
Uniform Convergence and the Hahn-Schur
Theorem

CHARLES SWARTZ
NEW MEXICO STATE UNIVERSITY, U.S.A.

Received : January 2012. Accepted : February 2012

Proyecciones Journal of Mathematics
Vol. 31, No 2, pp. 149-164, June 2012.
Universidad Católica del Norte
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Abstract

Let E be a vector space, F a set, G be a locally convex space,
b : E × F → G a map such that b(·, y) : E → G is linear for every
y ∈ F ; we write b(x, y) = x · y for brevity. Let λ be a scalar sequence
space and w(E,F ) the weakest topology on E such that the linear
maps b(·, y) : E → G are continuous for all y ∈ F . A series

P
j xj

in X is λ multiplier convergent with respect to w(E,F ) if for each
t = {tj} ∈ λ , the series

P∞
j=1 tjxj is w(E,F ) convergent in E.

For multiplier spaces λ satisfying certain gliding hump properties we
establish the following uniform convergence result: Suppose

P
j xij is

λ multiplier convergent with respect to w(E,F ) for each i ∈ N and for
each t ∈ λ the set {

P∞
j=1 tjxij : i} is uniformly bounded on any subset

B ⊂ F such that {x · y : y ∈ B} is bounded for x ∈ E. Then for each
t ∈ λ the series

P∞
j=1 tjxij · y converge uniformly for y ∈ B, i ∈ N.

This result is used to prove a Hahn-Schur Theorem for series such
that limi

P∞
j=1 tjxij · y exists for t ∈ λ, y ∈ F . Applications of these

abstract results are given to spaces of linear operators, vector spaces
in duality, spaces of continuous functions and spaces with Schauder
bases.
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One version of the scalar Hahn-Schur Theorem ([Ha], [Sc]) asserts that
a sequence in l1 which is weakly convergent is norm convergent even though
the weak topology is strictly weaker than the norm topology ([K1] 22.4.(2),
[Sw1] 16.14, [Wi] 14.4.7 ]). The result has been strengthened and general-
ized in many directions (see Chapters 8 and 9 of [Sw2]). In particular, there
have been versions for subseries convergent series and bounded multiplier
convergent series in topological vector spaces([Sw2] Chapter 8). In [CL] two
different gliding hump properties have been used to derive abstract versions
of the Orlicz-Pettis Theorem for multiplier convergent series with respect
to weak and strong topologies. In this paper we show that these two gliding
hump properties can also be employed to derive versions of the Hahn-Schur
Theorem for multiplier convergent series with respect to weak and strong
topologies. We first establish an abstract result for uniform convergence
of multiplier convergent series with respect to a bilinear type operator and
then use this result to establish abstract versions of the Hahn-Schur Theo-
rem. These results are referred to as Hahn-Schur theorems because weakly
convergent sequences are shown to converge in stronger topologies. This
result is then applied to obtain versions of the Hahn-Schur Theorem for
operator valued and vector valued series.

We begin by describing the abstract setting which will be used to estab-
lish the initial results. Similar settings have been employed in [BCS], [CL],
and [Sw4]. Let E be a vector space, F a set, G a Hausdorff locally convex
space and b : E×F → G a map such that b(·, y) : E → G is linear for y ∈ F ;
for brevity we often write b(x, y) = x · y for x ∈ E, y ∈ F . Let w(E,F ) be
the weakest topology on E such that the linear maps b(·, y) : E → G are
continuous for every y ∈ F . In many applications of this setting the set F
is a vector space and b is a bilinear map; this is the case in the references
above. We give two examples where b is bilinear and which are used in
the applications of the abstract results; examples where F is just a set are
described in the last two results.

Example 1. Let X,Y be Hausdorff locally convex spaces and L(X,Y ) the
space of all continuous linear operators from X into Y . The bilinear map
we consider is the map b : L(X,Y ) ×X → Y defined by b(T, x) = Tx. In
this case the topology w(L(X,Y ),X) is just the strong operator topology
which we denote by Ls(X,Y ).
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Example 2. Let E,E0 be a pair of vector spaces in duality with respect
to the bilinear pairing h, i. We consider b(x, x0) = hx0, xi; then w(E,E0) =
σ(E,E0), the weak topology.

