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Abstract

In this paper we introduce difference entire sequence spaces and
difference analytic sequence spaces defined by a sequence of modulus
function F = (fi) and study some topological properties and some
inclusion relations between these spaces. We also make an effort
to study some properties and inclusion relation between the spaces
FF(ATvu’p7qv ||7 T H) and AF(AT’u’p)CL H’ T ||)
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1. Introduction and Preliminaries

The notion of difference sequence spaces was introduced by Kizmaz [11],
who studied the difference sequence spaces lo(A), ¢(A) and ¢,(A). The
notion was further generalized by Et and Colak [5] by introducing the
spaces loo(A™), c(A™) and ¢,(A™). Let w be the space of all complex or
real sequences x = (x) and let m, s be non-negative integers, then for
Z =l«, ¢, cg we have sequence spaces

Z(AT) ={z = (zx) e w: (Al'zy) € Z},

where ATx = (ATz) = (AT Ly, — AT 1pp ) and Az = xp for all
k € N, which is equivalent to the following binomial representation

Alw =Y (-1)" ( T: ) Thtsv-

Taking s = 1, we get the spaces which were studied by Et and Colak [5].
Taking m = s = 1, we get the spaces which were introduced and studied
by Kizmaz [11].

A complex sequence, whose k' term is x, is denoted by (x). Let ¢ be
the set of all finite sequences. A sequence x = (zy) is said to be analytic if
1
sup |zg|* < oo. The vector space of all analytic sequences will be denoted
k

by A. A sequence x = (z},) is called entire sequence if klim \xk\% = 0. The
— 00
vector space of all entire sequences will be denoted by T'.
A modulus function is a function f : [0,00) — [0, 00) such that
1. f(x) =0 if and only if x = 0,
2. fle+y) < flx)+ f(y) forallz >0,y >0,
3. f is increasing
4. f is continuous from right at 0.
It follows that f must be continuous everywhere on [0, c0). The modulus

function may be bounded or unbounded. For example, if we take f(x) =

1, then f(z) is bounded. If f(z) = 2P, 0 < p < 1, then the modulus

f(z) is unbounded. Subsequentially, modulus function has been discussed
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in ([1], [2], [3], [4], [12], [13], [17], [18]) and references therein. Let F' = (fx)
be a sequence of modulus function.

The space consisting of all those sequences x in w such that
1/k . .
fr (% — 0 as k — oo for some arbitrary fixed p > 0 is de-

noted by I'r and is known as a space of entire sequences defined by a
sequence of modulus function. The space I'r is a metric space with the

Y
metric d(z,y) = supfk<M> for all z = (xx) and y = (yx)
k p
in I'p. The space consisting of all those sequences x in w such that
1/k
(sup ( fk<|xk[|) ))) < oo for some arbitrarily fixed p > 0 is denoted
k

by Ar and is known as a space of analytic sequences defined by a sequence
of modulus function.

A sequence space E is said to be solid or normal if (axx) € F whenever
() € E and for all sequences of scalars (ay) with |ag| <1 (see [10]).

Let X be a linear metric space. A function p : X — R is called
paranorm, if

1. p(z) >0, for all x € X,
2. p(—z) =p(z), for all x € X,
3. p(z +y) <p(x) +p(y), for all z,y € X,

4. if (A\,) is a sequence of scalars with A, — X as n — oo and (z,,) is a
sequence of vectors with p(z, — x) — 0 as n — oo, then
p(Anzn — Az) — 0 as n — oo.

A paranorm p for which p(z) = 0 implies = 0 is called total paranorm
and the pair (X,p) is called a total paranormed space. It is well known
that the metric of any linear metric space is given by some total paranorm
(see [19], Theorem 10.4.2, P-183).

The following inequality will be used throughout the paper. Let p = (px)
be a sequence of positive real numbers with 0 < pp < suppr = G, K =
max(1,2¢~1) then

|ak + bi|P* < K{|ag["* + [be[P*}
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for all k and ag, by € C. Also |a|P* < max(1,]a|®) for all a € C.

