Proyecciones Journal of Mathematics Vol. 31, N^o 2, pp. 169-195 June 2012. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172012000200006

Generalized difference entire sequence spaces

KULDIP RAJ SUNIL K. SHARMA AMIT GUPTA SHRI MATA VAISHNO DEVI UNIVERSITY, INDIA Received: November 2011. Accepted: May 2012

Abstract

In this paper we introduce difference entire sequence spaces and difference analytic sequence spaces defined by a sequence of modulus function $F = (f_k)$ and study some topological properties and some inclusion relations between these spaces. We also make an effort to study some properties and inclusion relation between the spaces $\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$ and $\Lambda_F(\Delta_s^m, u, p, q, ||., \dots, .||)$.

Subjclass [2000]: 40A05, 40C05, 40D05.

Keywords: Paranorm space, modulus function, solid, monotone, entire sequences, analytic sequences, paranorm space, n-normed space.

1. Introduction and Preliminaries

The notion of difference sequence spaces was introduced by Kızmaz [11], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_o(\Delta)$. The notion was further generalized by Et and Çolak [5] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_o(\Delta^n)$. Let w be the space of all complex or real sequences $x = (x_k)$ and let m, s be non-negative integers, then for $Z = l_{\infty}$, c, c_0 we have sequence spaces

$$Z(\Delta_s^m) = \{ x = (x_k) \in w : (\Delta_s^m x_k) \in Z \},$$

where $\Delta_s^m x = (\Delta_s^m x_k) = (\Delta_s^{m-1} x_k - \Delta_s^{m-1} x_{k+1})$ and $\Delta_s^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_s^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+sv}.$$

Taking s = 1, we get the spaces which were studied by Et and Çolak [5]. Taking m = s = 1, we get the spaces which were introduced and studied by Kızmaz [11].

A complex sequence, whose k^{th} term is x_k , is denoted by (x_k) . Let φ be the set of all finite sequences. A sequence $x=(x_k)$ is said to be analytic if $\sup_k |x_k|^{\frac{1}{k}} < \infty$. The vector space of all analytic sequences will be denoted by Λ . A sequence $x=(x_k)$ is called entire sequence if $\lim_{k\to\infty} |x_k|^{\frac{1}{k}}=0$. The vector space of all entire sequences will be denoted by Γ .

A modulus function is a function $f:[0,\infty)\to[0,\infty)$ such that

- 1. f(x) = 0 if and only if x = 0,
- 2. $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$,
- 3. f is increasing
- 4. f is continuous from right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{x}{x+1}$, then f(x) is bounded. If $f(x) = x^p$, 0 , then the modulus <math>f(x) is unbounded. Subsequentially, modulus function has been discussed

in ([1], [2], [3], [4], [12], [13], [17], [18]) and references therein. Let $F = (f_k)$ be a sequence of modulus function.

The space consisting of all those sequences x in w such that $f_k\left(\frac{|x_k|^{1/k}}{\rho}\right) \to 0$ as $k \to \infty$ for some arbitrary fixed $\rho > 0$ is denoted by Γ_F and is known as a space of entire sequences defined by a sequence of modulus function. The space Γ_F is a metric space with the metric $d(x,y) = \sup_k f_k\left(\frac{|x_k - y_k|^{1/k}}{\rho}\right)$ for all $x = (x_k)$ and $y = (y_k)$ in Γ_F . The space consisting of all those sequences x in w such that $\left(\sup_k \left(\frac{|x_k|^{1/k}}{\rho}\right)\right) < \infty$ for some arbitrarily fixed $\rho > 0$ is denoted by Λ_F and is known as a space of analytic sequences defined by a sequence of modulus function.

A sequence space E is said to be solid or normal if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ and for all sequences of scalars (α_k) with $|\alpha_k| \le 1$ (see [10]).

Let X be a linear metric space. A function $p: X \to \mathbf{R}$ is called paranorm, if

- 1. $p(x) \geq 0$, for all $x \in X$,
- 2. p(-x) = p(x), for all $x \in X$,
- 3. $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [19], Theorem 10.4.2, P-183).

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a sequence of positive real numbers with $0 \le p_k \le \sup p_k = G$, $K = \max(1, 2^{G-1})$ then

$$|a_k + b_k|^{p_k} \le K\{|a_k|^{p_k} + |b_k|^{p_k}\}$$

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \leq \max(1, |a|^G)$ for all $a \in \mathbb{C}$.

Let $F = (f_k)$ be a sequence of modulus functions and X be locally convex Hausdorff topological linear space whose topology is determined by a set of continuous seminorms q. The symbol $\Lambda(X)$ and $\Gamma(X)$ denotes the space of all analytic and entire sequences respectively defined over X. If $p = (p_k)$ be bounded sequences of strictly positive real numbers and $u = (u_k)$ be sequences of positive real numbers, then we define the following sequence spaces:

$$\Lambda_F(\Delta_s^m, u, p, q) = \left\{ x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^n \left[f_k \left(\left(\frac{|(u_k \Delta_s^m x_k)^{1/k}|}{\rho} \right) \right) \right]^{p_k} < \infty,$$
 for some $\rho > 0 \right\}$

and

$$\Gamma_F(\Delta_s^m, u, p, q) = \left\{ x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(\frac{|(u_k \Delta_s^m x_k)^{1/k}|}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as} \right.$$

