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Abstract

We derive an upper bound on the largest signless Laplacian eigen-
value of an odd unicyclic graph. The bound is given in terms of the
largest vertex degree and the largest height of the trees obtained re-
moving the edges of the unique cycle in the graph.
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1. Introduction

Let G be a simple undirected connected graph of order n. Let E (G) be
the set of edges of G. Let A (G) be the adjacency matrix of G and let
D (G) be the diagonal matrix of vertex degrees. The Laplacian matrix and
the signless Laplacian matrix of G are L (G) = D (G)−A (G) and Q (G) =
D (G)+A (G) , respectively. The matrices L (G) and Q (G) are both positive
semidefinite matrices.

Let µ1 (G) and q1 (G) be the largest eigenvalues of L (G) and Q (G) ,
respectively.

Let ∆ be the maximum vertex degree of a graph G. In [7], Hu proves
that if G is a unicyclic graph then

µ1 (G) ≤ ∆+ 2
√
∆− 1(1.1)

with equality if and only if G is the cycle Cn whenever n is even.
We recall that the height of a rooted tree is the largest distance from

the root to a pendant vertex.
The following invariant for a unicyclic graph G has been introduced in

[10].

Definition 1. Let G be a unicyclic graph. Let Cr be the unique cycle in G
and let v1, v2, ...., vr be the vertices of Cr. The graph G−E (Cr) is a forest
of r rooted trees T1, T2, ..., Tr with root vertices v1, v2, ...., vr, respectively.
For i = 1, 2, . . . , r, let h (Ti) be the height of the tree Ti with root vi. Let

k (G) = max {h (Ti) : 1 ≤ i ≤ r}+ 1.

Example 1. For instance, if G is the graph

V1 V2

V3

then ∆ = 4, h (T1) = 2, h (T2) = 3, h (T3) = 2 and k (G) = max {2, 3, 2}+
1 = 4.
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In [10], the upper bound on µ1 (G) in (1.1) is improved by using the
invariants ∆ and k (G) . In fact, it is proved that if G is a unicyclic then

µ1 (G) < ∆+ 2
√
∆− 1 cos π

2k (G) + 1(1.2)

for ∆ ≥ 3.
The following lemma tell us that for any graph G the largest Laplacian

eigenvalue does not exceed the largest signless Laplacian eigenvalue.

Lemma 1. [2] µ1 (G) ≤ q1 (G)with equality if and only if G is a bipartite
graph.

In [5], a survey concerning upper bounds on µ1 (G) and q1 (G) is given.
Moreover, it is shown that many but not all upper bounds on µ1 (G) are
also valid for q1 (G) . In this paper, we prove that if G is a unicyclic graph
the upper bound on µ1 (G) in (1.2) is also an upper bound on q1 (G) .

From now on, let G be a unicyclic graph. Let Cr be the unique cycle
in G. It is known that if r is an even integer then G is a bipartite graph
[3]. Moreover, if G is a bipartite graph then Q (G) and L (G) have the same
eigenvalues [1]. Then, throughout this paper, we assume that r is an odd
integer, that is, that G is an odd unicyclic graph. If ∆ = 2 then G = Cn
and thus q1 (G) = q1 (Cn) = 4. Then, we also assume that ∆ ≥ 3.

Denote by σ (M) and ρ (M) the spectrum and the spectral radius of the
matrix M, respectively.

The level of a vertex in a rooted tree is one more than its distance from
the root vertex. A generalized Bethe tree is a rooted tree in which vertices
at the same level have the same degree. Let Bk be a generalized Bethe tree
of k levels. For j = 1, 2, . . . , k, let dk−j+1 be the degree of the vertices of
Bk at the level j and let nk−j+1 be the number of these vertices. Then,
nk = 1, dk is the degree of the root, n1 is the number of pendant vertices
and d1 = 1.

Let

Ω = {j : 1 ≤ j ≤ k − 1, nj > nj+1}
and, for j = 1, 2, . . . , k − 1, let

Tj =

⎡⎢⎢⎢⎢⎢⎣
1

√
d2 − 1

√
d2 − 1 d2

. . .
. . .

. . .
p
dj − 1p

dj − 1 dj

⎤⎥⎥⎥⎥⎥⎦ .
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In [11], one can find a complete characterization of the spectrum of the
signless Laplacian matrix of a graph H{Bk} obtained from a connected
graph H of order r and r copies of Bk identifying the root of the i− th copy
with the i− th vertex of H. More precisely

Theorem 1. [11] If H is a connected graph of order r then

σ (Q (H{Bk})) = (∪j∈Ωσ (Tj)) ∪ (∪ri=1σ (Si (d)))
where

Si (d) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
√
d2 − 1

√
d2 − 1 d2

. . .
. . .

