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Abstract

We study the relationship between the signature of a semisimple
Lie group and a pseudoRiemannian manifold on wich the group acts
topologically transitively and isometrically. We also provide a descrip-
tion of the bi-invariant pseudo-Riemannian metrics on a semisimple
Lie Group over R in terms of the complexification of the Lie algebra
associated to the group, and then we utilize it to prove a remark of
Gromov.
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1. Introduction

On a semisimple Lie group G the Killing—Cartan form is invariant by auto-
morphisms, and it defines an Ad(g)-invariant scalar product on Lie(G) = g.
Then the left action of G on itself joint to the Killing—Cartan form of g
provide a pseudo-Riemannian structure on G which is bi-invariant. This
permits us to study semisimple Lie groups from the point of view of geom-
etry, i.e. we choose an appropiate pseudo-Riemannian metric and compute
the various geometrical objects, such as curvature, and geodesics.

It is known that there is a bijective correspondence between the Ad(g)-
invariant nondegenerate symmetric bilinear forms on g and the bi-invariant
pseudo-Riemannian metrics on G. Under such correspondence, a bilinear
form on g which is not a multiple of the Killing—Cartan form defines a
pseudo-Riemannian metric on G that might be expected to provides a ge-
ometry that differs from the one given by the Killing—Cartan form. The
first thing we want to prove is the fact that such situation does not oc-
cur, i.e. every bi-invariant pseudo-Riemannian metric on a semisimple Lie
group is a finite sum of Killling—Cartan forms.

We inquire about the relationship of the pseudo-Riemannian invariants
of G and M , respectively, for some bi-invariant pseudo-Riemannian metric
on G. In this work, we restrict our attention to the signature, which we
will denote with (m1,m2) and (n1, n2) for M and G, respectively.

The second goal of this work is to obtain an estimate between the signa-
tures of G and M , in the case of G = G1 · · ·Gl and each Gi is a connected
simple Lie group and carries a bi-invariant pseudoRiemannian metric. If
we denote ni0 = min{ni1, ni2} and m0 = min{m1,m2}, then we are going to
prove that n10 + · · ·+ nl0 ≤ m0.

The organization of this article is as follows. In section 2 we collect some
basic results about complexification of a real Lie algebra and invariant bi-
linear forms on a simple Lie algebra that will needed in the proof of the
main theorem on that section. Also we give the classification of the Ad(g)-
invariant bilinear forms on a semisimple Lie algebra. This is mentioned
in [2], but the generalization to semisimple Lie groups is new. As a con-
sequence we give the classification of the bi-invariant pseudo-Riemannian
metrics on G. In section 3 we use the results obtained previously to obtain
an estimated between the signatures of the metrics on M and G, respec-
tively.

I would like to thank Joseph Várilly for useful comments that allowed
to simplify the exposition of this work.
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2. Complexification of a real Lie algebra

Let V be a vector space over R of finite even dimension. A complex struc-
ture on V is an R-linear endomorphism J of V such that J2 = −I. When
there exist a complex structure J on V , we define VJ as the complex vector
space associated to V by the rule: (a+ ib)X = aX + bJX for X ∈ V and
a, b ∈ R.

A Lie algebra g over R is said to have a compatible complex structure
J if J is a complex structure on the real vector space g and in addition
[X,JY ] = J [X,Y ] for X,Y ∈ g. It is easy to see that gC then becomes a
complex Lie algebra.

If V is an arbitrary finite dimensional vector space over R, the R-linear
map J : (X,Y ) 7→ (−Y,X) is a complex structure on V × V . The complex
vector space (V ×V )J is called the complexification of V and will be denoted
by V C . We write X + iY instead of (X,Y ) in V C .

If g is a Lie algebra over R, owing to the conventions above, the complex
space gC consists of all symbols X+ iY with X,Y ∈ g, and it is a complex
Lie algebra whose Lie bracket is given by

[X + iY, Z + iT ] = [X,Y ]− [Y, T ] + i
³
[Y,Z] + [X,T ]

´
.

Definition 1. A real Lie algebra g0 is called a real form of a complex Lie
algebra g if its complexification (g0)

C is isomorphic to g as a complex Lie
algebra.