Let F = (fr) be a sequence of modulus functions and X be locally
convex Hausdorff topological linear space whose topology is determined by
a set of continuous seminorms g. The symbol A(X) and T'(X) denotes
the space of all analytic and entire sequences respectively defined over X.
If p = (pr) be bounded sequences of strictly positive real numbers and
u = (ug) be sequences of positive real numbers, then we define the follow-
ing sequence spaces:

Ap(AS u,p,q) = {m €A(X): S%p% Zn: {ﬁ((‘(w“A?—W))rk < 00,

for some p > O}

and

S [a(o(EEE)) o

p

S|

Tp(AT, u,p,q) = {:r e T(X):

n — oo, for some p > O}.

If we take If we take p = (px) = 1, we get

) - o 0 e 5 [ (182221

n nk:l

for some p >0

—

and

(AT ug) = fo e T(0): %kg (o LAY g

n — oo, for some p > O}.
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The purpose of this paper is to introduce and study a concept of differ-
ence entire sequence spaces and difference analytic sequence spaces using se-
quence of modulus functions. We examine some topological properties and
inclusion relation between the spaces Ap(AT, u,p,q) and T'p(AT, u,p,q)
in the second section and third section devoted to the study of some prop-
erties of n-normed spaces Ap (AT u,p,q,||.,--,.||) and

FF(A;n>u7p7q7 H7 7H)

2. Some Topological properties of the spaces Ar(A”", u,p,q) and
FF(Agnu u,p, q)

In this section of the paper we study very interesting properties like lin-
earity, paranorm and some attractive inclusion relations between the spaces
AF(AT7 u, p, q) and FF(AT7 u, p, q)

Theorem 2.1 Let F' = (fi) be a sequence of modulus functions and
p = (pr) be bounded sequence of strictly positive real numbers, then
Lp(AT, u,p,q) and Ap(AT, u,p,q) are linear spaces over the set of com-
plex numbers C.

Proof. Let z = (a4),y = (i) € Tr(AT,u,p,q) and a, 8 € C. In order
to prove the result, we need to find some p3 > 0 such that

L3 [ (o Lot O

P3

Since x = (zx),y = (yx) € Tr(AT", u,p, q), there exist some positive p;
and ps such that

LS~ [ (o LbfmbTY g o

=1 P1

LS~ [ (o L2 g e .

=1 P2

and
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Since F' = (f) is a non-decreasing function, ¢ is a seminorm and Al
is linear, then

p3 p3

Zn: [fk (q (lur AT (o, +5yk)|)%)>rk

< %i {fk <q<a(u:22”$k)% Iﬁl(lukAmykD%)ﬂ 3

P3 P3

1 1
laf p1 18] p2

(1=t

=

Take ps > 0 such that p—13 = mi

=

k_; ikznzl {fk( ((ukAZ:Bkl)llc N (]ukA;yk’)%)ﬂpk |
2 [l ()
< K%é {fk(q<(|ukﬁplxk\)lz>)]p
3 up Al yg|)*® Pk
e
Hence
;;‘1 {fk(q<(’04u1gA;nfL'k: —;fukAgnykD%>>rk e

This proves that I'p(A7", u,p,q) is a linear space. Similarly, we can
prove that Ap(A”, u,p,q) is a linear space
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Theorem 2.2 Let F' = (f;) be a sequence of modulus functions and
p = (pr) be bounded sequence of strictly positive real numbers. Then
I'r(AT, u,p,q) is a paranormed space with paranorm defined by

g(:n):inf{pme:sup [fk<q(w)>rk§1, p >0, mGN},

k>1 p

where H = max(1,sup pg).
k
Proof. Clearly g(z) > 0, g(z) = g(—x) and ¢(#) = 0, where 6 is the zero

sequence of X.
Let (x1), (yx) € Tr(AT", u,p,q). Let p1, p2 > 0 be such that

s (o552 1

cup 1 <q<<rum;”yk\>%)>rk <1

k>1 P2

and

Let p = p1 + p2.
Then by using Minkowski’s inequality, we have

sup {fk (Q((mkA;n(xk + yk)|)% ))]pk

k>1 P

< () s o 520) )

(e [ o (55) )

i ATz )E\ P
ginf{(pl—kpz)pT : sup {fk(q<w>)] <1,p1, p2 >0, mGN}
k>1 p1 + p2
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1
A™ % Pk
<inf{ (p1)# :sup {fk(q<w } <l,p1>0, meN
k>1 f1
1
. A™ % Pk
+ inf{(pg)pT : sup [fk<q<w>)] <1l,p2>0, me N}.
E>1 P2

Thus we have

g(x +y) < g(x)+ g(y). Hence g satisfies the triangle inequality.

it {0 <sup [ (o LBEEBDEN) " <1y e n)

= inf{(r|>\|)p7m : sup {fk(q<(’ukAs—W>)]pk <lLr>0, me N},

k>1 r
where r = ‘—f\—|

Hence I'p (A", u, p, q) is a paranormed space.