Let λ be a sequence space containing the space c00 of all sequences which
are eventually 0. If Z is a topological vector space, a series

P
j zj in Z is

λmultiplier convergent in Z if the series
P∞

j=1 tjzj converges in Z for every
t = {tj} ∈ λ. If λ = m0, the space of all sequences with finite range, then
m0 multiplier convergent series are just the subseries convergent series; if
λ = l∞, the l∞ multiplier convergent series are often called the bounded
multiplier convergent series.

We describe the gliding hump properties which will be employed. If
t = {tj}, s = {sj} are scalar sequences, st will denote the coordinatewise
product of s and t; if I ⊂ N, χI will denote the characteristic function of
I .

Definition 3. λ is monotone if χIt ∈ λ for every I ⊂ N and t ∈ λ.

For example, lp , 0 < p ≤ ∞, m0, c0 are monotone. Further examples
can be found in Appendix B of [Sw3].

Definition 4. λ is c0-factorable if each t ∈ λ can be written as t = su with
s ∈ c0 and u ∈ λ (this property has been also referred to as c0-invariant
([Ga]) and c0-decomposable ([LW])).

For example, lp, 0 < p < ∞, c0, cs are c0-factorable. Further examples
can be found in Appendix B of [Sw3].

Definition 5. The space λ has the infinite gliding hump property (∞−
GHP ) if whenever t ∈ λ and {Ij} is an increasing sequence of intervals
there exist a subsequence {nj} and anj > 0, anj →∞ such that every sub-
sequence of {nj} has a further subsequence {pj} such that the coordinate
sum

P∞
j=1 apjχIpj t ∈ λ.

For example, lp, 0 < p <∞, and cs have ∞−GHP . Further examples
can be found in Appendix B of [Sw3].

For the convenience of the reader we state two of the results which
will be used in the proof below. First, an interesting lemma of Li/Wang
([LW]Lemma 3.2).
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Lemma 6. Let Z be a vector space and K ⊂ Z a convex subset which
contains 0. If x1, ..., xn ∈ K and M > 0 is such that M

P
j∈∆ xj ∈ K for

every∆ ⊂ {1, ..., n}, thenPn
j=1 sjxj ∈ K for every 0 ≤ sj ≤M, j = 1, ..., n.

The other result is the Antosik-Mikusinski Matrix Theorem. We state
a version which will be used; more general forms can be found in [Sw1] 9.2,
[Sw2] Appendix D.

Theorem 7. (Antosik-Mikusinski) Let xij ∈ G for i, j ∈ N. Assume (1)
limi xij = xj exists for every j and (2) for every increasing sequence of
positive integers {mj} there is a subsequence {nj} of {mj} such that the
series

P∞
j=1 xinj converges and limi

P∞
j=1 xinj exists. Then limi xii = 0.

Definition 8. A subset B ⊂ F is pointwise bounded if {b(x, y) : y ∈ B}
is bounded for every x ∈ E.

In what follows, if the series
P

j xj is λ multiplier convergent with re-
spect to w(E,F ),

P∞
j=1 tjxj will denote the w(E,F ) sum of the series when

t = {tj} ∈ λ.

Theorem 9. Suppose λ is either c0-factorable and monotone or has ∞-
GHP and that

P
j xij is λ multiplier convergent with respect to w(E,F )

for every i ∈N. If

(#) for every t ∈ λ {P∞
j=1 tjxij : i ∈ N} is uniformly bounded

on the pointwise bounded set B ⊂ F
(that is, {P∞

j=1 tjxij · y : i ∈ N, y ∈ B} is bounded in G), then

(##) for every t ∈ λ the series
∞X
j=1

tjxij · y converge uniformly for

∈ N, y ∈ B.
Proof : If the conclusion fails to hold, there exists a convex neighborhood
of 0 in G, W , such that for every n there exist kn, yn ∈ B, an interval In
with min In > n such that

