mathbf{g}_{i}, for $i=1, \ldots, k$ is simple; and
- The complexification of each \mathbf{g}_{i}, for $i=k+1, \ldots, l$ is not simple and so there exists a complex structure J_{i} for each \mathbf{g}_{i}.

Then every $\operatorname{Ad}(G)$-invariant bilinear form D on \mathbf{g} is given by the following $D=\lambda_{1} B_{\mathbf{g}_{1}} \oplus \cdots \oplus \lambda_{k} B_{\mathbf{g}_{k}}$
$\oplus\left(\mu_{1}^{k+1} B_{\mathbf{g}_{k+1}}+\mu_{2}^{k+1} B_{\mathbf{g}_{k+1}}^{J_{k+1}}\right) \oplus \cdots \oplus\left(\mu_{1}^{l} B_{\mathbf{g}_{l}}+\mu_{2}^{l} B_{\mathbf{g}_{l}}^{J_{l}}\right)$, where each $B_{\mathbf{g}_{i}}$ is the
Killing-Cartan form on \mathbf{g}_{i}, for $i=1, \ldots, l$; all λ_{i} and μ_{i}^{j} are real numbers, and $B_{\mathbf{g}_{j}}^{J_{i}}(X, Y)=B_{\mathbf{g}_{j}}\left(X, J_{i} Y\right)$.

Proof. It follows from Lemma 1 that

$$
D(X,[Y, Z])=D([X, Y], Z), \quad \text { for all } X, Y, Z \in \mathbf{g} .
$$

On the other hand, it is easy to show the following properties:

1. $\left[\mathbf{g}_{i}, \mathbf{g}_{j}\right]=\{0\}$ for all $i \neq j$; and
2. $\left[\mathbf{g}_{i}, \mathbf{g}_{i}\right]=\mathbf{g}_{i}$, for all i.

Using the above information we have for $Y \in \mathbf{g}_{j}$ that there exist $Z, W \in$ \mathbf{g}_{j} such that $Y=[Z, W]$, and for $X \in \mathbf{g}_{i}$ we conclude that

$$
D(X, Y)=D(X,[Z, W])=D([X, Z], W)=0
$$

Therefore $\mathbf{g}_{i} \perp \mathbf{g}_{j}$ for all $i \neq j$ with respect to D. From this it follows that

$$
D=\left.\left.B\right|_{\mathbf{g}_{1}} \oplus \cdots \oplus B\right|_{\mathbf{g}_{i}}
$$

Now we use the classification of $\operatorname{Ad}(G)$-invariant bilinear forms on a simple Lie algebra given in theorems 1 and 2. From this the result follows.

From [3, Ch.11]) we obtain a relation between the geometry of G and its Lie algebra \mathbf{g}. Also we can deduce that the geometry of all bi-invariant metrics on G share most of the pseudo-Riemannian invariant.

We are going to give a classification of the bi-invariant pseudoRiemannian metrics on a semisimple Lie group based on the classification of the bilinear $A d(G)$-invariant forms on a semisimple Lie algebra.

Theorem 4. Let G be a semisimple Lie group such that $\operatorname{Lie}(G)=\mathbf{g}=$ $\mathbf{g}_{1} \oplus \mathbf{g}_{2} \oplus \cdots \oplus \mathbf{g}_{l}$, where each \mathbf{g}_{i} is a simple ideal of the Lie algebra \mathbf{g}. We shall suppose the following:

- The complexification of each \mathbf{g}_{i}, for $i=1, \ldots, k$ is simple; and
- The complexification of each \mathbf{g}_{i}, for $i=k+1, \ldots, l$ is not simple and so there exists a complex structure J_{i} for each \mathbf{g}_{i}.

Then every bi-invariant pseudoRiemannian metric ϕ on \mathbf{g} is given by $\phi=$ $\lambda_{1} B_{\mathbf{g}_{1}} \oplus \cdots \oplus \lambda_{k} B_{\mathbf{g}_{k}}$ $\oplus\left(\mu_{1}^{k+1} B_{\mathbf{g}_{k+1}}+\mu_{2}^{k+1} B_{\mathbf{g}_{k+1}}^{J_{k+1}}\right) \oplus \cdots \oplus\left(\mu_{1}^{l} B_{\mathbf{g}_{l}}+\mu_{2}^{l} B_{\mathbf{g}_{l}}^{J_{l}}\right)$, where each $B_{\mathbf{g}_{i}}$ is the Killing-Cartan form on \mathbf{g}_{i}, for $i=1, \ldots, l$, all λ_{i} and μ_{i}^{j} are real numbers, and $B_{\mathbf{g}_{j}}^{J_{i}}(X, Y)=B_{\mathbf{g}_{j}}\left(X, J_{i} Y\right)$.