$$n \to \infty, \text{ for some } \rho > 0 \right\}.$$

If we take If we take $p = (p_k) = 1$, we get

$$\Lambda_F(\Delta_s^m, u, q) = \left\{ x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^n \left[f_k \left(\left(\frac{|(u_k \Delta_s^m x_k)^{1/k}|}{\rho} \right) \right) \right] < \infty,$$
for some $\rho > 0 \right\}$

and

$$\Gamma_F(\Delta_s^m, u, q) = \left\{ x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(\frac{|(u_k \Delta_s^m x_k)^{1/k}|}{\rho} \right) \right) \right] \to 0 \text{ as} \right.$$

$$n \to \infty, \text{ for some } \rho > 0 \right\}.$$

The purpose of this paper is to introduce and study a concept of difference entire sequence spaces and difference analytic sequence spaces using sequence of modulus functions. We examine some topological properties and inclusion relation between the spaces $\Lambda_F(\Delta_s^m, u, p, q)$ and $\Gamma_F(\Delta_s^m, u, p, q)$ in the second section and third section devoted to the study of some properties of n-normed spaces $\Lambda_F(\Delta_s^m, u, p, q, ||., \dots, ||)$ and $\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, ||)$.

2. Some Topological properties of the spaces $\Lambda_F(\Delta_s^m, u, p, q)$ and $\Gamma_F(\Delta_s^m, u, p, q)$

In this section of the paper we study very interesting properties like linearity, paranorm and some attractive inclusion relations between the spaces $\Lambda_F(\Delta_s^m, u, p, q)$ and $\Gamma_F(\Delta_s^m, u, p, q)$.

Theorem 2.1 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be bounded sequence of strictly positive real numbers, then $\Gamma_F(\Delta_s^m, u, p, q)$ and $\Lambda_F(\Delta_s^m, u, p, q)$ are linear spaces over the set of complex numbers \mathbb{C} .

Proof. Let $x = (x_k), y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q)$ and $\alpha, \beta \in \mathbb{C}$. In order to prove the result, we need to find some $\rho_3 > 0$ such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m(\alpha x_k + \beta y_k)|)^{\frac{1}{k}}}{\rho_3} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since $x = (x_k), y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q)$, there exist some positive ρ_1 and ρ_2 such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

and

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since $F = (f_k)$ is a non-decreasing function, q is a seminorm and Δ_s^m is linear, then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_{k} \left(q \left(\frac{(|u_{k} \Delta_{s}^{m} (\alpha x_{k} + \beta y_{k})|)^{\frac{1}{k}}}{\rho_{3}} \right) \right) \right]^{p_{k}} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_{k} \left(q \left(\frac{|\alpha|^{\frac{1}{k}} (|u_{k} \Delta_{s}^{m} x_{k}|)^{\frac{1}{k}}}{\rho_{3}} + \frac{|\beta|^{\frac{1}{k}} (|u_{k} \Delta_{s}^{m} y_{k}|)^{\frac{1}{k}}}{\rho_{3}} \right) \right) \right]^{p_{k}}$$

so that

$$\sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m(\alpha x_k + \beta y_k)| \right)^{\frac{1}{k}}}{\rho_3} \right) \right) \right]^{p_k}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{|\alpha| \left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho_3} + \frac{|\beta| \left(|u_k \Delta_s^m y_k| \right)^{\frac{1}{k}}}{\rho_3} \right) \right) \right]^{p_k}.$$

Take
$$\rho_3 > 0$$
 such that $\frac{1}{\rho_3} = \min\left\{\frac{1}{|\alpha|}, \frac{1}{|\beta|}\right\}$

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m(\alpha x_k + \beta y_k)|)^{\frac{1}{k}}}{\rho_3} \right) \right) \right]^{p_k}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1} + \frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k}$$

$$\frac{1}{n} \sum_{k=1}^{n} \left[\left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k} + \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k} \right]$$

$$\leq K \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k}$$

$$+ K \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k}$$

Hence

$$\sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|\alpha u_k \Delta_s^m x_k + \beta u_k \Delta_s^m y_k| \right)^{\frac{1}{k}}}{\rho_3} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

This proves that $\Gamma_F(\Delta_s^m, u, p, q)$ is a linear space. Similarly, we can prove that $\Lambda_F(\Delta_s^m, u, p, q)$ is a linear space

Theorem 2.2 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be bounded sequence of strictly positive real numbers. Then $\Gamma_F(\Delta_s^m, u, p, q)$ is a paranormed space with paranorm defined by

$$g(x) = \inf \left\{ \rho^{\frac{p_m}{H}} : \sup_{k > 1} \left[f_k \left(q \left(\frac{|(u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \le 1, \quad \rho > 0, \quad m \in \mathbf{N} \right\},$$

where $H = \max_{k} (1, \sup_{k} p_k)$.

Proof. Clearly $g(x) \ge 0$, g(x) = g(-x) and $g(\theta) = 0$, where θ is the zero sequence of X.

Let $(x_k), (y_k) \in \Gamma_F(\Delta_s^m, u, p, q)$. Let $\rho_1, \ \rho_2 > 0$ be such that

$$\sup_{k>1} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k} \le 1$$

and

$$\sup_{k\geq 1} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k} \leq 1.$$

Let $\rho = \rho_1 + \rho_2$.