For semisimple Lie algebras over C the existence of a real form is proved
in [1, Thm. III.6.3]. This real form is also compact, which means that the
Killing-Cartan form of g is strictly negative definite.

If g is a real Lie algebra and T :g→ g is a R-linear map, then there is
a C-linear map TC : gC → gC defined by TC(X + iY ) = TX + iTY .

The complexification of the adjoint representation ad:g→ gl(g) is the
C-linear map adC :gC → gl(gC) given by

adC(X + iY )(Z + iW ) = [X + iY, Z + iW ]
= [X,Z]− [Y,W ] + i[X,W ] + i[Y,Z].

A trivial calculation shows that if T and adC(X) commute for every
X ∈ g, then TC y adC(X + iY ) commute for every X,Y ∈ g.

For an R-linear map T :g → g and a given complex structure J on
g, we can consider the C-linear map TJ :gJ → gJ defined by TJ(X) =
T (X)−JTJ(X). Consider also the adjoint representation ad:gJ → gl(gJ).
It is easy to show that if T and ad(X) commute for each X ∈ g, then TJ
commutes with ad(Z) for each Z ∈ gJ .
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The next proposition (for a proof see [1, Thm. X.1.5]) it will be useful
later.

Proposition 1. For a simple Lie algebra g over R there are two possibil-
ities:

1. gC is simple;

2. gC is nonsimple; in this case g admits a complex structure J whose
associated complex Lie algebra gJ is simple.

For the above proposition, the classification of Ad(G)-invariant bilinear
forms should be separated into two cases. The first case is the following.

Theorem 1. Let g be a simple Lie algebra over R which has simple com-
plexification. Then the Ad(G)-invariant bilinear forms of g are multiples
of the Killing—Cartan form of g.

Proof. Let D be an Ad(G)-invariant bilinear form on g.

Since the Killing—Cartan form B of g is nondegenerate, there is a linear
map T :g → g such that D(X,Y ) = B(X,TY ) for each X,Y ∈ g. Using
the Ad(G)-invariance of D we obtain

B(X,TY) = D(X,Y)
= D(Ad(g)X, Ad(g)Y)
= B(Ad(g)X, T Ad(g)Y)
= B(X, Ad(g−1)TAd(g)Y ),

so TY − Ad(g−1)TAd(g)Y = 0. Therefore Ad(g)T = TAd(g) for each
g ∈ G.

We claim that ad(X)T = Tad(X) for each x ∈ g. Taking g = exp(tX)
we obtain Ad(exp(tX))T = TAd(exp(tX)), and from the identity
Ad(exp(X)) = eAd(X) we conclude that Tetad(X) = etad(X)T .

Differentiating the last equation at t = 0, we obtain ad(X)T = Tad(X).

From the first remark above we obtain that TC y adC(X+iY ) commute
for every X,Y ∈ g. Let λ ∈ C be an eigenvalue of TC . Since gC is simple
and adC is an irreducible representation, by Schur’s Lemma we conclude
that TC = λI, then TC(X + iY ) = λ(X + iY ). If we write λ = λ1 + iλ2,
then it is very easy to conclude that T = λ1I, where λ1 ∈ R, and then
D = λ1B. 2
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Theorem 2. Let g be a simple Lie algebra over R which has nonsimple
complexification and let J be a fixed complex structure on g. Let D be an
Ad(G)-invariant bilinear form on g, thenD(X,Y ) = aB(X,Y )+bB(X,JY )
for some a, b ∈ R and for each X,Y ∈ g.

Proof. There is a linear map T :g→ g such that D(X,Y ) = B(X,TY )
for each X,Y ∈ g, where B is the Killing—Cartan form of g.

We shall prove that T satisfies TJ+JT = λ1I+λ2J for some λ1, λ2 ∈ R.

By the Ad(G)-invariance of D we conclude that T and Ad(g) commute
for each g ∈ G. From the second remark above we obtain that TJ and
ad(X) commute for each X ∈ gJ .

Using the irreducibility of the adjoint representation of adJ , its follow
by Schur’s Lemma that there is λ = λ2− iλ1 ∈ C such that TJ = λI. From
this we obtain TJ + JT = λ1I + λ2J , where λ1, λ2 ∈ R.