3. Group action

From now on $G=G_{1} \cdots G_{l}$ will be a connected noncompact semisimple Lie group with Lie algebra $\mathbf{g}=\mathbf{g}_{1} \oplus \mathbf{g}_{2} \oplus \cdots \oplus \mathbf{g}_{l}$. We know that G admits bi-invariant pseudoRiemannian metrics and all of them can be described in terms of the Killing-Cartan form on each \mathbf{g}_{i}.

Let M be a connected compact smooth manifold. We always assume that the action of G on M is smooth, faithful, and preserve a finite measure on M.

Definition 2. The dimension of maximal lightlike tangent subspaces for M will be denoted with $m_{0}=\min \left\{m_{1}, m_{2}\right\}$, where $\left(m_{1}, m_{2}\right)$ represent the signature of M, i.e., that m_{1} correspond to the dimension of maximal timelike tangent subspaces and m_{2} correspond to the dimension of the maximal spacelike tangent subspaces.

Definition 3. The dimension of maximal lightlike tangent subspaces for $G_{i}, i=1, \ldots, l$, will be denoted with $n_{0}^{i}=\min \left\{n_{1}^{i}, n_{2}^{i}\right\}$, where $\left(n_{1}^{i}, n_{2}^{i}\right)$ represent the signature of G_{i}.

Gromov remarked in [2] that if $\left(n_{1}, n_{2}\right)$ is the signature of the metric given by the Killing-Cartan form on \mathbf{g}, then any other bi-invariant pseudoRiemannian metric on G has signature given by either $\left(n_{1}, n_{2}\right)$ or $\left(n_{2}, n_{1}\right)$.

We are interested in comparing the numbers m_{0} and $n_{0}^{1}+\cdots n_{0}^{l}$. To better understand this result we are going to prove the following very useful lemma.

Lemma 2. Let (V, g) be a scalar product space, i.e, V is a finite dimensional vector space and g a nondegenerate symmetric bilinear form. Suppose that $V=V_{1} \oplus \cdots \oplus V_{l}$, where each V_{i} is a subspace of V and $g=g_{1} \oplus \cdots \oplus g_{l}$, where each g_{i} is a scalar product in V_{i}, for $i=1, \ldots, l$. Let n_{0} be the dimension of the maximal subspace of null vectors with respect to g in V, and n_{0}^{i}, for $i=1, \ldots, l$, is defined in a similar way for each V_{i}. Then the following inequality holds: $n_{0} \geq n_{0}^{1}+\cdots+n_{0}^{l}$

Proof. The idea for this is to realize that for each i we have $n_{0}^{i}=$ $\min \left\{n_{-}^{i}, n_{+}^{i}\right\}$, where n_{-}^{i} is the number of -1 and n_{+}^{i} the number of +1 when g is diagonalized. Without loss of generality we can suppose that for $i=1, \ldots, k$ we have that $n_{0}^{i}=n_{-}^{i}$, and for $j=k+1, \ldots, l$ also $n_{0}^{j}=n_{+}^{j}$.

It follows that $\mathrm{n}_{-}=n_{-}^{1}+\cdots+n_{-}^{l}$
$\geq n_{0}^{1}+\cdots+n_{0}^{l}$, and in a similar way we have $\mathrm{n}_{+}=n_{+}^{1}+\cdots+n_{+}^{l}$ $\geq n_{0}^{1}+\cdots+n_{0}^{l}$.

From this it follows that $n_{0}=\min \left\{n_{-}, n_{+}\right\} \geq n_{0}^{1}+\cdots+n_{0}^{l}$.
We will denote with $T O$ the tangent bundle to the orbits of the G-action on M. If $X \in \mathbf{g}$, we define the infinitesimal generator X^{*} as the vector field on M induced by X. This new vector field is given by

$$
X_{p}^{*}=\left.\frac{d}{d t}\right|_{t=0} \exp (t X) \cdot p
$$

It is clear that X^{*} is a Killing vector field, and $X_{p}^{*} \in T_{p}(G \cdot p)$, for $p \in M$.

We will use the following two maps: $\varphi: M \times \mathbf{g} \rightarrow T O$, given by $\varphi(p, X)=X_{p}^{*}$, and $\psi: M \rightarrow \mathbf{g}^{*} \otimes \mathbf{g}^{*}$, given by $\psi(p)=B_{p}$, where $B_{p}(X, Y)=h_{p}\left(X_{p}^{*}, Y_{p}^{*}\right)$, and h is the metric on M.