Then by using Minkowski's inequality, we have

$$\sup_{k\geq 1} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m(x_k + y_k)|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k}$$

$$\leq \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k\geq 1} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k}$$

$$+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k\geq 1} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k}$$

$$\leq 1.$$

Hence

g(x+y)

$$\leq \inf \left\{ (\rho_1 + \rho_2)^{\frac{p_m}{H}} : \sup_{k > 1} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1 + \rho_2} \right) \right) \right]^{p_k} \leq 1, \rho_1, \ \rho_2 > 0, \ m \in N \right\}$$

$$\leq \inf \left\{ \left(\rho_1\right)^{\frac{p_m}{H}} : \sup_{k \geq 1} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k} \leq 1, \rho_1 > 0, \quad m \in \mathbf{N} \right\}$$

$$+ \inf \left\{ \left(\rho_2\right)^{\frac{p_m}{H}} : \sup_{k \geq 1} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m y_k| \right)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k} \leq 1, \rho_2 > 0, \quad m \in \mathbf{N} \right\}.$$

Thus we have

 $g(x+y) \leq g(x) + g(y)$. Hence g satisfies the triangle inequality.

$$g(\lambda x) =$$

$$\inf \left\{ (\rho)^{\frac{p_m}{H}} : \sup_{k>1} \left[f_k \left(q \left(\frac{(|\lambda u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \le 1, \rho > 0, \quad m \in \mathbf{N} \right\}$$

$$=\inf\bigg\{(r|\lambda|)^{\frac{p_m}{H}}:\sup_{k\geq 1}\bigg[f_k\bigg(q\bigg(\frac{(|u_k\Delta_s^mx_k|)^{\frac{1}{k}}}{r}\bigg)\bigg)\bigg]^{p_k}\leq 1, r>0, \ m\in\mathbf{N}\bigg\},$$
 where $r=\frac{\rho}{|\lambda|}.$

Hence $\Gamma_F(\Delta_s^m, u, p, q)$ is a paranormed space.

Theorem 2.3 Let $F' = (f'_k)$ and $F'' = (f''_k)$ be two sequences of modulus functions. Then

$$\Gamma_{F'}(\Delta_s^m, u, p, q) \cap \Gamma_{F''}(\Delta_s^m, u, p, q) \subseteq \Gamma_{F'+F''}(\Delta_s^m, u, p, q).$$

Proof. Let $x = (x_k) \in \Gamma_{F'}(\Delta_s^m, u, p, q) \cap \Gamma_{F''}(\Delta_s^m, u, p, q)$. Then there exist ρ_1 and ρ_2 such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k' \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

and

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k'' \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since
$$\rho > 0$$
 such that $\frac{1}{\rho} = \min\left(\frac{1}{\rho_1}, \frac{1}{\rho_2}\right)$. Then we have $\frac{1}{n} \sum_{k=1}^n \left[(f'_k + f''_k) \left(q\left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho}\right) \right) \right]^{p_k}$

$$\leq K \left[\frac{1}{n} \sum_{k=1}^n \left[f'_k \left(q\left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_1} \right) \right) \right]^{p_k} \right]$$

$$+ K \left[\frac{1}{n} \sum_{k=1}^n \left[f''_k \left(q\left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho_2} \right) \right) \right]^{p_k} \right]$$

$$\to 0 \text{ as } n \to \infty$$

Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[(f'_k + f''_k) \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Therefore $x = (x_k) \in \Gamma_{F'+F''}(\Delta_s^m, u, p, q)$.

Theorem 2.4 Let m > 1. Then we have the following inclusions:

- (i) $\Gamma_F(\Delta_s^{m-1}, u, p, q) \subseteq \Gamma_F(\Delta_s^m, u, p, q)$, (ii) $\Lambda_F(\Delta_s^{m-1}, u, p, q) \subseteq \Lambda_F(\Delta_s^m, u, p, q)$

Proof. Let $x = (x_k) \in \Gamma_F(\Delta_s^{m-1}, u, p, q)$. Then we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^{m-1} x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty, \text{ for some } \rho > 0.$$

Since $F = (f_k)$ is non-decreasing and q is a seminorm, we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^{m-1} x_k - u_k \Delta_s^{m-1} x_{k+1}| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \\
\leq K \left\{ \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^{m-1} x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \right\} \right\}$$

$$+\frac{1}{n}\sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^{m-1} x_{k+1}| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \right\}$$

$$\longrightarrow 0 \text{ as } n \to \infty.$$

Therefore
$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Hence $x \in \Gamma_F(\Delta_s^m, u, p, q)$. This completes the proof of (i). Similarly, we can prove (ii).

Theorem 2.5 Let $0 \le p_k \le r_k$ and let $\left\{\frac{r_k}{p_k}\right\}$ be bounded. Then $\Gamma_F(\Delta_s^m, u, r, q) \subset \Gamma_F(\Delta_s^m, u, p, q)$.