Define bT = T − 1
2λ2I +

1
2λ1J . Then

bT and ad(X) commute for each

X ∈ g and it is easy to check that bTJ + J bT = 0.
We can find an orthogonal basis {X1, . . . ,Xr} of the complex Lie algebra

gJ such that {X1, . . . ,Xr, J(X1), . . . , J(Xr)} is a basis of g over R. Let gk
be the R-linear subspace given by

gk :=
X
x∈∆

R(iHα) +
X
x∈∆

R(Xα −Xα) +
X
x∈∆

R(i(Xα +Xα)),

where ∆ is the corresponding set of nonzero roots of gJ , and for each α ∈ ∆
we selectXα ∈ gα with the properties of [1, Thm. III.5.5]. It follows that B,
the Killing-Cartan form of gJ , is strictly negative definite on gk. Moreover,
gJ = gk ⊕ Jgk. Normalizing the basis given by gk we obtain a new basis
of gJ given by {X1, . . . ,Xr} such that {X1, . . . ,Xr, J(X1), . . . , J(Xr)} is a
basis of g over R. It is clear that Bgk(Yi, Yj) = δij i, for Yi, Yj ∈ g, where
i = 1 if i = 1, . . . , r and i = −1 if i = r+1, . . . , 2r. Using [1, Lm. III.6.1])
we conclude that Bg(X,Y ) = (B(X,Y ))(B(X,Y )) for X,Y ∈ g.

In this basis the matrix representation of the complex structure J and
the Killing-Cartan form of g are given by

J =

Ã
0 −Ir
Ir 0

!
, Bg =

Ã
Ir 0
0 Ir

!
.

If the matrix representation of T in that basis has the form
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T =

Ã
A0 B0
C0 D0

!
,

then we deduce from the identity TJ + JT = λ1I + λ2J that

T =

Ã
A0 C0 + λ1I
C0 −A0 + λ2I

!
.

If we rewrite T in the following form

2T =

Ã
2A0 − λ2Ir 2C0 + λ1Ir
2C0 + λ1Ir −2A0 + λ2I2

!
+ λ1

Ã
0 Ir
−Ir 0

!

+ λ2

Ã
Ir 0
0 Ir

!
,

and we denote 2E0 = 2A0 − λ2Ir and 2L0 = 2C0 + λ1Ir, then we have

2T =

Ã
2E0 2L0
2L0 −2E0

!
− λ1J + λ2I.

Define bT = T − 1
2λ2I +

1
2λ1J . Then

bT and ad(X) commute for each

X ∈ g and it is easy to check that bTJ + J bT = 0.
We prove now that bT = 0, and from this the theorem follows.
Let u be a real form of gJ (for a proof see [1, Thm. III.6.3]) . Then

for the map bT :g → g there are R-linear maps E0, L0:u → u such thatbT (X) = E0(X) + JL0(X) for each X ∈ u.
LetX,Y be in u, then [X,Y ] ∈ u and bT ([X,Y ]) = E0[X,Y ]+JL0[X,Y ].

On the other hand, [ bTX, Y ] = [E0X,Y ]+J [L0X,Y ], because bT and ad(X)
commute for each X ∈ g. It follows that

bT ([X,Y ])− [ bTX, Y ] = E0[X,Y ]− [E0X,Y ] + JL0[X,Y ]− J([L0X,Y ]).

The relationship bT ◦ ad(X) = ad(X) ◦ bT , for all X ∈ g, shows thatbT ([X,Y ]) = [ bTX, Y ], therefore we conclude that

E0[X,Y ] = [E0X,Y ], L0[X,Y ] = [L0X,Y ].(2.1)

It follows from the above relationship thatbT ([JX, JY ]) = − bT ([JY, JX])
= − bTad(JY )(JX)
= −ad(JY ) bT (JX)
= [ bT (JX), JY ]
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From this and the direct sum, g = u⊕ Ju, we can conclude that

E0[X,Y ] = −[E0X,Y ], L0[X,Y ] = −[L0X,Y ].(2.2)

It is easy to conclude from (2.1) and (2.2) that E0 = 0 = L0 on [u,u].
Since u is a semisimple Lie algebra we have [u,u] = u. Hence bT = 0.
Therefore T = 1

2λ2I +
1
2λ1J , and

D(X,Y ) = B(X,TY ) = aB(X,Y ) + bB(X,JY ).