Theorem 2.3 Let F' = (f};,) and F” = (f}/) be two sequences of modulus
functions. Then

FF’(A;nauapa q) ﬂFF”(A;nvu7p7Q) g FF’+F”(AZL7u7p7 q)

Proof. Let x = (zx) € T (A", u,p,q) NTpn (AT, u,p,q).
Then there exist p; and ps such that

Ly [ (o L2 g

and

LS~ [t (o QBTN ™ g —

=1 P2
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n

. . 1 (11 1
Since p > 0 such that = min (p—l, E)' Then we have Z [(f,’C +

k=1
(et

L (st
+K [% Zn: {fﬂ (q<(|ukA§;$kDE >)rk]

% zn: {(f/i; + fr) <Q(—(|ukAgn$kD%))rk — 0 asn — oo.

k=1 p

Therefore © = (xy) € T pryprr (AT u, p, q).

Theorem 2.4 Let m > 1. Then we have the following inclusions:
() (AT u,p,q) C Tr(AT, u,p, q),
(il) Ar(AT ™ u,p,q) € Ap(AT, u,p,q).

Proof. Let x = (z) € Tp(A” 1 u,p, q). Then we have

1
(Jup Ay |) %

n Pk
%Z[fk(CJ( p ))} — 0 as n — oo, for some p > 0.
k=1

Since F' = (fi) is non-decreasing and ¢ is a seminorm, we have

%i {fk<Q<M)>}pk
<3 i {fk <q<(|UkA;n_1$k — up AT g ))]pk

p

< K{% i {fk <q<(’UkAT1xk])%)>rk

p
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ool

P

— 0 as n — oo.

n m + Pk
Therefore % Z {fk (q <M)>} — 0 as n — oo.
k=1

Hence z € T'p(AT, u,p,q). This completes the proof of (i). Similarly,
we can prove (ii).

Theorem 2.5 Let 0 < p <7 and let {Z£} be bounded. Then
Pk
FF(A;n> u, T, q) C FF(AZ‘”v u, p, Q)

Proof. Let z = (z1) € T'rp(AY, u,r,q). Then

GG}

— p
n AMg, VE ak
ot = 13 [ (2220 )
k=1 P
and \, = %
Since pg < r, we have 0 < A\, < 1. Take 0 < A < Ag. Define
tr ifty > 1
Uy =
0 iftp <1
and
0 ifty, >1
v =
tr iftp, <1
tr = up + Uk, tz’“ = u?’“ + vg‘k. It follows that uz’“ < u < tg, U]i\k < U]i\.

Since t?k = uzk + v,;\k, then t;’“ <t + v,?. Thus

'y {fk <q<w)>rkrk

P

<13 o Lzt )y

k=1 p
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n (Jup AT % Tk Pk/TE
=i [ (o(EE)) ]

f ~)
(q( |UkAmek| E))}
- (e
(

1§ ozt

P

%Zn: {fk(9<—(’ukA;nka%>)]m — 0 as n — oo.

p

Therefore

g;p&4@é@w3ﬂ”ao%n%m

p

Hence x = (x) € T'p(AT, u,p,q). Thus, we have

Cr(AT u,r,q) C Tr(AT? u,p,q).

Theorem 2.6

(i) Let 0 < infpr, < pp < 1. Then
Lr(AT,u,p,q) C Tr(AY,u,q),

(ii) Let 1 < pp < suppg < co. Then I'p(AT u,q) C Tr(AT" u,p,q).

Proof. (i) Let v = (x) € I'r(A7",u,p,q). Then

! z PACCES i) | (R

Since 0 < inf pp, < pi < 1,

L ()] ()

==
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as n — oo.
Thus, it follows that, z = (zx) € Tr(AT, u,q). Thus T'p(A, u,p,q) C
FF(AT7 U, q)
(73) Let pr > 1 for each k and suppy, < oo and let © = (z1) € I'rp(AY, u, q).