P
l∈In tlxknl · yn /∈ W . Applying this condition

to n = 1, there exist k1, y1 ∈ B, an interval I1 with min I1 > 1 such thatP
l∈I1 tlxk1l ·y1 /∈W . By the Orlicz-Pettis Theorem given in [CL] (Theorem
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1 for the case when λ is c0-factorable and monotone and Theorem 5 for the
case when λ has ∞-GHP; the proofs of these results do not require that
F be a vector space and b be bilinear), each series

P∞
j=1 tjxij · y converges

uniformly for y ∈ B so there existsm0 > max I1 such that
Pq

j=p tjxij ·y ∈W
for q > p ≥ m0, 1 ≤ i ≤ k1, y ∈ B. Applying the condition above to
m0 there exist k2, y2 ∈ B, an interval I2 with min I2 > m0 such thatP

l∈I2 tlxk2l · y2 /∈W . Note k2 > k1. Continuing this construction produces
an increasing sequence {ki}, {yi} ⊂ B, intervals {Ii} with max Ii < min Ii+1
such that

($)
X
l∈Ii

tlxkil · yi /∈W for every i.

Consider first the case when λ is c0-factorable and monotone. Since λ is
c0-factorable, t = su with s ∈ c0 and u ∈ λ and since λ is monotone we may
assume that s ≥ 0. Then Pl∈Ii slulxkil · yi /∈ W . Set ri = max{sl : l ∈ Ii}
so ri → 0. Lemma 6 implies there exists ∆i ⊂ Ii with

(∗) ri
X
l∈∆i

ulxkil · yi /∈W.

Define a matrix

M = [mij ] = [ri
X
l∈∆j

ulxkil · yi].

We show that M satisfies the conditions of the Antosik-Mikusinski Theo-
rem. First, (#) with t = χ∆ju implies {

P
l∈∆j

uixkil · yi : i} is bounded
and ri → o gives limimij = 0. Next, v = {vj} =

P∞
l=1 χ∆l

u ∈ λ since λ is
monotone. Then

∞X
j=1

mij =
∞X
j=1

ri
X
l∈∆j

uixkil · yi = ri

∞X
l=1

vlxkil · yi.

By (#) {P∞
l=1 vlxkil · yi : i} is bounded and ri → 0 so limi

P∞
j=1mij = 0.

Since the same argument can be applied to any subsequence, the matrix M
satisfies the conditions of the Antosik-Mikusinski Theorem and the diagonal
of M converges to 0. But, this contradicts ($). This establishes the result
when λ is c0-factorable and monotone.

Next assume λ has ∞-GHP. Then using the notation in Definition 5

∞X
j=1

apjχIpj t ∈ λ.
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Define a matrix

M = [mij ] = [
1

api

X
l∈Ipj

apj tlxpil · yi].

As in the proof above, we show that M satisfies the conditions of the
Antosik-Mikusinski Theorem. First, the columns of M converge to 0 since
1/api → 0 and (#) applied to χIpj t implies {

P
l∈Ipj apj tlxpil · yi : i} is

bounded. Given any subsequence of {pj} there exists a further subsequence
{qj} such that u = {uj} =

P∞
j=1 aqjχIqj t ∈ λ. Then

∞X
j=1

miqj =
1

api

∞X
j=1

X
l∈Iqj

aqj tlxpil · yi =
1

api

∞X
l=1

ulxpil · yi → 0

since 1
api
→ 0 and {P∞

l=1 ulxpil · yi : i} is bounded by (#). By the Antosik-
Mikusinski Theorem the diagonal of M converges to 0 contradicting ($).
This completes the proof.

Examples are given in [CL] which show that the properties ”c0-factorable
and monotone” and ”∞-GHP” do not imply one another.

Sufficient conditions for condition (#) to hold are given in Theorems
15 and 20 and in the remarks following Theorem 27.