We can conclude from the next lemma that $\psi(p)$ is an $\operatorname{Ad}(G)$-invariant bilinear form on \mathbf{g}, for every $p \in M$.

Lemma 3. For every $p \in M, \psi(p)$ is $A d(G)$-invariant.

Proof. This is a consequence of lemma 1 if we prove the following: $\psi(p)(a d(W) X, X)=0$, for all $X, W \in \mathbf{g}$.
$\psi(p)(a d(W) X, X)=h_{p}\left((\operatorname{ad}(W) X)_{p}^{*}, X_{p}^{*}\right)$
$=h_{p}\left(-\left(a d\left(W^{*}\right) X^{*}\right)_{p}, X_{p}^{*}\right)$
$=-h_{p}\left(X_{p}^{*},(a d(W) X)_{p}^{*}\right)$
$=-\psi(p)(a d(W) X, X)$.
We obtain a foliation of M by orbits from the action of G on M. If we restrict the given metric on M to each orbit of M we obtain a nondegenerate metric, therefore we can apply the classification given in the past section.

Theorem 1. For G and M as before suppose G acts topologically transitively on M, i.e., there is a dense G-orbit, preserving its pseudoRiemannian metric and satisfying $n_{0}^{1}+\cdots+n_{0}^{l}=m_{0}$. Then G acts everywhere locally free with nondegenerate orbits.

Proof. Since the action is topologically transitively on M, it follows from a result in [5] that the action is everywhere locally free. open subset $U \subset M$, so that the the G-orbit of every point in U is nondegenerate.

We are going to prove that there exist a G-invariant open subset U on M so that the G-orbit of every point in U is nondegenerate.

Every basis of \mathbf{g} induces at every point $p \in M$ a family of vectors that also defines a base for the tangent space to the orbit at M. In particular, φ trivializes $T O$.

We consider the G-action on $M \times \mathbf{g}$ given by $g(p, X)=(g p, A d(g)(X))$. The map φ is G-equivariant,

$$
\mathrm{g} \varphi(p, X)=g X_{p}^{*}
$$

$=\left.g \frac{d}{d t}\right|_{t=0}(\exp (t X) p)$
$=\left.\frac{d}{d t}\right|_{t=0}(g \exp (t X) p)$
$=\left.\frac{d}{d t}\right|_{t=0}\left(g \exp (t X) g^{-1} g p\right)$
$=\left.\frac{d}{d t}\right|_{t=0}(\exp t A d(g)(X) g p)$
$=A d(g)(X)_{g p}^{*}=\varphi(g(p, X))$.
The map ψ, defined above, is G-equivariant. For $g \in G, X, Y \in \mathbf{g}$ and $p \in M$ we have:
$\psi(g p)(X, Y)=h_{g p}\left(X_{g p}^{*}, Y_{g p}^{*}\right)$
$=h_{p}\left(\operatorname{Ad}\left(g^{-1}\right)(X)_{p}^{*}, \operatorname{Ad}\left(g^{-1}\right)(Y)_{p}^{*}\right)$
$=\psi(p)\left(A d\left(g^{-1}\right)(X), \operatorname{Ad}\left(g^{-1}\right)(Y)\right)$.
Hence, since the G-action is tame on $\mathbf{g}^{*} \otimes \mathbf{g}^{*}$, such map is essentially constant on the support of almost every ergodic component of M, see [6, Ch.2]).

By the lemma 3, there is an $\operatorname{Ad}(G)$-invariant bilinear form B_{U} on \mathbf{g} so that the metric on $\left.T O\right|_{U} \cong U \times \mathbf{g}$ induced by M is almost everywhere given by B_{U} on each fiber, where U is the support of one ergodic component of M. It is very easy to prove that the kernel of B_{U} is an ideal of \mathbf{g}. If such kernel is \mathbf{g}, then $\left.T O\right|_{U}$ is lightlike which implies $\operatorname{dim} \mathbf{g} \leq m_{0}$. This contradicts the condition $n_{0}^{1}+\cdots+n_{0}^{l}=m_{0}$ since $n_{0}<\operatorname{dim} \mathbf{g}=\operatorname{dim} \mathbf{g}_{1}+\cdots+\operatorname{dim} \mathbf{g}_{l}$. Hence, being \mathbf{g} semisimple, it follows that B_{U} is nondegenerate, and so almost every G-orbit contained in S is nondegenerate. We can conclude that almost every G-orbit in M is nondegenerate. As a consequence, the set U as defined before is conull and so nonempty.