Proof. Let $x = (x_k) \in \Gamma_F(\Delta_s^m, u, r, q)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{r_k} \to 0 \text{ as } n \to \infty.$$

Let
$$t_k = \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{q_k}$$

and $\lambda_k = \frac{p_k}{r_k}$. Since $p_k \le r_k$, we have $0 \le \lambda_k \le 1$. Take $0 < \lambda < \lambda_k$. Define

$$u_k = \begin{cases} t_k & \text{if } t_k \ge 1\\ 0 & \text{if } t_k < 1 \end{cases}$$

and

$$v_k = \begin{cases} 0 & \text{if } t_k \ge 1 \\ t_k & \text{if } t_k < 1 \end{cases}$$

 $t_k = u_k + v_k$, $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$. It follows that $u_k^{\lambda_k} \le u_k \le t_k$, $v_k^{\lambda_k} \le v_k^{\lambda}$. Since $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$, then $t_k^{\lambda_k} \le t_k + v_k^{\lambda}$. Thus

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right)^{r_k} \right]^{\lambda_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{r_k}$$

$$\Rightarrow \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right)^{r_k} \right]^{p_k/r_k}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{r_k}$$

$$\Rightarrow \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{r_k}.$$

But

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{r_k} \to 0 \text{ as } n \to \infty.$$

Therefore

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Hence $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q)$. Thus, we have

$$\Gamma_F(\Delta_s^m, u, r, q) \subset \Gamma_F(\Delta_s^m, u, p, q).$$

Theorem 2.6

(i) Let
$$0 < \inf p_k \le p_k \le 1$$
. Then $\Gamma_F(\Delta_s^m, u, p, q) \subset \Gamma_F(\Delta_s^m, u, q)$,

(ii) Let
$$1 \le p_k \le \sup p_k < \infty$$
. Then $\Gamma_F(\Delta_s^m, u, q) \subset \Gamma_F(\Delta_s^m, u, p, q)$.

Proof. (i) Let $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since $0 < \inf p_k \le p_k \le 1$,

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right] \le \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0$$

as $n \to \infty$.

Thus, it follows that, $x = (x_k) \in \Gamma_F(\Delta_s^m, u, q)$. Thus $\Gamma_F(\Delta_s^m, u, p, q) \subset \Gamma_F(\Delta_s^m, u, q)$.

(ii) Let $p_k \ge 1$ for each k and $\sup p_k < \infty$ and let $x = (x_k) \in \Gamma_F(\Delta_s^m, u, q)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right] \to 0 \text{ as } n \to \infty$$

Since $1 \le p_k \le \sup p_k < \infty$, we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \le \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]$$

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

This implies that $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q)$. Therefore

 $\Gamma_F(\Delta_s^m, u, q) \subset \Gamma_F(\Delta_s^m, u, p, q).$

Theorem 2.7 Suppose $\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \leq |x_k|^{1/k}$, then $\Gamma \subset \Gamma_F(\Delta_s^m, u, p, q)$.

Proof. Let $x = (x_k) \in \Gamma$. Then we have,

$$|x_k|^{1/k} \to 0 \text{ as } k \to \infty.$$

But $\frac{1}{n}\sum_{k=1}^n \left[f_k\left(q\left(\frac{\left(|u_k\Delta_s^mx_k|\right)^{\frac{1}{k}}}{\rho}\right)\right)\right]^{p_k} \leq |x_k|^{1/k}$, by our assumption, implies that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m x_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

Then $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q)$ and $\Gamma \subset \Gamma_F(\Delta_s^m, u, p, q)$.

Theorem 2.8 $\Gamma_F(\Delta_s^m, u, p, q)$ is solid.

Proof. Let $|x_k| \leq |y_k|$ and let $y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q)$, because $F = (f_k)$ is non-decreasing

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \le \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m y_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k}$$

Since $y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q)$. Therefore,

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{(|u_k \Delta_s^m y_k|)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

and so that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\frac{\left(|u_k \Delta_s^m x_k| \right)^{\frac{1}{k}}}{\rho} \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Therefore $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q)$.

Theorem 2.9 $\Gamma_F(\Delta_s^m, u, p, q)$ is monotone.

Proof. It is trivial so we omit it.

3. Difference Entire sequence spaces over n- normed spaces

The concept of 2-normed spaces was initially developed by Gähler[6] in the mid of 1960's, while that of n-normed spaces one can see in Misiak[14]. Since then, many others have studied this concept and obtained various results, see Gunawan ([7],[8]) and Gunawan and Mashadi [9]. For more details about the sequence spaces over n-normed spaces see ([15],[16]).

Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- 2. $||x_1, x_2, \dots, x_n||$ is invariant under permutation;

3.
$$||\alpha x_1, x_2, \dots, x_n|| = |\alpha| \ ||x_1, x_2, \dots, x_n||$$
 for any $\alpha \in \mathbf{K}$, and

4.
$$||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$$

is called an *n*-norm on X, and the pair $(X, ||\cdot, \dots, \cdot||)$ is called a *n*-normed space over the field **K**. For example, we may take $X = \mathbf{R}^n$ being equipped with the *n*-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbf{R}^n$ for each $i = 1, 2, \dots, n$.

Let $(X, ||\cdot, \dots, \cdot||)$ be an *n*-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \dots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$.