Remark 10. If the multiplier space λ also satisfies the signed strong glid-
ing hump property (signed-SGHP), the conclusion of Theorem 9 can be
strengthened. The space λ has signed-SGHP if λ has a vector topology un-
der which it is a K-space and whenever {tk} is a bounded sequence in λ and
{Ik} is an increasing sequence of intervals, there exist a sequence of signs
{sk} and a subsequence {nk} such that

P∞
k=1 skχInk t

nk ∈ λ. For example,
l∞, and bs have signed-SGHP. Further examples can be found in Appendix
B of [Sw3]. The conclusion of Theorem 9 can be strengthened to read : the
series

P∞
j=1 tjxij · y converge uniformly for i ∈ N, y ∈ B and t belonging to

a bounded subset A of λ. For if this conclusion fails to hold there exists a
neighborhood W of G such that for every n there exist kn, yn ∈ B, tn ∈ A
and an interval In with min In > n such that

P
l∈In t

n
l xknl · yn /∈ W . By

signed-SGHP there exist signs {sn} and a subsequence {mn} such that
t =

P∞
n=1 snχImn

tmn ∈ λ. Then
P

l∈Imn
sntlxkmn

· ymn /∈ W analogous to
condition ($). The proof of Theorem 9 now applies.
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Remark 11. Blasco/Calabuig/Signes ([BCS]) introduced a useful condi-
tion for treating Orlicz-Pettis Theorems with respect to bilinear mappings
which is also useful in our setting. Assume that F is a locally convex space
and b is bilinear.

(γ) for each x ∈ E, b(x, ·) : F → G is sequentially continuous.

If (γ) is satisfied, then any bounded subset B of F is pointwise bounded so
if (γ) is satisfied , the conclusions of Theorems 9 hold when B is a bounded
subset of F . Note that condition (γ) is satisfied in Example 1.

We now use Theorem 9 to establish an abstract version of the Hahn-
Schur Theorem.

We recall a standard result.

Proposition 12. For each i ∈ N assume the series
P∞

j=1 zij converges in G
and that limi

P∞
j=1 zij exists. If limi zij = zj exists for each j and the seriesP∞

j=1 zij converge uniformly for i ∈ N, then the series
P∞

j=1 zj converges
and limi

P∞
j=1 zij =

P∞
j=1 zj .

Proposition 13. Let
P

j xij be λ multiplier convergent with respect to
w(E,F ) for i ∈ N and assume limi

P∞
j=1 tjxij · y exists for t ∈ λ, y ∈ F .

Let B ⊂ F . If

(1) the series
∞X
j=1

tjxij · y converge uniformly for i ∈N, y ∈ B,

(2) for each j there exists xj ∈ E such that
limi xij · y = xj · y uniformly for y ∈ B,

(3) the series
∞X
j=1

tjxj · y converge uniformly for y ∈ B,

then limi
P∞

j=1 tjxij · y =
P∞

j=1 tjxj · y uniformly for y ∈ B.
Proof : Let U be a neighborhood of 0 in G. Pick V to be a symmetric
neighborhood of 0 such that V+V+V ⊂ U .

P
j xj is λmultiplier convergent

with respect to w(E,F ) and limi
P∞

j=1 tjxij ·y =
P∞

j=1 tjxj ·y for each y ∈ B
by Proposition 12. By (1), (3) there exists n such that

P∞
j=n tjxij · y ∈ V
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and
P∞

j=n tjxj · y ∈ V for i ∈ N, y ∈ B. Fix such an n. By (2) there exists

i0 such that i ≥ i0 implies
Pn−1

j=1 tj(xij − xj) · y ∈ V for y ∈ B. Then if
i ≥ i0 and y ∈ B,

∞X
j=1

tjxij · y −
∞X
j=1

tjxj · y =

n−1X
j=1

tj(xij − xj) · y +
∞X
j=n

tjxij · y −
∞X
j=n

tjxj · y ∈ V + V + V ⊂ U.

We can now give a version of the Hahn-Schur Theorem.