The previous argument shows that the image under ψ of a conull and hence dense, subset of M lies in the set of $\operatorname{Ad}(G)$-invariant elements of $\mathbf{g}^{*} \otimes \mathbf{g}^{*}$. It follows that $\psi(M)$ lies on it, since such set is closed. In particular, on every G-orbit the metric induced from that of M is given by $\operatorname{Ad}(G)$ invariant symmetric bilinear form on \mathbf{g}.

Using topological transitivity, we obtain an G-orbit O_{α}. This G-orbit is dense and so it must intersect U. It is clear that $O_{\alpha} \subset U$ since U is G-invariant.

The metric restricted to O_{α}, under the map φ, is given by the nondegenerate bilinear form B_{α} on \mathbf{g}. It follows that $\psi\left(O_{\alpha}\right)=B_{\alpha}$ and so the
the continuity of ψ together with the density of O_{α} imply that ψ is the constant map given by B_{α}.

We now prove the principal result in this work.
Theorem 2. Let $G=G_{1} \cdots G_{l}$ be a connected semisimple Lie group without compact factors acting by isometries on a finite volume pseudoRiemannian manifold M and no factor of G acts trivially. Then $n_{0}^{1}+\cdots+n_{0}^{l} \leq m_{0}$.

Proof. By results in [6] we have local freeness on an open subset $U \subset X$. Then the map $\psi: U \rightarrow \mathbf{g}^{*} \otimes \mathbf{g}^{*}$, defined above, is constant on the ergodic components in U for the G-action. On any such ergodic component, the metric along the G-orbits comes from an $\operatorname{Ad}(G)$-invariant bilinear form B_{U} on \mathbf{g}.

Let η be the kernel of B_{U}. It is known that η is an ideal of \mathbf{g}. Since \mathbf{g} is semisimple we have to consider the following cases.
(1) $\eta=\mathbf{g}$. In this case it follows easily that $B_{U}=0$, then $\operatorname{dim} \mathbf{g} \leq m_{0}$. Since, $\operatorname{dim} \mathbf{g}_{i} \geq n_{0}^{i}$ and $\operatorname{dim} \mathbf{g}=\operatorname{dim} \mathbf{g}_{1}+\cdots+\operatorname{dim} \mathbf{g}_{l}$, we conclude that

$$
n_{0}^{1}+\cdots+n_{0}^{l}<m_{0} .
$$

(2) $\eta=\{0\}$. In this case B_{U} is nondegenerate and the G-orbits are nondegenerate submanifolds of X. Then we have that $n_{0} \leq m_{0}$ and by Lemma 2 the claim follows.
(3) $\eta=\bigoplus_{j \in J} \mathbf{g}_{j}$ where $J \subset\{1, \ldots, l\}$. From this it follows that there is a subspace of null vectors in the tangent space to the G-orbits which has a dimension $\operatorname{dim} \bigoplus_{j \in J} \mathbf{g}_{j}+n_{0}^{j_{1}}+\cdots+n_{0}^{j_{s}}$. Therefore,

$$
\operatorname{dim} \bigoplus_{j \in J} \mathbf{g}_{j}+n_{0}^{j_{1}}+\cdots+n_{0}^{j_{s}} \leq m_{0}
$$

where $j_{1}, \ldots, j_{s} \in\{1, \ldots, l\} \backslash J$. On the other hand,

$$
\operatorname{dim} \bigoplus_{j \in J} \mathbf{g}_{j}+n_{0}^{j_{1}}+\cdots+n_{0}^{j_{s}}>n_{0}^{1}+\cdots+n_{0}^{l}
$$

References

[1] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, (1978).
[2] M. Gromov, Rigid transformations groups, Géométrie différentielle (Paris 1986), Travaux en Cours 33, Hermann, Paris, pp. 65-139, (1988).
[3] B. O'neill, SEMI-RIEMANNIAN GEOMETRY, Academic Press, New York, (1983).
[4] J. Rosales-Ortega, The Gromov's Centralizer theorem for semisimple Lie group actions. Ph.D. Thesis, CINVESTAV-IPN, (2005).
[5] J. Szaro, Isotropy of semisimple group actions on manifolds with geometric structures, Amer. J. Math.120, pp. 129-158, (1998).
[6] R. J. Zimmer, Ergodic Theory and Semisimple Lie Groups, Birkhäuser, Boston, (1984).

José Rosales-Ortega

Department of Mathematics
ITCR
Universidad de Costa Rica e Instituto Tecnológico de Costa Rica
San José
Cartago,
Costa Rica
e-mail : jrosales@itcr.ac.cr jose.rosales@ucr.ac.cr