Then . )
LE ()] o

3 (o520

Since 1 < pi < suppr < 00, we have
(o %>)]
—Z — 0 as n — 0.
m
S

3|>—‘

L5 (L2t
p,q). Therefore

This 1mphes that z = (z1) € Trp(A

Tr(A™,u,q) C Tr(AT, u,p, q).

n A™ 1 Pk
Theorem 2.7 Suppose %Z {fk (q(w)ﬂ < |@g|'*, then
k=1
I'c FF(AZL>uap7 Q)'

Proof. Let z = (x) € I'. Then we have,
zp|F — 0 as k — oo.

n A % Pk
ut % Z {fk (‘4@))] < \wkll/k, by our assumption, im-
k=1

plies that

LB

=1 p
Then = = (zx) € T'r(AT u,p,q) and I' C T'p(A", u,p, q).

Theorem 2.8 T'r(A”, u,p,q) is solid.
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Proof. Let |zg| < |yx| and let y = (yx) € Tr(AT, u, p, q), because F' = (fi)
is non-decreasing

L oLl <L Lamdly

Since y = (yr) € Tr(AT*, u,p, q). Therefore,

L (o

and so that

% Z {fk (Q<—(’ukA;nka% >)]pk — 0 as n — oo.

p

=
—_

Therefore © = (zy) € (AT, u,p, q).

Theorem 2.9 T'p(A” u,p,q) is monotone.

Proof. It is trivial so we omit it.

3. Difference Entire sequence spaces over n- normed spaces

The concept of 2-normed spaces was initially developed by Géahler[6] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak[14].
Since then, many others have studied this concept and obtained various
results, see Gunawan ([7],[8]) and Gunawan and Mashadi [9]. For more
details about the sequence spaces over n-normed spaces see ([15],[16]).

Let n € N and X be a linear space over the field K, where K is field of
real or complex numbers of dimension d, where d > n > 2. A real valued

function |[|-,- -+, || on X™ satisfying the following four conditions:
1. ||x1, 29, -+, zp|| = 0 if and only if x1,x9, -, z, are linearly depen-
dent in X;

2. ||x1, e, -+, zy]| is invariant under permutation;
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3. |laxy, e, -+ xp|| = |a] |1, 22, -, zp]| for any « € K, and
4. |’$+x/,$2,“',$n” S Hx7$27"'7xn” + |’$/,$2,"',$n”

is called an n-norm on X, and the pair (X, ||-,---,||) is called a n-normed
space over the field K. For example, we may take X = R"™ being equipped
with the n-norm ||z, z2, -+, z,||g = the volume of the n-dimensional par-
allelopiped spanned by the vectors z1,xs,- -, z, which may be given ex-
plicitly by the formula

|1, xg, -+ wnll2 = [ det(zij)],
where x; = (z;1, T2, -+, Tin) € R™ for each i = 1,2, n.

Let (X,]],---,||) be an n-normed space of dimension d > n > 2 and
{a1,aa,---,a,} be linearly independent set in X. Then the following func-
tion ||+, -+, +||co on X"~ ! defined by

beg"?? e 7xn—1”oo - maX{HthQa e 7xn—17ai‘| D= 1727 e 7n}
defines an (n — 1)-norm on X with respect to {a1, a9, -, an}.

A sequence (zy) in a n-normed space (X, ||-,---,-||) is said to converge
to some L € X if

klim ||z — Ly 21, , zn—1|| = 0 for every z1,--+, 2,1 € X.
— 0

A sequence (xf) in a n-normed space (X, ||, -, ||) is said to be Cauchy

if
lim ||zg —2p, 21, -+, 2n—1]| =0 for every zi,---, 2,1 € X.

k,p—o0

If every cauchy sequence in X converges to some L € X, then X is said to
be complete with respect to the n-norm. Any complete n-normed space is
said to be n-Banach space.

Let F' = (fx) be a sequence of modulus functions and let X be locally
convex Hausdorff topological linear space whose topology is determined by
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a set of continuous seminorms g. The symbol A(X), T'(X) denotes the
space of all analytic and entire sequences respectively defined over X. In
this section we define the following sequences spaces:

AF(AT,u,p,q,H.,---,.H):
1 & up AM )1k Pk
{:UGA(X):sup—Z[fk<q<||M,zl,~-,zn1||)>}
n Mo p
< oo, for some p>0},
FF(AZL,U,]),(],H.,"',.H):
n up AM )1k Pk
{xep(x);%z[fk<q<||u,zh...,zn1||)>}
k=1 P
— 0 as n — oo, for some p>0}.
If we take p = (pr) = 1, we get
AF(AT,U,(],H-,"',-H): \k
1 & up AT
{J:EA(X):sup—Z {fk<q<||M,z1,-~,zn1||>)]
n nkzl 1%

< oo, for some p > O},

FF(AZLaua%H""'?'H) =

{oereo: %ké (a0 BEE )]

— 0 as n — oo, for some p>0}.