2

The classification of the Ad(G)-invariant bilinear forms on a simple
Lie algebra was done in the previous theorems. The next result gives the
classification of the Ad(G)-invariant bilinear forms on a semisimple Lie
algebra, but before that we will need the following easily proved result.

Lemma 1. Let F :g×g→ R be a symmetric bilinear form that is Ad(G)-
invariant, then F ([X,W ], Y ) = F (X, [W,Y ]) forW,X, Y ∈ g. The converse
holds if G is connected.

Proof. It is sufficent to show that F ([W,X],X) = 0 for all W,X ∈ g.
We consider the following function

f(s) = F (Ad(α(s))X,Ad(α(s))X),

We affirm that f is constant on each one-parameter subgroup α of G.
From this the direct assertion follows. 2

Theorem 3. Let g = g1 ⊕ g2 ⊕ · · ·⊕ gl be a Lie algebra, where each gi is
a simple ideal of g. We shall suppose the following:

• The complexification of each gi, for i = 1, . . . , k is simple; and

• The complexification of each gi, for i = k+1, . . . , l is not simple and
so there exists a complex structure Ji for each gi.

Then every Ad(G)-invariant bilinear form D on g is given by the following
D = λ1Bg1 ⊕ · · ·⊕ λkBgk

⊕ (µk+11 Bgk+1 +µk+12 B
Jk+1
gk+1)⊕ · · ·⊕ (µl1Bgl +µl2B

Jl
gl), where each Bgi is the

Killing—Cartan form on gi, for i = 1, . . . , l; all λi and µji are real numbers,
and BJi

gj (X,Y ) = Bgj (X,JiY ).
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Proof. It follows from Lemma 1 that

D(X, [Y,Z]) = D([X,Y ], Z), for all X,Y,Z ∈ g.

On the other hand, it is easy to show the following properties:

1. [gi,gj ] = {0} for all i 6= j; and

2. [gi,gi] = gi, for all i.

Using the above information we have for Y ∈ gj that there exist Z,W ∈
gj such that Y = [Z,W ], and for X ∈ gi we conclude that

D(X,Y ) = D(X, [Z,W ]) = D([X,Z],W ) = 0.

Therefore gi ⊥ gj for all i 6= j with respect to D. From this it follows
that

D = B
¯̄̄
g1
⊕ · · ·⊕B

¯̄̄
gl
.

Now we use the classification of Ad(G)-invariant bilinear forms on a
simple Lie algebra given in theorems 1 and 2. From this the result follows.
2

From [3, Ch.11]) we obtain a relation between the geometry of G and
its Lie algebra g. Also we can deduce that the geometry of all bi-invariant
metrics on G share most of the pseudo-Riemannian invariant.

We are going to give a classification of the bi-invariant pseudoRieman-
nian metrics on a semisimple Lie group based on the classification of the
bilinear Ad(G)-invariant forms on a semisimple Lie algebra.

Theorem 4. Let G be a semisimple Lie group such that Lie(G) = g =
g1 ⊕ g2 ⊕ · · ·⊕ gl, where each gi is a simple ideal of the Lie algebra g. We
shall suppose the following:

• The complexification of each gi, for i = 1, . . . , k is simple; and

• The complexification of each gi, for i = k+1, . . . , l is not simple and
so there exists a complex structure Ji for each gi.

Then every bi-invariant pseudoRiemannian metric φ on g is given by φ =
λ1Bg1 ⊕ · · ·⊕ λkBgk
⊕ (µk+11 Bgk+1 +µk+12 B

Jk+1
gk+1)⊕ · · ·⊕ (µl1Bgl +µl2B

Jl
gl), where each Bgi is the

Killing—Cartan form on gi, for i = 1, . . . , l, all λi and µji are real numbers,
and BJi

gj (X,Y ) = Bgj (X,JiY ).
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3. Group action

From now on G = G1 · · ·Gl will be a connected noncompact semisimple
Lie group with Lie algebra g = g1⊕ g2⊕ · · ·⊕ gl. We know that G admits
bi-invariant pseudoRiemannian metrics and all of them can be described in
terms of the Killing-Cartan form on each gi.

Let M be a connected compact smooth manifold. We always assume
that the action of G onM is smooth, faithful, and preserve a finite measure
on M .