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \dots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \dots, \cdot||)$ is said to be Cauchy if

$$\lim_{k,p\to\infty} ||x_k - x_p, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

If every cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let $F = (f_k)$ be a sequence of modulus functions and let X be locally convex Hausdorff topological linear space whose topology is determined by

a set of continuous seminorms q. The symbol $\Lambda(X)$, $\Gamma(X)$ denotes the space of all analytic and entire sequences respectively defined over X. In this section we define the following sequences spaces:

$$\begin{split} &\Lambda_F(\Delta_s^m,u,p,q,||.,\cdots,.||) = \\ &\left\{x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{1/k}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \\ &< \infty, \ \text{ for some } \ \rho > 0 \right\}, \\ &\Gamma_F(\Delta_s^m,u,p,q,||.,\cdots,.||) = \\ &\left\{x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{1/k}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \right. \\ &\to 0 \ \text{ as } n \to \infty, \text{ for some } \ \rho > 0 \right\}. \\ &\text{ If we take } p = (p_k) = 1, \text{ we get} \\ &\Lambda_F(\Delta_s^m,u,q,||.,\cdots,.||) = \\ &\left\{x \in \Lambda(X) : \sup_n \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{1/k}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right] \right. \\ &< \infty, \ \text{ for some } \ \rho > 0 \right\}, \\ &\Gamma_F(\Delta_s^m,u,q,||.,\cdots,.||) = \\ &\left\{x \in \Gamma(X) : \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{1/k}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right] \right. \\ &\to 0 \ \text{ as } n \to \infty, \text{ for some } \ \rho > 0 \right\}. \end{split}$$

In this section of the paper we study some topological properties of the spaces $\Lambda_F(\Delta_s^m, u, p, q, ||., \dots, .||)$ and $\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$. We also examine some inclusion relation between these spaces.

Theorem 3.1 Let $F=(f_k)$ be a sequence of modulus functions and $p=(p_k)$ be bounded sequence of strictly positive real numbers, then $\Gamma_F(\Delta^m_s,u,p,q,||.,\cdots,.||)$ and $\Lambda_F(\Delta^m_s,u,p,q,||.,\cdots,.||)$ are linear spaces

over the set of complex numbers C.

Proof. $x = (x_k), y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$ and $\alpha, \beta \in \mathbb{C}$. In order to prove the result, we need to find some $\rho_3 > 0$ such that

$$\frac{1}{n}\sum_{k=1}^{n}\left[f_k\left(q\left(\left|\left|\frac{(u_k\Delta_s^m(\alpha x_k+\beta y_k))^{\frac{1}{k}}}{\rho_3},z_1,\cdots,z_{n-1}\right|\right|\right)\right)\right]^{p_k}\to 0 \text{ as } n\to\infty.$$

Since $x = (x_k), y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$, there exist some positive ρ_1 and ρ_2 such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{\left(u_k \Delta_s^m x_k \right)^{\frac{1}{k}}}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{\left(u_k \Delta_s^m y_k \right)^{\frac{1}{k}}}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since $F = (f_k)$ is a non-decreasing function, q is a seminorm and Δ_s^m is linear, then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_{k} \left(q \left(\left| \frac{\left(u_{k} \Delta_{s}^{m} (\alpha x_{k} + \beta y_{k}) \right)^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right| \right) \right) \right]^{p_{k}} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_{k} \left(q \left(\left| \frac{\alpha^{\frac{1}{k}} (u_{k} \Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right| \right| + \left| \frac{\beta^{\frac{1}{k}} (u_{k} \Delta_{s}^{m} y_{k})^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right| \right] \right) \right]^{p_{k}}$$

so that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_{k} \left(q \left(\left\| \frac{(u_{k} \Delta_{s}^{m} (\alpha x_{k} + \beta y_{k}))^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right) \right]^{p_{k}}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_{k} \left(q \left(\left\| \frac{\alpha (u_{k} \Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right\| \right) + \left\| \frac{\beta (u_{k} \Delta_{s}^{m} y_{k})^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right) \right]^{p_{k}}$$

Since
$$\rho_{3} > 0$$
 such that $\frac{1}{\rho_{3}} = \min\left\{\frac{1}{|\alpha|}, \frac{1}{|\beta|}\rho_{2}\right\}$

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_{k}\left(q\left(\left\|\frac{(u_{k}\Delta_{s}^{m}(\alpha x_{k} + \beta y_{k}))^{\frac{1}{k}}}{\rho_{3}}, z_{1}, \cdots, z_{n-1}\right\|\right)\right)\right]^{p_{k}}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_{k}\left(q\left(\left\|\frac{(u_{k}\Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{1}} + \frac{(|u_{k}\Delta_{s}^{m} y_{k}|)^{\frac{1}{k}}}{\rho_{2}}\right), z_{1}, \cdots, z_{n-1}\right\|\right)\right)\right]^{p_{k}}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[\left[f_{k}\left(q\left(\left\|\frac{(u_{k}\Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{1}}, z_{1}, \cdots, z_{n-1}\right\|\right)\right)\right]^{p_{k}}$$

$$+\left[f_{k}\left(q\left(\left\|\frac{(u_{k}\Delta_{s}^{m} y_{k})^{\frac{1}{k}}}{\rho_{2}}, z_{1}, \cdots, z_{n-1}\right\|\right)\right)\right]^{p_{k}}$$

$$\leq K \frac{1}{n} \sum_{k=1}^{n} \left[f_{k}\left(q\left(\left\|\frac{(u_{k}\Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{1}}, z_{1}, \cdots, z_{n-1}\right\|\right)\right)\right]^{p_{k}}$$

$$+K \frac{1}{n} \sum_{k=1}^{n} \left[f_{k}\left(q\left(\left\|\frac{(u_{k}\Delta_{s}^{m} y_{k})^{\frac{1}{k}}}{\rho_{1}}, z_{1}, \cdots, z_{n-1}\right\|\right)\right)\right]^{p_{k}}$$

$$\to 0 \text{ as } n \to \infty.$$

Hence

$$\sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{\left(u_k \alpha \Delta_s^m x_k + \beta u_k \Delta_s^m y_k \right)^{\frac{1}{k}}}{\rho_3}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

This proves that $\Gamma_F(\Delta^m_s, u, p, q, ||., \dots, .||)$ is a linear space. Similarly, we can prove that $\Lambda_F(\Delta^m_s, u, p, q, ||., \dots, .||)$ is a linear space.