Theorem 14. (Hahn-Schur) Suppose λ is either c0-factorable and mono-
tone or has ∞ − GHP. Let B ⊂ F be pointwise bounded. Let

P
j xij

be λ multiplier convergent with respect to w(E,F ) for i ∈ N and assume
limi

P∞
j=1 tjxij · y exists for t ∈ λ, y ∈ F . If

(#) for every t ∈ λ {P∞
j=1 tjxij : i ∈N} is uniformly bounded

on the pointwise bounded set B ⊂ F,

(2) for each j there exists xj ∈ E such that lim
i
xij · y = xj · yuniformly

for y∈ B, then
P

j xj is λ multiplier convergent with respect to w(E,F )
and

lim
i

∞X
j=1

tjxij · y =
∞X
j=1

tjxj · y uniformly for y ∈ B.

Proof : Conditions (1) and (3) of Proposition 13 hold by Theorem 9 so
the result follows from Proposition 13.

Theorem 14 is referred to as a Hahn-Schur Theorem since a sequence
which is assumed to converge weakly is shown to converge in a stronger
sense. This is somewhat different from previous versions of the Hahn-Schur
Theorem where the uniform convergence of the sequence is over subsets of
the multiplier space ([Sw3]7.11) while in the theorem above the member of
the multiplier space is fixed but the convergence is in a stronger topology.

We next give sufficient conditions for (#) to hold and obtain a version
of the Hahn-Schur Theorem which will be applied to operator valued series.
This involves a condition similar to that of [BCS] of Remark 11.
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Assume that F is a locally convex space and b is a bilinear map. We
say that condition (γ0) is satisfied if

(γ0) for each x ∈ E the linear map b(x, ·) : F → G is continuous.

Note condition (γ0) is satisfied in Example 1. If (γ0) is satisfied and F
is a barrelled space, then if {P∞

j=1 tjxij : i ∈ N} is pointwise bounded
on F , the condition (#) holds for bounded subsets of F by the Uniform
Boundedness principle for barrelled spaces ([K2] 39.3.(2), [Sw1] 24.11, [Wi]
9.3.4).

Using the Uniform Boundedness Principle and the Banach-Steinhaus
Theorems for barrelled spaces, we can obtain a Hahn-Schur Theorem which
is easier to apply to linear operators.

Theorem 15. (Hahn-Schur) Suppose λ is either c0-factorable and mono-
tone or has ∞−GHP. Assume that condition (γ0) is satisfied and that F
is barrelled. Let

P
j xij be λ multiplier convergent with respect to w(E,F )

for i ∈ N and assume limi
P∞

j=1 tjxij · y exists for t ∈ λ, y ∈ F . If

(20) for each j there exists xj ∈ E such that lim
i
xij ·y = xj ·y for y ∈ F,

then
P

j xj is λ multiplier convergent with respect to w(E,F ) and if B ⊂ F
is precompact,

lim
i

∞X
j=1

tjxij · y =
∞X
j=1

tjxj · y uniformly for y ∈ B.

Proof : The sequence of continuous linear operators {b(P∞
j=1 tjxij , ·)}i con-

verges pointwise and is, therefore, uniformly bounded on bounded subsets
by the Uniform Boundedness Principle for barrelled spaces ([K2] 39.3.(2),
[Sw1] 24.11, [Wi] 9.3.4) so condition (#) is satisfied since bounded sets are
pointwise bounded. Also, from (2’) and the Banach-Steinhaus Theorem
([K2] 39.5, [Sw1] 24.12) since the sequence of continuous linear operators
{b(xij , ·)}i converge pointwise to b(xj , ·), the convergence is uniform over
precompact subsets of F so condition (2) is satisfied when B is precompact.
The result follows from Theorem 14.

We now give applications of the abstract results to the situations covered
in Examples 1 and 2.
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First consider the case of continuous linear operators as in Example
1. L(X,Y ) with the strong operator topology ( the topology of uniform
convergence on bounded subsets of X, respectively, the topology of uni-
form convergence on precompact subsets ) will be denoted by Ls(X,Y )
(Lb(X,Y ), Lpc(X,Y )). From Theorem 9, we have

Theorem 16. Suppose λ is either c0-factorable and monotone or has∞−
GHP. Let

P
j Tij be λ multiplier convergent in Ls(X,Y ) for i ∈ N and

(#) for each t ∈ λ {P∞
j=1 tjTij : i ∈ N} is uniformly bounded

on the bounded subset B ⊂ X.
Then

(##) the series
∞X
j=1

tjTijx converge uniformly for i ∈ N, x ∈ B.