In this section of the paper we study some topological properties of the
spaces Ap(AT, u,p,q,||., -, .||) and Tp(A” u,p, q,||., -, .||). We also ex-
amine some inclusion relation between these spaces.

Theorem 3.1 Let F' = (f;) be a sequence of modulus functions and
p = (pr) be bounded sequence of strictly positive real numbers, then
Cr(A” u,p,q, |-+ -,.]|) and Ap(AT, u,p,q,]||.,---,.||) are linear spaces
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over the set of complex numbers C.

Proof. z = (z1), y = (yx) € Tr(AT, u,p,q,]|.,---,.]|) and o, 5 € C. In
order to prove the result, we need to find some p3 > 0 such that

1 <& up A" (o, + % Pk
—Z[fk<Q(H( k s( k Byk‘)) 7217...72n_1|‘>):| — (0 as n — 0.
nk‘:l P3

Since = = (z1),y = (yx) € I'r(AT,u,p,q,||.,--,.||), there exist some
positive p; and pg such that

- A™ % Dk
%Z [fIC(q(HMyzh'"7Zn—1’|)>:| —0 as n— o

k=1 P1
and
1<& (ukAmyk)% Dk
_Z [fk<Q<H+,Zl,”',Zn_1|’>)] — 0 as n — oo.
nk:l P2

Since F' = (fx) is a non-decreasing function, ¢ is a seminorm and A7’

is linear, then

0 é {fk (q(H (uigAZ”(ai;; + Byr)) e ’anH>)rk

=

k=1
= a%(ukAmxk)%
< %Z |:fk<q<||—s,21,"',zn_1||+
k=1 P3
1 1 Dk
BF (ug AT Yk) *
Hﬁk ukpg Yk ’“7217...72/71_1“))}
so that

=

% i |:fk(q<|’(ukAgl(ai];+ﬁyk)) . '7zn_1||>)]pk

k=1
3 a(ur ATy, %
A C(CL -
k=1 P3

m, % Pk
+||w7217,,,72n_1|’)>:| .
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Since p3 > 0 such that p—13 =

kgl (a(l

(up A (awg + Byk))

185

. ""Z“"))rk

)|

P3
= %;[m(cz(II((u’“Agf%)% +(‘UkA§;yk’)%
- %;Hﬁ“(qo'%lnl))]
+[fk<q< Mfwyﬂ 21, an”))]pk}
%,i{ ! )

— 0 as n — oo.

Hence

el

(up ATz, + Pur AT yr)

kil a(a()

P3

This proves that T'p(AT, u,p,q,|., -,
we can prove that Ap(AT u,p,q,|l.,- -,

Theorem 3.2 Let F' = (fi) be a

i)

21,

Pk
,zn_1H>)] — 0 as n — oo.

|) is a linear space. Similarly,
.||) is a linear space.

sequence of modulus functions and

p = (pr) be bounded sequence of strictly positive real numbers,

I“F(Agl7u7p7q7 H7 T

.||) is paranormed space with paranorm defined by

g(z) = inf{p% Fsup [fk( (!!M,zl,---,znl\!»rk <1,

p>0,m6N},

where H = max(1, suppg).
k
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Proof. Clearly g(z) > 0, g(x) = g(—x) and g(f) = 0, where 0 is the zero

sequence of X.

Let (zx), (yx) € Tr(AT u,p,q,||-,---,-||). Let p1, p2 > 0 be such that

Bl

up AMx Pk
sup [fk;(q(HM,Zh“wzn1\!))] <1
k>1 1

WA Pk
sup |:fk<q<”M,Zl,,anH>):| Sl
k>1 P2

Let p = p1 + p2. Then by using Minkowski’s inequality, we have

zg[ﬁ(q(H@%A?tﬁ-%m»ﬁ7zh”.ﬁm_ﬂo>}”