Theorem 3.2 Let $F = (f_k)$ be a sequence of modulus functions and $p = (p_k)$ be bounded sequence of strictly positive real numbers, $\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, |||)$ is paranormed space with paranorm defined by $g(x) = \inf \left\{ \rho^{\frac{p_m}{H}} : \sup_{k \geq 1} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \dots, z_{n-1} || \right) \right) \right]^{p_k} \leq 1,$ $\rho > 0, \ m \in \mathbb{N} \right\},$

where $H = \max(1, \sup_{k} p_k)$.

Proof. Clearly $g(x) \ge 0$, g(x) = g(-x) and $g(\theta) = 0$, where θ is the zero sequence of X.

Let $(x_k), (y_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$. Let $\rho_1, \rho_2 > 0$ be such that

$$\sup_{k>1} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \le 1$$

and

$$\sup_{k>1} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m y_k)^{\frac{1}{k}}}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \le 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by using Minkowski's inequality, we have $\sup_{k \ge 1} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m(x_k + y_k))^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right) \right]^{p_k}$ $\le \left(\frac{\rho_1}{\rho_1 + \rho_2} \right) \sup_{k \ge 1} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho_1}, z_1, \cdots, z_{n-1}|| \right) \right) \right]^{p_k}$ $+ \left(\frac{\rho_2}{\rho_1 + \rho_2} \right) \sup_{k \ge 1} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m y_k)^{\frac{1}{k}}}{\rho_2}, z_1, \cdots, z_{n-1}|| \right) \right) \right]^{p_k}$

Hence

$$g(x+y)$$

$$\leq \inf \left\{ (\rho_{1}+\rho_{2})^{\frac{p_{m}}{H}} : \sup_{k\geq 1} \left[f_{k} \left(q \left(\left\| \frac{(u_{k} \Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{1}+\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right) \right]^{p_{k}} \leq 1,$$

$$\rho_{1}, \ \rho_{2} > 0, \ m \in N \right\}$$

$$\leq \inf \left\{ (\rho_{1})^{\frac{p_{m}}{H}} : \sup_{k\geq 1} \left[f_{k} \left(q \left(\left\| \frac{(u_{k} \Delta_{s}^{m} x_{k})^{\frac{1}{k}}}{\rho_{1}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right) \right]^{p_{k}} \leq 1,$$

$$\rho_{1} > 0, \ m \in N \right\}$$

$$+ \inf \left\{ (\rho_{2})^{\frac{p_{m}}{H}} : \sup_{k\geq 1} \left[f_{k} \left(q \left(\left\| \frac{(u_{k} \Delta_{s}^{m} y_{k})^{\frac{1}{k}}}{\rho_{2}}, z_{1}, \cdots, z_{n-1} \right\| \right) \right) \right]^{p_{k}} \leq 1,$$

$$\rho_{2} > 0, \ m \in N \right\}.$$

Thus we have $g(x+y) \leq g(x) + g(y)$. Hence g satisfies the triangle inequality.

$$g(\lambda x) = \inf \left\{ (\rho)^{\frac{p_m}{H}} : \sup_{k \ge 1} \left[f_k \left(q \left(\left| \frac{(\lambda u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \le 1,$$

$$\rho > 0, \quad m \in N \right\}$$

$$= \inf \left\{ (r|\lambda|)^{\frac{p_m}{H}} : \sup_{k \ge 1} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{r}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \le 1,$$

$$r > 0, \quad m \in N \right\},$$
where $r = \frac{\rho}{|\lambda|}$.

Hence $\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$ is a paranormed space.

Theorem 3.3 Let $F' = (f'_k)$ and $F'' = (f''_k)$ be two sequences of modulus functions.

Then
$$\Gamma_{F'}(\Delta_s^m, u, p, q, ||., \dots, .||) \cap \Gamma_{F''}(\Delta_s^m, u, p, q, ||., \dots, .||)$$

$$\subseteq \Gamma_{F'+F''}(\Delta_s^m, u, p, q, ||., \cdots, .||).$$

Proof. Let $x = (x_k) \in \Gamma_{F'}(\Delta_s^m, u, p, q, ||., \dots, .||) \cap \Gamma_{F''}(\Delta_s^m, u, p, q, ||., \dots, .||)$. Then there exist ρ_1 and ρ_2 such that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k' \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

and

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k'' \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Let
$$\frac{1}{\rho} = \min\left(\frac{1}{\rho_1}, \frac{1}{\rho_2}\right)$$
. Then we have
$$\frac{1}{n} \sum_{k=1}^n \left[(f'_k + f''_k) \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right) \right]^{p_k}$$

$$\leq K \left[\frac{1}{n} \sum_{k=1}^{n} \left[f_k' \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \right]$$

$$+ K \left[\frac{1}{n} \sum_{k=1}^{n} \left[f_k'' \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho_2}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \right]$$

$$\to 0 \text{ as } n \to \infty$$

Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[(f'_k + f''_k) \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Therefore $x = (x_k) \in \Gamma_{F'+F''}(\Delta_s^m, u, p, q, ||., \dots, .||).$