. . .
p
dk−1 − 1p

dk−1 − 1 dk−1
√
dk√

dk dk + qi (H)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

d = [1, d2, . . . , dk−1, dk]

and

q1 (H) ≥ q2 (H) ≥ ... ≥ qr−1 (H) ≥ qr (H)
are the signless Laplacian eigenvalues of H.

At this point, we recall that if A is an irreducible nonnegative matrix
then A has an eigenvalue equal to its spectral radius ρ (A) and ρ (A) in-
creases when any entry of A increases [13]. Therefore, since any matrix
with nonzero codiagonal entries is an irreducible matrix, the largest eigen-
value of any symmetric nonnegative matrix with nonzero codiagonal entries
is the spectral radius of the matrix and increases when any entry increases.

Corollary 1. The spectral radius of S1 (d) is the largest eigenvalue of
Q (H{Bk}) .

Proof. We have that the largest eigenvalues of Si (d) is ρ (Si (d)) . From
Theorem 1, the eigenvalues of Q (H{Bk}) are the eigenvalues of the matri-
ces Tj , j ∈ Ω, together with the eigenvalues of the matrices Si (d) . From the
Cauchy’s Interlace Theorem for eigenvalues of Hermitian matrices [6] and
[8], the eigenvalues of each Tj interlace the eigenvalues of each Si (d) . Then
the largest eigenvalue of Q (H{Bk}) is max {ρ (Si (d)) : i = 1, . . . , r} . Since
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dk + q1 (H) ≥ dk + qi (H) for i = 2, . . . , r, it follows ρ (S1 (d)) ≥ ρ (Si (d))
for i = 2, . . . , r. Therefore max {ρ (Si (d)) : i = 1, . . . , r} = ρ (S1 (d)) and
the proof is complete. 2

From now on, let H = Cr with r = 2s + 1. Since q1 (Cr) = 4, from
Corollary 1, we obtain

Corollary 2. The spectral radius of the k × k matrix⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
√
d2 − 1

√
d2 − 1 d2

. . .
. . .

. . .
p
dk−1 − 1p

dk−1 − 1 dk−1
√
dk√

dk dk + 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = Q0 (d)

is the largest signless Laplacian of Cr {Bk} .

2. An upper bound on q1 (G) in terms of ∆ and k (G)

From now on, let k = k (G) and let Bk (∆) be the generalized Bethe tree
with vertex degree sequence

d = (1,∆,∆, ....,∆,∆− 2) ,

from the pendant vertices to the root. Then each tree Ti is an induced
subgraph of Bk (∆) . Let Cr {Bk (∆)} be the unicyclic graph obtained from
Cr and r copies of Bk (∆) by identifying the root of the i − th copy with
the i− th vertex of Cr. Hence G is an induced subgraph of Cr {Bk (∆)} and
consequently q1 (G) ≤ q1 (Cr {Bk (∆)}) .

Example 2. For instance the graph G in Example 1 is an induced subgraph
of C3 {B4 (4)} :
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Applying Corollary 2 to the graph Cr {Bk (∆)} , we obtain that
q1 (Cr {Bk (∆)}) is equal to the spectral radius of the k × k matrix

Q0 (∆) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
√
∆− 1

√
∆− 1 ∆

. . .
. . .

. . .
√
∆− 1√

∆− 1 ∆
√
∆− 2√

∆− 2 ∆+ 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .(2.1)

That is q1 (Cr {Bk (∆)}) = ρ (Q0 (∆)) .

Theorem 2. Let G be an odd unicyclic graph with ∆ ≥ 3

q1 (G) < ∆+ 2
√
∆− 1 cos π

2k (G) + 1 .(2.2)

Proof. We know that q1 (G) ≤ q1 (Cr {Bk (∆)}) = ρ (Q0 (∆)) . From
(2.1)

Q0 (∆) ≤ diag {∆,∆, . . . ,∆}+Ak (∆) ,

Ak (∆) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
√
∆− 1

√
∆− 1 0

. . .
. . .

. . .
√
∆− 1√

∆− 1 0
√
∆− 2√

∆− 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
with strict inequality in position (1, 1) . It follows

q1 (G) ≤ ρ (Q0 (∆)) < ∆+ ρ (Ak (∆)) .(2.3)

In order to prove (2.2), we search for an upper bound on ρ (Ak (∆)) .
Suppose ∆ ≥ 5. Then

Ak (∆) ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
√
∆− 1√

∆− 1 0
√
∆− 1

√
∆− 1 . . .

. . .
. . . 0

√
∆− 1√

∆− 1
√
∆− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Dk

³√
∆− 1

´
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with strict inequalities in positions (k − 1, k) and (k, k − 1) . Then

ρ (Ak (∆)) < ρ
³
Dk

³√
∆− 1

´´
.

The spectral radius of Dk

³√
∆− 1

´
[9] is

ρ
³
Dk

³√
∆− 1

´´
= 2
√
∆− 1 cos π

2k + 1
.