We now establish the version of the Hahn-Schur Theorem given in The-
orem 15 for the case of continuous linear operators.

Theorem 17. Suppose λ is either c0-factorable and monotone or has∞−
GHP and assume that X is barrelled. Let

P
j Tij be λ multiplier con-

vergent in Ls(X,Y ) for i ∈ N. If limi
P∞

j=1 tjTijx exists for each t ∈ λ
and limi Tijx = Tjx for x ∈ X, then

P
j Tj is λ multiplier convergent in

Ls(X,Y ) and limi
P∞

j=1 tjTijx =
P∞

j=1 tjTjx uniformly for x belonging to
precompact subsets of X, i.e., limi

P∞
j=1 tjTij =

P∞
j=1 tjTj in Lpc(X,Y ).

Proof : Setting t = ej , the sequence with 1 in the jth coordinate and 0 in
the other coordinates, in the hypothesis implies that limi Tijx = Tjx exists
for each x ∈ X and Tj ∈ L(X,Y ) since X is barrelled ([K2] 39.5, [Sw1]
24.12, [Wi] 9.3.7). Thus, condition (2’) of Theorem 15 is satisfied. Since
condition (γ0) is satisfied, Theorem 15 is applicable and gives the result.

Remark 18. If it is the case that limi Tij = Tj in Lb(X,Y ), then the con-
clusion of Theorem 17 can be strengthened to : limi

P∞
j=1 tjTij =

P∞
j=1 tjTj

in Lb(X,Y ) (Theorem 14). It should also be pointed out that the seriesP
j Tij ,

P
j Tj are λ multiplier convergent in Lb(X,Y ) by the Orlicz-Pettis

Theorems in [CL] with the assumptions on the multiplier space λ.
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Remark 19. It is possible to obtain a version of the Hahn-Schur Theo-
rem as given in Theorem 17 with weaker gliding hump assumptions on the
multiplier space λ. The multiplier space λ has the signed weak gliding
hump property (signed WGHP) if whenever t ∈ λ and {Ij} is an increas-
ing sequence of intervals in N, there exist a sequence of signs {sj} and a
subsequence {nj} such that the coordinate sum

P∞
j=1 sjχInj t ∈ λ (For ex-

ample, any monotone space has signed-WGHP; see [Sw2], [Sw3] for further
examples). Let the assumptions be as in Theorem 17 except that λ has
signed-WGHP. Then Tj ∈ L(X,Y ) and limi Tijx = Tjx uniformly for x
belonging to precompact subsets of X by the Banach-Steinhaus Theorem
([K2] 39.5, [Sw1] 24.12). We claim that

P
j Tj is λ multiplier convergent

in Ls(X,Y ). Fix x ∈ X. For each i the series
P∞

j=1 Tijx is λ multiplier
convergent in Y and for every t ∈ λ, limi

P∞
j=1 tjTijx exists. By the vector

version of the Hahn-Schur Theorem given in Theorem 2.28 or Theorem 7.6
of [Sw3], the series

P
j(limi Tijx) =

P
j Tjx is λ multiplier convergent and

limi
P∞

j=1 tjTijx =
P∞

j=1 tjTjx. This means
P∞

j=1 tjTj ∈ L(X,Y ) where the
series converges in Ls(X,Y ) by the Banach-Steinhaus Theorem. Also, by
the Banach-Steinhaus Theorem, limi

P∞
j=1 tjTijx =

P∞
j=1 tjTjx uniformly

for x belonging to precompact subsets of X. This argument does not cover
the case discussed in Remark 18.

We next consider the case when E,E0 are two vector spaces in dual-
ity; Example 2. The weak (strong) topology on E from E0 is denoted by
σ(E,E0) (β(E,E0)). Theorem 9 in this setting takes the following form.