Theorem 3.4 Let $m \ge 1$. Then we have the following inclusions:

(i)
$$\Gamma_F(\Delta_s^{m-1}, u, p, q, ||., \dots, ||) \subseteq \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, ||),$$

(ii) $\Lambda_F(\Delta_s^{m-1}, u, p, q, ||., \dots, ||) \subseteq \Lambda_F(\Delta_s^m, u, p, q, ||., \dots, ||).$

(ii)
$$\Lambda_F(\Delta_s^{m-1}, u, p, q, ||., \cdots, ||) \subseteq \Lambda_F(\Delta_s^m, u, p, q, ||., \cdots, ||)$$
.

Proof. Let $x=(x_k)\in\Gamma_F(\Delta_s^{m-1},u,p,q,||.,\cdots,.||)$. Then we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{\left(u_k \Delta_s^{m-1} x_k \right)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty, \text{ for some}$$

$$\rho > 0$$

Since
$$F = (f_k)$$
 is non-decreasing and q is a seminorm, we have
$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^{m-1} x_k - u_k \Delta_s^{m-1} x_{k+1})^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k}$$

$$\leq K \left\{ \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^{m-1} x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k}$$

$$+ \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^{m-1} x_{k+1})^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \right\}$$

$$\longrightarrow 0 \text{ as } n \to \infty.$$

Therefore
$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0$$

as $n \to \infty$.

Hence $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$. This completes the proof of (i). Similarly, we can prove (ii).

Theorem 3.5 Let $0 \le p_k \le r_k$ and let $\{\frac{r_k}{p_k}\}$ be bounded. Then

$$\Gamma_F(\Delta_s^m, u, r, q, ||., \cdots, .||) \subset \Gamma_F(\Delta_s^m, u, p, q, ||., \cdots, .||).$$

Proof. Let $x \in \Gamma_F(\Delta_s^m, u, r, q, ||., \dots, .||)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{r_k} \to 0 \text{ as } n \to \infty.$$

Let
$$t_k = \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{q_k}$$
 and $\lambda_k = \frac{p_k}{r_k}$.

Since $p_k \leq r_k$, we have $0 \leq \lambda_k \leq 1$. Take $0 < \lambda < \lambda_k$. Define

$$u_k = \begin{cases} t_k & \text{if } t_k \ge 1\\ 0 & \text{if } t_k < 1 \end{cases}$$

and

$$v_k = \begin{cases} 0 & \text{if } t_k \ge 1 \\ t_k & \text{if } t_k < 1 \end{cases}$$

 $t_k = u_k + v_k$, $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$. It follows that $u_k^{\lambda_k} \le u_k \le t_k$, $v_k^{\lambda_k} \le v_k^{\lambda_k}$. Since $t_k^{\lambda_k} = u_k^{\lambda_k} + v_k^{\lambda_k}$, then $t_k^{\lambda_k} \le t_k + v_k^{\lambda}$. So that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right)^{r_k} \right]^{\lambda_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{r_k}$$
This is a linear factor of the formula of the property of the

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \dots, z_{n-1} || \right) \right)^{r_k} \right]^{p_k/r_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \dots, z_{n-1} || \right) \right) \right]^{r_k}$$

$$\Longrightarrow \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{r_k}.$$

But

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{r_k} \to 0 \text{ as } n \to \infty.$$

Therefore

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Hence $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$. Thus, we get

$$\Gamma_F(\Delta_s^m, u, r, q, ||., \dots, .||) \subset \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||).$$

Theorem 3.6 (i) Let $0 < \inf p_k \le p_k \le 1$. Then

$$\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||) \subset \Gamma_F(\Delta_s^m, u, q, ||., \dots, .||),$$

(ii) Let $1 \le p_k \le \sup p_k < \infty$. Then

$$\Gamma_F(\Delta^m_s,u,q,||.,\cdots,.||) \subset \Gamma_F(\Delta^m_s,u,p,q,||.,\cdots,.||).$$

Proof. (i) Let $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Since
$$0 < \inf p_k \le p_k \le 1$$
, $\frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]$

$$\le \frac{1}{n} \sum_{k=1}^n \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k}$$

$$\to 0 \text{ as } n \to \infty.$$

Thus, it follows that, $x=(x_k)\in\Gamma_F(\Delta^m_s,u,q,||.,\cdots,.||)$. Thus $\Gamma_F(\Delta^m_s,u,p,q,||.,\cdots,.||)\subset\Gamma_F(\Delta^m_s,u,q,||.,\cdots,.||)$. (ii) Let $p_k\geq 1$ for each k and $\sup p_k<\infty$ and let

$$x=(x_k)\in\Gamma_F(\Delta_s^m,u,q,||.,\cdots,.||)$$
. Then

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right] \to 0 \text{ as } n \to \infty$$

Since $1 \le p_k \le \sup p_k < \infty$, we have

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{\left(u_k \Delta_s^m x_k \right)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{\left(u_k \Delta_s^m x_k \right)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right].$$
Hence

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{\left(u_k \Delta_s^m x_k \right)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

This implies that $x=(x_k)\in \Gamma_F(\Delta^m_s,u,p,q,||.,\cdots,.||)$. Therefore $\Gamma_F(\Delta^m_s,u,q,||.,\cdots,.||)\subset \Gamma_F(\Delta^m_s,u,p,q,||.,\cdots,.||)$.