Definition 2. The dimension of maximal lightlike tangent subspaces for
M will be denoted with m0 = min{m1,m2}, where (m1,m2) represent
the signature of M , i.e., that m1 correspond to the dimension of maximal
timelike tangent subspaces and m2 correspond to the dimension of the
maximal spacelike tangent subspaces.

Definition 3. The dimension of maximal lightlike tangent subspaces for
Gi, i = 1, . . . , l, will be denoted with ni0 = min{ni1, ni2}, where (ni1, ni2)
represent the signature of Gi.

Gromov remarked in [2] that if (n1, n2) is the signature of the met-
ric given by the Killing—Cartan form on g, then any other bi-invariant
pseudoRiemannian metric on G has signature given by either (n1, n2) or
(n2, n1).

We are interested in comparing the numbers m0 and n10 + · · ·nl0. To
better understand this result we are going to prove the following very useful
lemma.

Lemma 2. Let (V, g) be a scalar product space, i.e, V is a finite di-
mensional vector space and g a nondegenerate symmetric bilinear form.
Suppose that V = V1 ⊕ · · · ⊕ Vl, where each Vi is a subspace of V and
g = g1 ⊕ · · · ⊕ gl, where each gi is a scalar product in Vi, for i = 1, . . . , l.
Let n0 be the dimension of the maximal subspace of null vectors with re-
spect to g in V , and ni0, for i = 1, . . . , l, is defined in a similar way for each
Vi. Then the following inequality holds: n0 ≥ n10 + · · ·+ nl0

Proof. The idea for this is to realize that for each i we have ni0 =
min{ni−, ni+}, where ni− is the number of −1 and ni+ the number of +1
when g is diagonalized. Without loss of generality we can suppose that for
i = 1, . . . , k we have that ni0 = ni−, and for j = k + 1, . . . , l also nj0 = nj+.
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It follows that n− = n1− + · · ·+ nl−
≥ n10 + · · ·+ nl0, and in a similar way we have n+ = n1+ + · · ·+ nl+
≥ n10 + · · ·+ nl0.

From this it follows that n0 = min{n−, n+} ≥ n10 + · · ·+ nl0. 2
We will denote with TO the tangent bundle to the orbits of the G-action

on M . If X ∈ g, we define the infinitesimal generator X∗ as the vector
field on M induced by X. This new vector field is given by

X∗
p =

d

dt
|t=0 exp (tX) · p .

It is clear that X∗ is a Killing vector field, and X∗
p ∈ Tp(G · p), for

p ∈M .
We will use the following two maps: ϕ : M × g → TO, given by

ϕ(p,X) = X∗
p , and ψ : M → g∗ ⊗ g∗, given by ψ(p) = Bp, where

Bp(X,Y ) = hp(X
∗
p , Y

∗
p ), and h is the metric on M .

We can conclude from the next lemma that ψ(p) is an Ad(G)-invariant
bilinear form on g, for every p ∈M .

Lemma 3. For every p ∈M , ψ(p) is Ad(G)-invariant.

Proof. This is a consequence of lemma 1 if we prove the following:
ψ(p)(ad(W )X,X) = 0, for all X,W ∈ g .

ψ(p)(ad(W )X,X) = hp((ad(W )X)∗p,X
∗
p)

= hp(−(ad(W ∗)X∗)p,X∗
p)

= −hp(X∗
p , (ad(W )X)∗p)

= −ψ(p)(ad(W )X,X). 2
We obtain a foliation of M by orbits from the action of G on M . If we

restrict the given metric onM to each orbit ofM we obtain a nondegenerate
metric, therefore we can apply the classification given in the past section.

Theorem 1. For G and M as before suppose G acts topologically transi-
tively onM , i.e., there is a dense G-orbit, preserving its pseudoRiemannian
metric and satisfying n10 + · · ·+ nl0 = m0. Then G acts everywhere locally
free with nondegenerate orbits.

Proof. Since the action is topologically transitively on M , it follows
from a result in [5] that the action is everywhere locally free. open subset
U ⊂M , so that the the G-orbit of every point in U is nondegenerate.

We are going to prove that there exist a G-invariant open subset U on
M so that the G-orbit of every point in U is nondegenerate.
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Every basis of g induces at every point p ∈M a family of vectors that
also defines a base for the tangent space to the orbit at M . In particular,
ϕ trivializes TO.