Theorem 20. Suppose λ is either c0-factorable and monotone or has∞−
GHP . Let

P
j xij be λ multiplier convergent with respect to σ(E,E

0) for
each i ∈ N. If

(#) for each t ∈ λ {
∞X
j=1

tjxij : i ∈N} is β(E,E0) bounded,

then

(##) for each t ∈ λ the series
∞X
j=1

tjxij converge uniformly in β(E,E0)

for i∈ N.
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A similar result is given in Theorem 2.32 of [Sw3].
We consider a form of the Hahn-Schur Theorem in the duality set-

ting. For condition (#) above if σ(E,E0) − limi
P∞

j=1 tjxij exists, then
{P∞

j=1 tjxij : i ∈ N} is σ(E,E0) bounded and is β(E,E0) bounded if E,E0
is a Banach-Mackey pair ([Wi] 10.4.3) so (#) will be satisfied. Let A be a
family of σ(E0, E) bounded subsets of E0 which contains the finite sets and
whose union is all of E0 and let τA be the polar topology of uniform conver-
gence on the members of A ([K1] 21.7, [Sw1] Chapter 17, [Wi] 8.5). Then
Theorem 14 will yield the following Hahn-Schur Theorem in this setting.

Theorem 21. Suppose λ is either c0-factorable and monotone or has∞−
GHP and that E,E0 is a Banach-Mackey pair. Let

P
j xij be λ multiplier

convergent with respect to σ(E,E0) for each i ∈ N. If for each t ∈ λ,
σ(E,E0)− limi

P∞
j=1 tjxij exists and

(&) for each j ∈ N, τA − lim
i
xij = xj exists,

then
P

j xj is β(E,E
0) λ multiplier convergent and τA − limi

P∞
j=1 tjxij =P∞

j=1 tjxj for t ∈ λ.

We give an example showing the importance of condition (&) when τA is
the strong topology β(E,E0) and that the condition cannot be weakened to
weak convergence. Of course, the condition is necessary for the conclusion
in Theorem 21 to hold.

Example 22. Consider the dual pair c0, l
1 and λ = l1. Let xij = ei/2j .

The sequence {ei/2j}i is weakly convergent to 0 but is not strongly (=k·k∞)
convergent. The series

P
j xij is l

1 multiplier convergent with respect to

k·k∞ and for t ∈ l1, σ(c0, l
1) − limi

P∞
j=1 tjxij = 0 but {

°°°P∞
j=1 tjxij

°°°
∞
}

doesn’t converge to 0 if , for example, t = {1/2j}.

Next, we give an example showing the importance of the gliding hump
assumptions on the multiplier space λ in Theorem 9.

Example 23. Consider the dual pair l∞, l1 and λ = l∞. Let

{xij}j = {e1, e2, ..., ei, 0, 0, ...}.

The sequences {xij}i are eventually constant and ,therefore , β(l∞, l1) =
k·k∞ convergent. For each t ∈ λ = l∞, {P∞

j=1 tjxij : i} = {
Pi

j=1 tje
j : i} is
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k·k∞ bounded. However, the series
P∞

j=1 tjxij =
Pi

j=1 tje
j do not converge

uniformly with respect to k·k∞ if t is the constant sequence {1}. Note that
the multiplier space l∞ has the strong gliding hump property but does not
satisfy the assumptions on the mutiplier space in Theorem 9.

We next give an application to a space of continuous functions. Let
S be a compact Hausdorff space and X a normed space. Let CX(S) be
the space of continuous functions f : S → X and assume CX(S) has the
sup-norm, kfk = max{kf(s)k : s ∈ S}. Define b : CX(S) × S → X
by b(f, s) = f(s); the topology w(CX(S), S) is the topology of pointwise
convergence on S and condition (γ0) is satisfied. Thomas has established
an Orlicz-Pettis Theorem for subseries convergence with respect to the
topology of pointwise convergence and the sup-norm topology ([Th]); a
multiplier convergent version is given in [Sw3]4.68. We use Theorem 14 to
establish a Hahn-Schur Theorem in this setting. In this setting the set S
is pointwise bounded and Theorems 9 and 14 yield the following results.