Theorem 3.7 Suppose

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(|| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \dots, z_{n-1} || \right) \right) \right]^{p_k} \le |x_k|^{1/k},$$

then
$$\Gamma \subset \Gamma_F(\Delta_s^m, u, p, q, ||., \cdots, .||)$$
.

Proof. Let $x = (x_k) \in \Gamma$. Then we have,

$$|x_k|^{1/k} \to 0 \text{ as } k \to \infty.$$

But
$$\frac{1}{n}\sum_{k=1}^n \left[f_k\left(q\left(||\frac{(u_k\Delta_s^mx_k)^{\frac{1}{k}}}{\rho},z_1,\cdots,z_{n-1}||\right)\right)\right]^{p_k} \leq |x_k|^{1/k}$$
, by our assumption, implies that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty \text{ by}(10)$$

Then
$$x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$$
 and
$$\Gamma \subset \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||).$$

Theorem 3.8 $\Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$ is solid.

Proof. Let $|x_k| \leq |y_k|$ and let $y = (y_k) \in \Gamma_F(\Delta_s^m, u, p, q, ||., \dots, .||)$, because $F = (f_k)$ is non-decreasing, so that

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \\
\leq \frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \frac{(u_k \Delta_s^m y_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right) \right) \right]^{p_k} \\
\text{Since } y \in \Gamma_F(\Delta_s^m, u, p, q, \left| \left| \dots, \dots, \dots \right| \right|). \text{ Therefore,} \\
1 \sum_{k=1}^{n} \left[f_k \left(\left| \frac{(u_k \Delta_s^m y_k)^{\frac{1}{k}}}{\rho}, z_1, \dots, z_{n-1} \right| \right) \right) \right]^{p_k}$$

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{\left(u_k \Delta_s^m y_k \right)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty$$

and

$$\frac{1}{n} \sum_{k=1}^{n} \left[f_k \left(q \left(\left| \left| \frac{(u_k \Delta_s^m x_k)^{\frac{1}{k}}}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} \to 0 \text{ as } n \to \infty.$$

Therefore $x = (x_k) \in \Gamma_F(\Delta_s^m, u, p, q)$.

Theorem 3.9 $\Gamma_F(\Delta_s^m, u, p, q, ||., \cdots, ||)$ is monotone.

Proof. It is trivial so we omit it.

Acknowledgement

The authors thank the referee for his valuable suggestions that improved the presentation of the paper.

References

- [1] H. Altinok, M. Et, Y. Altin, The Sequence Space $Bv_{\sigma}(M, P, Q, S)$ On Seminormed Spaces, Indian Journal of Pure and Applied Mathematics, **39** (1), pp. 49-58, (2008).
- [2] H. Altinok, Y. Altin and M. Isik, Strongly almost summable difference sequences, Vietnam J. Math., **34** (3), pp. 331-339, (2006).
- [3] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed., 29(2), pp. 427-434, (2009).
- [4] Y. Altin, H. Altinok, R. Çolak, On some seminormed sequence spaces defined by a modulus function, Kragujevac J. Math., 29, pp. 121-132, (2006).
- [5] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math. **21**(4), pp. 377-386, (1995).
- [6] S. Gähler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), pp. 1-43.
- [7] H. Gunawan, On n-Inner Product, n-Norms, and the Cauchy-Schwartz Inequality, Scientiae Math. Japn., 5, pp. 47-54, (2001).
- [8] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., **64**, pp. 137-147, (2001).
- [9] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27, pp. 631-639, (2001).
- [10] P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, 65 Marcel Dekker, Inc., New York, (1981).
- [11] H. Kizmaz, On certain sequences spaces, Canad. Math. Bull., 24 (2), pp. 169-176, (1981).
- [12] I. J. Maddox, *Elements of functional Analysis*, Cambridge Univ. Press, (1970).

- [13] E. Malkowsky and E. Savas, Some λ -sequence spaces defined by a modulus, Archivum Mathematicum, **36**, pp. 219-228, (2000).
- [14] A. Misiak, n-inner product spaces, Math. Nachr., 140, pp. 299-319, (1989).
- [15] K. Raj, S. K. Sharma and A. K. Sharma, Some difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian J. Math., 3, pp. 127-141, (2010).
- [16] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions, Acta Univ. Sapientiae Math. 3, pp. 97-109, (2011).
- [17] K. Raj and S. K. Sharma, Difference sequence spaces defined by sequence of modulus function, Proyecciones J. Math., Vol.30, pp. 189-199, (2011).
- [18] K. Raj and S. K. Sharma, Some difference sequence spaces defined by sequence of modulus function, Int. Journal Math. Archive, Vol.2, pp. 236-240, (2011).
- [19] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. (1984).

Kuldip Raj School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J & K, India e-mail: kuldipraj68@gmail.com

Sunil K. Sharma
School of Mathematics
Shri Mata Vaishno Devi University,
Katra-182320,
J & K, India
e-mail: sunilksharma42@yahoo.co.in

and

Amit Gupta School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J & K, India e-mail: