Proyecciones Journal of Mathematics Vol. 31, N o 2, pp. 165-168, June 2012. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172012000200005

Hochschild-Serre Statement for the total cohomology

FRANÇOIS LESCURE UNIVERSITÉ DE LILLE 1, FRANCE Received : February 2012. Accepted : March 2012

Abstract

Let M be a complex manifold and \mathcal{F} a O_M -module with a **g**holomorphic action where **g** is a complex Lie algebra (cf. [3]). We denote by $\mathbf{H}(\mathbf{g}, \mathcal{F})$ the "total cohomology" as defined in [1] [2]. Then we prove that, for any ideal $\mathbf{a} \subset \mathbf{g}$, the module $\mathbf{H}^{\bullet}(\mathbf{a}, \mathcal{F})$ viewed as a \mathbf{g}/\mathbf{a} -module, we have a spectral sequence which converges to $\mathbf{H}(\mathbf{g}, \mathcal{F})$ and whose E_2 -term is $E_2^{p,q} = H^p(\mathbf{g}/\mathbf{a}; \mathbf{H}^{\mathbf{q}}(\mathbf{a}, \mathcal{F}))$. Let \mathbf{g} be a finite dimensional complex Lie algebra and M a complex analytic manifold of finite dimension. Suppose that a holomorphic field $\mathbf{u}_{\mathbf{M}}$ of tangents (1,0)-vectors on M is associated to each $\mathbf{u} \in \mathbf{g}$. If this transformation satisfies the condition $[\mathbf{u}_{\mathbf{M}}, \mathbf{v}_{\mathbf{M}}] = [\mathbf{u}, \mathbf{v}]_{\mathbf{M}}$, we shall say that it defines a holomorphic \mathbf{g} -action on M. To be more precise, the real parts of these fields $\mathbf{u}_{\mathbf{M}}$ are the opposite of the Killing fields of a local holomorphic action of some complex Lie group. Let \mathcal{F} be an O_M -module and, for all $\mathbf{u} \in \mathbf{g}$, let $\gamma_*(\mathbf{u}) : \mathcal{F} \to \mathcal{F}$ be a morphism of C-sheaf.

Definition 0.1. If, for any local section σ of \mathcal{F} and any local holomorphic function f on M, we have:

(i) $\gamma_*([\mathbf{u},\mathbf{v}]) = [\gamma_*(\mathbf{u}),\gamma_*(\mathbf{v})]$

(*ii*) $\gamma_*(\mathbf{u})(\mathbf{f}\sigma) = \mathbf{L}_{\mathbf{u}_{\mathbf{M}}}\mathbf{f}\sigma + \mathbf{f}\gamma_*(\mathbf{u})\sigma$,

we say that \mathcal{F} is an O_M -module with a holomorphic **g**-action.

Now, denote by $U(\mathbf{g}, \mathbf{C})$ be the envelopping algebra of the complex Lie algebra \mathbf{g} .

In [3], we have introduced the sheaf of crossed algebras $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}}) \stackrel{\text{def}}{=} \mathbf{O}_{\mathbf{M}} \otimes_{\mathbf{C}} \mathbf{U}(\mathbf{g}, \mathbf{C})$ with the use of the commutation formula: $(1 \otimes \mathbf{u})(\varphi \otimes \mathbf{1}) \stackrel{\text{def}}{=} \mathbf{L}_{\mathbf{u}_{\mathbf{M}}} \varphi \otimes \mathbf{1} + \varphi \otimes \mathbf{u}$. Then, we see immediately that the O_M -modules with a holomorphic **g**-action, are exactly the $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -modules, objects which make some Abelian category denoted $Mod(U(\mathbf{g}, \mathbf{O}_{\mathbf{M}}))$. On the other hand, in [1] and [2], we have defined, for any holomorphically *G*-equivariant vector bundle $E \to M$ (*G* is a complex Lie group with Lie algebra **g**), the total cohomology denoted $\mathbf{H}^*(\mathbf{g}, \mathbf{E})$. In [3], we have generalized this total cohomology to any $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -module \mathcal{F} and we have showed indeed that the total cohomology is a derived functor; more precisely, we have proved that:

$$\mathbf{H}^{*}(\mathbf{g}, \mathbf{E}) \approx \mathbf{Ext}^{*}_{\mathbf{U}(\mathbf{g}, \mathbf{O}_{\mathbf{M}})}(\mathbf{O}_{\mathbf{M}}, \mathbf{E})$$

Proposition 0.2. Let M, \mathbf{g} , and so on... be like above. Let \mathcal{F} be a left $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -module and \mathbf{a} an ideal of the complex Lie algebra \mathbf{g} . Then:

(i) The total cohomology $\mathbf{H}(\mathbf{a}, \mathcal{F})$ is naturally a left (\mathbf{g}/\mathbf{a}) -module.