We consider the G-action onM ×g given by g(p,X) = (gp,Ad(g)(X)).
The map ϕ is G-equivariant,

gϕ(p,X) = gX∗
p

= g d
dt |t=0(exp (tX)p)

= d
dt |t=0(g exp (tX)p)

= d
dt

¯̄
t=0(g exp (tX)g

−1gp)

= d
dt |t=0(exp tAd(g)(X)gp)

= Ad(g)(X)∗gp = ϕ(g(p,X)).

The map ψ, defined above, is G-equivariant. For g ∈ G, X,Y ∈ g and
p ∈M we have:

ψ(gp)(X,Y ) = hgp(X
∗
gp, Y

∗
gp)

= hp(Ad(g
−1)(X)∗p, Ad(g

−1)(Y )∗p)
= ψ(p)(Ad(g−1)(X), Ad(g−1)(Y )).

Hence, since the G-action is tame on g∗ ⊗ g∗, such map is essentially
constant on the support of almost every ergodic component of M , see [6,
Ch.2]).

By the lemma 3, there is an Ad(G)-invariant bilinear form BU on g so
that the metric on TO|U ∼= U×g induced byM is almost everywhere given
by BU on each fiber, where U is the support of one ergodic component ofM .
It is very easy to prove that the kernel of BU is an ideal of g. If such kernel
is g, then TO|U is lightlike which implies dimg ≤ m0. This contradicts
the condition n10 + · · ·+ nl0 = m0 since n0 < dimg = dimg1 + · · ·+dimgl.
Hence, being g semisimple, it follows that BU is nondegenerate, and so
almost every G-orbit contained in S is nondegenerate. We can conclude
that almost every G-orbit in M is nondegenerate. As a consequence, the
set U as defined before is conull and so nonempty.

The previous argument shows that the image under ψ of a conull and
hence dense, subset of M lies in the set of Ad(G)-invariant elements of
g∗⊗g∗. It follows that ψ(M) lies on it, since such set is closed. In particular,
on every G-orbit the metric induced from that of M is given by Ad(G)-
invariant symmetric bilinear form on g.

Using topological transitivity, we obtain an G-orbit Oα. This G-orbit
is dense and so it must intersect U . It is clear that Oα ⊂ U since U is
G-invariant.

The metric restricted to Oα, under the map ϕ, is given by the nonde-
generate bilinear form Bα on g. It follows that ψ(Oα) = Bα and so the
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the continuity of ψ together with the density of Oα imply that ψ is the
constant map given by Bα.

2

We now prove the principal result in this work.

Theorem 2. Let G = G1 · · ·Gl be a connected semisimple Lie group with-
out compact factors acting by isometries on a finite volume pseudoRieman-
nian manifoldM and no factor of G acts trivially. Then n10+ · · ·+nl0 ≤ m0.

Proof. By results in [6] we have local freeness on an open subset U ⊂ X.
Then the map ψ:U → g∗ ⊗ g∗, defined above, is constant on the ergodic
components in U for the G-action. On any such ergodic component, the
metric along the G-orbits comes from an Ad(G)-invariant bilinear form BU

on g.

Let η be the kernel of BU . It is known that η is an ideal of g. Since g
is semisimple we have to consider the following cases.

(1) η = g. In this case it follows easily that BU = 0, then dimg ≤ m0.
Since, dimgi ≥ ni0 and dimg = dimg1 + · · · + dimgl, we conclude
that

n10 + · · ·+ nl0 < m0.

(2) η = {0}. In this case BU is nondegenerate and the G-orbits are
nondegenerate submanifolds of X. Then we have that n0 ≤ m0 and
by Lemma 2 the claim follows.

(3) η =
L

j∈J gj where J ⊂ {1, . . . , l}. From this it follows that there is
a subspace of null vectors in the tangent space to the G-orbits which
has a dimension dim

L
j∈J gj + nj10 + · · ·+ njs0 . Therefore,

dim
M
j∈J

gj + nj10 + · · ·+ njs0 ≤ m0,

where j1, . . . , js ∈ {1, . . . , l} \ J . On the other hand,

dim
M
j∈J

gj + nj10 + · · ·+ njs0 > n10 + · · ·+ nl0.

2
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