Theorem 24. Suppose λ is either c0-factorable and monotone or has∞−
GHP and

P
j fij is λ multiplier convergent with respect to w(CX(S), S)

for i ∈ N. If

(#) for every t ∈ λ {
∞X
j=1

tjfij : i ∈ N} is k·k∞ bounded,

then

(##) for every t ∈ λ theseries
∞X
j=1

tjfij converge

uniformly with respect to k·k∞ for i ∈ N.

Theorem 25. (Hahn-Schur) Suppose λ is either c0-factorable and mono-
tone or has ∞ − GHP ,

P
j fij is λ multiplier convergent with respect

to w(CX(S), S) for i ∈ N and for every t ∈ λ, s ∈ S, limi
P∞

j=1 tjfij(s)
exists. If (#) holds and for every j there exists fj ∈ CX(S) such that
limi kfij − fjk∞ = 0, then

P
j fj is λ multiplier convergent with respect to

w(CX(S), S) and

lim
i

°°°°°°
∞X
j=1

tjfij −
∞X
j=1

tjfj

°°°°°°
∞

= 0.
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The last result has the form of a Hahn-Schur Theorem in the sense that
a weakly convergent series converges in a much stronger topology.

Finally, we give an application to spaces with a Schauder basis. Stiles
established a remarkable Orlicz-Pettis Theorem for such spaces which was
the first Orlicz-Pettis Theorem for non-locally convex spaces ([St]). Let
E be a topological vector space with a Schauder basis {bj} and coordinate
functionals {fj} (i.e., each x ∈ E has a unique expansion x =

P∞
j=1 ujbj and

fj : E → R is defined by fj(x) = uj). Let Pk : E → E be the projection
defined by Pk(x) =

Pk
j=1 fj(x)bj so limk Pk(x) = x with convergence in E.

Define b : E×{Pk}→ E by b(x, Pk) = Pkx. If F = span{fj : j ∈ N}, then
E,F form a dual pair and the weak topology σ(E,F ) is equal to w(E, {Pk});
σ(E,F ) is the weak topology for Orlicz-Pettis Theorems considered by
Stiles for subseries convergent series and was considered later for multiplier
convergent series in [Sw3], 9.10. Since {Pk} is pointwise bounded, Theorems
9 and 14 yield the following results in this setting.

Theorem 26. Suppose λ is either c0-factorable and monotone or has∞−
GHP and

P
j xij is λ multiplier convergent with respect to σ(E,F ) for

every i ∈ N. If

(#) for every t ∈ λ {
∞X
j=1

tjPkxij : i, k ∈ N} is bounded,

then

(##) for every t ∈ λ the series
∞X
j=1

tjxij converge uniformly in E for

i ∈N.

Proof : By Theorem 9 the series
P∞

j=1 tjPkxij converge uniformly in E
for i, k ∈ N. Let U be a closed neighborhood of 0 in E. There exists N
such that n ≥ N implies

P∞
j=n tjPkxij = Pk

P∞
j=n tjxij ∈ U for i, k ∈ N.

Letting k → ∞ gives
P∞

j=n tjxij ∈ U for n ≥ N, i ∈ N and, hence, the
conclusion.

Similarly, Theorem 14 yields a Hahn-Schur Theorem.

Theorem 27. Suppose λ is either c0-factorable and monotone or has∞−
GHP,

P
j xij is λ multiplier convergent with respect to σ(E,F ) for every

i ∈ N, (#) and for every j there exists xj ∈ E such that
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(∗) lim
i
Pkxij = Pkxj uniformly fork ∈ N.

Then
P

j xj is λ multiplier convergent with respect to σ(E,F ) and for
every t ∈ λ limi

P∞
j=1 tjxij =

P∞
j=1 tjxj in E.

If E is a complete quasi-normed space, then the {Pk} are equicontin-
uous ([Sw1]10.1.14]) and condition (#) of Theorem 26 can be replaced by
”{P∞

j=1 tjxij : i ∈ bfN} is bounded in E” and condition (*) in Theorem
27 can be replaced by the simpler condition ”limi xij = xj in E”.
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