(ii) There is a Hochschild-Serre spectral sequence E_r whose E_2 -term is given by $H^p(\mathbf{g}/\mathbf{a}, \mathbf{H}^{\mathbf{q}}(\mathbf{a}, \mathcal{F}))$ and which converges to $\mathbf{H}^{\mathbf{p}+\mathbf{q}}(\mathbf{g}, \mathcal{F})$

Proof. (i) It is well known, by the Poincaré-Birkhoff-Witt formula, that $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ is a free left $U(\mathbf{a}, O_M)$ -module, and then also, by the antiisomorphism T (see [3]), a free right $U(\mathbf{a}, O_M)$ -module. From this we deduce the exactness of the change of rings functor:

$$U(\mathbf{g},\mathbf{O}_{\mathbf{M}})\otimes_{\mathbf{U}(\mathbf{a},\mathbf{O}_{\mathbf{M}})}-:\mathbf{Mod}\Big(\mathbf{U}(\mathbf{a},\mathbf{O}_{\mathbf{M}})\Big)\rightarrow\mathbf{Mod}\Big(\mathbf{U}(\mathbf{g},\mathbf{O}_{\mathbf{M}})\Big)$$

By functor adjunction (see [3]), this exactness allows us to show that the 'forget functor': $Mod(U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})) \to \mathbf{Mod}(\mathbf{U}(\mathbf{a}, \mathbf{O}_{\mathbf{M}}))$ preserves injective objects. Also, taking the cohomology of the complex of global \mathbf{a} - invariant sections of an injective resolution for an $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -module \mathcal{F} , we obtain the total cohomology $\mathbf{H}^{\bullet}(\mathbf{a}, \mathcal{F})$ which is then a (\mathbf{g}/\mathbf{a}) -module and does not depend of the auxiliary choice of the resolution.

(ii) The Grothendieck composition theorem of functors shows that it is sufficient to prove that, if \mathcal{I} is an injective $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -module, then the Chevalley-Eilenberg cohomology $H^p(\mathbf{g}/\mathbf{a}, \mathbf{H}^0(\mathbf{a}, \mathcal{I}))$ of the (\mathbf{g}/\mathbf{a}) -module $\mathbf{H}^0(\mathbf{a}, \mathcal{I})$ is zero for $p \geq 1$. For this, we know that it will be enough - and we shall make it - to show that the $\mathbf{H}^0(\mathbf{a}, \mathcal{I})$ is an injective (\mathbf{g}/\mathbf{a}) -module.

Indeed, let $0 \to \mathbf{M}' \xrightarrow{\mathbf{j}} \mathbf{M}$ be a monomorphism of $U(\mathbf{g}/\mathbf{a}, \mathbf{C})$ -module. We must factorize each (\mathbf{g}/\mathbf{a}) -morphism $\mathbf{M}' \xrightarrow{\mathbf{u}} \mathbf{H}^{\mathbf{0}}(\mathbf{a}, \mathcal{I})$ through the monomorphism \mathbf{j} . Let us consider \mathbf{M}' and \mathbf{M} as \mathbf{g} -modules with an ineffectiveness \mathbf{a} ; we introduce, as in [3], the $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -modules $O_{M} \otimes_{C} \mathbf{M}'$ and $O_{M} \otimes_{C} \mathbf{M}$, defined by the formula:

$$\gamma_*(\mathbf{u})(\mathbf{f}\otimes\mathbf{m}) = \mathbf{L}_{\mathbf{u}_{\mathbf{M}}}\mathbf{f}\otimes\mathbf{m} + \mathbf{f}\otimes\gamma_*(\mathbf{u})\mathbf{m}.$$

But, **j** enlarges it naturally in an arrow of $U(\mathbf{g}, \mathbf{O}_{\mathbf{M}})$ -modules $j : O_M \otimes_C \mathbf{M}' \to \mathbf{O}_{\mathbf{M}} \otimes_{\mathbf{C}} \mathbf{M}$. In more, u allows to define naturally some arrow $O_M \otimes_C \mathbf{M}' \to \mathcal{I}$ which, by the injectivity of \mathcal{I} , factorizes itself by **j** with the use of one arrow: $O_M \otimes_C \mathbf{M} \to \mathcal{I}$.

Last arrow that defines one other: $\mathbf{H}^{0}(\mathbf{a}, \mathbf{O}_{\mathbf{M}} \otimes_{\mathbf{C}} \mathbf{M}) \to \mathbf{H}^{0}(\mathbf{a}, \mathcal{I})$. But, then , by restriction of this last arrow to $\mathbf{M} \subset \mathbf{H}^{0}(\mathbf{a}, \mathbf{O}_{\mathbf{M}} \otimes_{\mathbf{C}} \mathbf{M})$, we see easily that this answers the question.

References

- F. Lescure, Action sur la cohomologie de Dolbeault, C. R. Acad. Sci., 314, pp. 923-926, (1992).
- [2] F. Lescure, Cohomologie totale et courants de Dolbeault invariants, J. reine angew. Math., 475, pp. 103-136, (1996).
- [3] F. Lescure La cohomologie totale est un foncteur dérivé, Homology, Homotopy and Applications, Volume 12, Number 1, pp. 367-400, (2010).

François Lescure U.M.R. CNRS 8524 U.F.R. de Mathématiques Université de Lille 1 59655 Villeneuve d'Ascq Cedex FRANCE

e-mail : francois.lescure@math.univ-lille1.fr