Am Pk
( pP1 )Sup [fk(q<||u,zh...7Zn_1‘|)>]
p1+p2/ k>1 P1

n ( p2 >sup{fk(q<llw,zlwwzn1||)>rk
<

and

=

Bl

Il

P2

Hence

g(x +y)

) m up AT Pk
< 1nf{(p1+pz)%: sup {fk(CI(HM>Zl>"'>Zn1”))}
k>1 P1 + P2

==

P1, P2>07 meN}

. m up Al Pk
<inf {0 s sup [ (12222 L) )] <1
k>1 P1

Nl

p1 >0, mGN}

Il

. Pm u A;n Pk
+m%wﬂwwh@@ﬁ—ﬂ%%m%nw]SL
k>1 P2

p2 >0, mEN}.
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Thus we have g(z + y) < g(x) + ¢g(y). Hence ¢ satisfies the triangle
inequality.

ga) = int {(p)# s sup [fk(q(r|w,a,~-,zn_1||))]pk <1,

k>1 p
p>0, me N}
1
. pm up A )® Pk
= 1nf{(r|)\|)pH : sup |:fk(Q<||M7zlf ) "Zn—1||>):| <1,
k>1 r

r>0 me N},

L
where r = N
Hence I'rp(A™, u,p,q,||.,--+,.]|) is a paranormed space.

Theorem 3.3 Let F' = (f}) and F” = (f}!) be two sequences of modulus
functions.

Then FF’<Agn7u7p7 q, H7 t 7”) mI‘F,,(A?l7u7p7 q, H7 Ty H)
g I‘F’+F”(A§n7u7p7Q7 H7 Ty H)
Proof. Let x = (zx) € T (A, u,p, ¢, ||+, | )NLpr (AT uy p,y g, ||, - -+, -|])-

Then there exist p; and po such that

1<& AT l Dk
_Z{f{g(Q(Hw,zh...7Zn_1”)>} 0887 — oo
=

P1
and
1 & A™ l Dk
- Z [fé’(fJ(Hw,zl,“',Zn1!!))] — 0asn — oo.
"= P2

p1’ p2

S ("))

Let l = min ( 1 ) Then we have
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IA
S|
bl
NgE
I
| —|
-y
VRS
Q9
N
T~
S
&
2 |- 3
8
T
=
N
RS
N
3
=
~___
N———
—
i
&=
| E— |

Then
1
up AT ) * Pk
_Z[ k+f <<H(k k) ,Zl,"';zan>)] —~0asn — oo.
Therefore z = (zg) € T prypr (A u,p, g, ||, -+ 5 1]])-
Theorem 3.4 Let m > 1. Then we have the following inclusions:
(Z.) FF(A;n_lauap’% H)?H) C FF(A?,u,p,q, ||77||)’
(7’7') AF(A?_lauap7Q7 ||’>||) - AF(AZL>uap7Q7 ||77||)
Proof. Let x = (z) € Tp(A” Y u,p,q, |-, -, .]|). Then we have

eI

n Am—l Dk
lz frla HM,ZL‘“,%_M — 0 as n — oo, for some
" P

Since F' = (fy) is non-decreasing and ¢ is a seminorm, we have

1
n up Az ® Pk
% [fk@(HM,th,Zn—1|!>)]
k=1 p

=53 {fk<q<||(ukAm e A ) azl,'-',zn1||>)]pk

Bl

p

as n — OoQ.
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Hence © = (z) € Tp(AT, u,p,q,||.,--+,.]|)- This completes the proof
of (i). Similarly, we can prove (ii).

Theorem 3.5 Let 0 < py <7y and let {75} be bounded. Then

FF<Agn7u7T7q7 Haa”) C FF(ATauvpvqu H? : 7||)

Proof. Let x € I'p(A",u,r,q,||.,---,.||). Then

1 & up Az, ) Tk
_Z {fk<q<”M,zh...,Zn_lu)ﬂ .0 asn — co.
gy p

1
n A™ — qk
Let tk—%2|: ( < Mvzlv'“vznl">)] and )\k:%

k=1
Since pr < 1, we have 0 < A\ < 1. Take 0 < A < Ag. Define

tr ifty > 1
U =
0 iftp <1
and
0 iftp > 1
Vi —
tr ift, <1

tr = uk + vk, tg’“ = ugk + vg"“. It follows that uz’“ <u <ty , v,i"“ < v,ﬁ‘.
Since tk = uk + Uk , then tzk <tp+ U]i\. So that