Hence, for ∆ ≥ 5,

ρ (Ak (∆)) < 2
√
∆− 1 cos π

2k + 1
.

Using this result in (2.3) , we obtain

q1 (G) < ∆+ 2
√
∆− 1 cos π

2k + 1

whenever ∆ ≥ 5. We now study the cases ∆ = 3 and ∆ = 4. For j =
1, 2, .., k, let aj (λ) and dj (λ) be the characteristic polynomials of the j× j

leading principal submatrices of Ak (∆) and Dk

³√
∆− 1

´
, respectively.

We have

ak (λ) = det (λI −Ak (∆))

and

dk (λ) = det
³
λI −Dk

³√
∆− 1

´´
.

For j = 1, 2, . . . , k − 1, the aj (λ) and dj (λ) are identical polynomials.

Expanding along the last rows of det (λI −Ak (∆)) and det
³
λI −Dk

³√
∆− 1

´´
,

we obtain

ak (λ) = (λ− 2) ak−1 (λ)− (∆− 2) ak−2 (λ)(2.4)

and

dk (λ) =
³
λ−
√
∆− 1

´
ak−1 (λ)− (∆− 1) ak−2 (λ) .(2.5)

Sustracting (2.5) from (2.4) , we get

ak (λ)− dk (λ) =
³√
∆− 1− 2

´
ak−1 (λ) + ak−2 (λ) .(2.6)
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Since the eigenvalues of any tridiagonal symmetric tridiagonal matrix
with nonzero codiagonal entries are simple eigenvalues, we may write

ak (λ) = (λ− α1) (λ− α2) ..... (λ− αk−1) (λ− αk)

where

αk < αk−1 < ... < α2 < α1 = ρ (Ak (∆))

are the zeros of the polynomial ak (λ) . Let δ = ρ
³
Dk

³√
∆− 1

´´
.We know

that

δ = 2
√
∆− 1 cos π

2k + 1

is the largest zero of dk (λ) . Let β1 be the largest zero of the identical
polynomials dk−1 (λ) and ak−1 (λ) . Since the zeros of these polynomials
strictly interlace the zeros of the polynomials ak (λ) and dk (λ) , we obtain
that α2 < β1 < α1 and β1 < δ. Therefore α2 < δ, ak−1 (δ) > 0 and

ak (δ) = (δ − α1) (δ − α2) ..... (δ − αk−1) (δ − αk)

= (δ − α1)P

where P > 0. Then ρ (Ak (∆)) = α1 < δ if ak (δ) > 0. From (2.5) and (2.6) ,³
δ −
√
∆− 1

´
ak−1 (δ)− (∆− 1) ak−2 (δ) = 0

and

ak (δ) =
³√
∆− 1− 2

´
ak−1 (δ) + ak−2 (δ) .

Then

ak (δ) =

Ã
√
∆− 1− 2 + δ −

√
∆− 1

∆− 1

!
ak−1 (δ) .(2.7)

Let ∆ = 4. From (2.7)

ak (δ) =

Ã√
3− 2 +

2
√
3 cos π

2k+1 −
√
3

3

!
ak−1 (δ)
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=

Ã
2
√
3

3
− 2 + 2

√
3

3
cos

π

2k + 1

!
ak−1 (δ)

≥
Ã
2
√
3

3
− 2 + 2

√
3

3
cos

π

5

!
ak−1 (δ)

> 0.08ak−1 (δ) > 0.

Let now ∆ = 3 and k ≥ 4. From (2.7)

ak (δ) =

Ã√
2− 2 +

2
√
2 cos π

2k+1 −
√
2

2

!
ak−1 (δ)

=

Ã√
2

2
− 2 +

√
2 cos

π

2k + 1

!
ak−1 (δ)

≥
Ã√

2

2
− 2 +

√
2 cos

π

9

!
ak−1 (δ)

> 0.03ak−1 (δ) > 0.

It follows that (2.2) also holds when ∆ = 4 and when ∆ = 3 with k ≥ 4.
It remains to prove (2.2) when ∆ = 3 with k = 2 and k = 3.We know that
q1 (Cr {B2 (3)}) is the largest eigenvalue of

Q2 (3) =

"
1 1
1 5

#
and that q1 (Cr {B3 (3)}) is the largest eigenvalue of

Q3 (3) =

⎡⎢⎣ 1
√
2 0√

2 3 1
0 1 5

⎤⎥⎦ .
To four decimal places

ρ (Q2 (3)) = 5.2361 < 3 + 2
√
2 cos

and

ρ (Q3 (3)) = 5.4893 < 3 + 2
√
2 cos

The proof is complete. 2
The following corollary, in which the Hu’s upper bound (1.1) is extended

to an upper bound on q1 (G) , is an immediate consequence of Theorem 2.
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Corollary 3. Let G be an odd unicyclic graph with ∆ ≥ 3. Then

q1 (G) < ∆+ 2
√
∆− 1.
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