%i[ (( ukA (upAmy) ,Zl,...,zn_lu))”rk

k=1

n L Tk
S%Z[ ( ( M,zh‘-',zn_m))} -
*1

This implies that

'y {h(q(\lw,zh...,zn1;\))”}””’“
<EY {fk<q<u<l”fL;W,zb...7znIHM”

el
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%i {fk(q@M,Zh...’Zn1H>)rk

=

—
k=1 p
n 1
ur Al xg )% Tk
2§ (et L )]
k=1 p
But
1 & AMg, V% Tk
= [fk<q(y|wyzh...7%_1”)” 0 as 1 — oo.
gt p
Therefore
1 n AT 1 Pk
=Y [fk<q(||w’z1’...,zn1||)>} 50 as 1 — oo
gt p
Hence x = (z) € Tp(AT, u,p,q,||.,- -, .]|). Thus, we get
FF(A?,U,T,Q,H.,"',.H) CFF(AZZ7U7P7QaH7a||)

Theorem 3.6 (i) Let 0 < infpy < pp < 1. Then

FF(AZL,u,p,q, ||7 7||) C FF(A?7U7% ||7 'a'||);
(ii) Let 1 < pp, < suppg < co. Then

FF(A;’Zauaqv H)?H) C FF(A?,u,p,q, ||77||)

Proof. (i) Let z = (x) € T'p(A",u,p,q,]|.,---,.]|). Then

L e

P

=

Pk
7217"'7zn—1|’)>:| — 0 as n — oo.

; (ur A7) ¥
Since 0 < inf pp < pg < 1, %Z {fk(q<||%,zl,~-,zn1||>>}
k=1

< %é {fk(g(HM,Zh...,zn_lH))rk

p

— 0 as n — oo.
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Thus, it follows that, z = (x) € Tr(A", u, q, ||, -+, .||)-
Thus FF(A;nauapa q, ||7 T ||) C FF(AT',U, q, ||7 ) 7||)
(7i) Let pr > 1 for each k and sup py, < oo and let

T = (.’L’k) € FF(AZL,U,Q, H7>H) Then

Sl

83 [ (o ) )] <0 o

Since 1 < pr, < suppr < 00, we have

k=1 P )
- up ATz *®
<33 [a(a(HEREE L))
k=1 P
Hence
1
n A™ T Pk
%Z |:fk<q<H<Uk > xk)k>zl>"'7zn1">>:| — 0 as n — oo.
k=1 P
This imphes that z = (xk) € FF(A?snauapa%||""'7'||)' Therefore
I“F(A?l7u7q7‘|77|’) CFF(ATauvpvqquaH)

Theorem 3.7 Suppose

1
- up ATz ® Pk
5 [ (a(1 22 )] <

k=1
then I' C FF(A;n>u7p7 q, H7 ) H)

Proof. Let z = (x) € I'. Then we have,

1/k

|zg| /" — 0 as k — oo.

But 1 kil {fk (q(\li(umgxk)

assumption,_implies that

n m 1 Pr
lz [fk(CI(Hwazla"'>zn1”))} 0 as n— oo by(10)
"= P

=

Pk
7217"‘7zn—1")>:| S ‘ka‘l/k, by our
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Then = = (23) € T'r(AY, u,p,q,||.,---,.||) and
I'c I“F(Agl7u7p7q7 H7 ) H)
Theorem 3.8 T'p(A” u,p,q,]|.,---,.||) is solid.
Proof. Let ‘l’k‘ < ’yk| and let Yy = (yk) € FF(ATauvpv q, H? '7‘||)7 be-

cause F' = (fi) is non-decreasing, so that

%z": {fk<Q<||Mazl’”',zn1”))}”

Sl

k=1
1
= U ATy ) ® Pk
S %Z |:fk<q<||M,Zl,"',Zn_1||)>:|
k=1 p
Since y € I'r(AT, u,p, ¢, ||, - -,.||). Therefore,
1 & up A" ¥ Pk
= [fk(q<|\M,Zl,---,Zn—ﬂl))] 0 as 1 — o0
" =1 P
and

1 n AT 1 Pk
=Y [fk<q(||w’z1’...,zn1||)>} 50 as 1 — oo
gt p

Therefore x = (zx) € Tr(AT, u, p, q).
Theorem 3.9 T'r(A”,u,p,q,||.,---,.||) is monotone.

Proof. It is trivial so we omit it.
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