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1. Introduction

The duality (A, A%*), where X is a scalar sequence space, was studied by
Kothe and Toeplitz [7] and it has been reformulated by Ko6the [6] using

the theory of locally convex spaces. After, the duality <)\, B > has been

studied by Chillingworth [2], Matthews [8], T. Komura and Y. Komura
[4]. In this work, we are interested to a duality in non-archimedean se-
quence spaces. We consider a separated duality (X, Y") of vector spaces over
a non-archimedean valued field K (n.a); in [1] Ameziane and Babahmed
gave a fundamental properties of this duality. Afterwards we take E (X)
and F (Y) two vector-valued sequence spaces over X and Y respectively
such that E(Y) C E(X)° that are endwed with the separated duality
(E(X),E(Y)) by the canonic bilinear form (p.108). We introduce the no-
tion of polar topoogies over F (X); and by the linear maps 7r]X and (5;(
which we define in this paper; we study the polar topologies compatible
with the duality (£ (X), E (Y)) using the basic duality (X,Y). Finally we
characterize C'— compact, AK—complete and complete subsets of E (X)
relatively at these topologies. This study was useful in the study that we
made in [3].

Throughout this paper, K is a non-archimedean (n.a) non trivially val-
ued complete field with valuation |.|, X and Y are two n.a topological vector
spaces over K (or K vector spaces) that are in separated duality (X,Y).
The duality theory for locally K —convex spaces can be found more exten-
sively in [1], [9] , [11] and [12].

2. Preliminary

A nonempty subset A of a K —vector space X is called K —convex if Az +
wy + vz € A whenever z,y,z € A, \,u,y € K, [\ <1, [pu] <1,y <1
and A+ p+v = 1. A is said to be absolutely K—convex if Ao + puy € A
whenever z,y € A, \,p € K, |\ <1, |u| < 1. For a nonempty set A C X its
K —convex hull ¢ (A) and absolutely K —convex hull ¢ (A) are respectively
the smallest K —convex and absolutely K —convex set that contains A. If
A is a finite set {z1,...,x,} we sometimes write ¢y (x1,...,z,) instead of
Co (A) .

An absolutely K —convex subset of a locally K —convex space X is called
K— closed if for every z € X the set {|A]: A € K, \x € A} is closed in
|K|. If the valuation on K is discrete every absolutely K —convex set A
is K—closed. If K has a dense valuation an absolutely K convex set A is
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K —closed if and only if from x € E, Az € A for all A € K, |\| < 1 it follows
that x € A. Intersections of K —closed sets are K —closed. For an absolutely
K —convex set A the K—closed hull of A is the smallest subset of X that
is K —closed and contains A, it is denoted by K. (A). If K is discrete we
have K. (A) = A and if K is dense, K.(A) = N{AA: X € K and |\ - 1}
([1] p. 220).

A topological vector space X over K is called locally K —convex space
if X has a base of zero consisting of locally K —convex sets.

Let (X,7) a locally K—convex space, T is define by a family of n.a.
semi-norms 7— continuous over X, and if K is discrete, we can suppose
that N, = {p(z)/x € X} C |K| for every p € P ([9]) ; where (P) is a family
of n.a semi-norms which define the topology 7.

If pis a (n.a) semi-norm over X, B, (0,1) is the set {x € X : p(z) < 1}.

A sequence (e;), is a Schauder basis for X if every € X can be written
[e.9]

uniquely as x = Z Aix; where the coefficient functionals f; :  —— A; are

i=1
continuous.

Let X a K—vector space and M a subset of X, a K —convex filter over
M, is a filter F over M having a basis B consisting of K —convex subsets
of M; this basis is called K —convex basis of K —convex filter F.

The order of all filters on M induces an order on all K —convex filters
on M. A maximal element of the ordered set of K —convex filter on M is
called maximal K —convex filter of M.

Let (x;)ier a net on M; for all i € I, put F; = {x;/j >i}. (Fi)ier
is a filter over M called filter associated to a net (x;);c;. Conversely, if
F=(F})ies is a filter over M, for all i € I let x; € F; ; over I we define
the following order: ¢ < j & Fj C F; . (x;)icr is a net in M called a net
associated to a filter F.

Proposition 1. Let X a locally K—convex space, M a subset of X and
F=(F};)ier a maximal K—convex filter over M.

1. F converges or not having any clusterpoint .

2. Let (x;)ier a net associated to a F; if (x;);e; converges to xg, F
converges to xg.

Proof. 1. Let xp a cluster point of F and (Uj)jes a K—convex
neighbourhood base of 29, F = {F;NU;/i € I and j € J} is a K —convex
filter which converges to z¢ and it is coarsest than F, then F = F .

2. 1z is a clusterpoint of (x;);cs, then it is a clusterpoint of F, and so
F converges to xg. 1
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Proposition 2. Let X,Y two K—vector spaces, f : X — Y a linear map
and F = (F;);c; a maximal K—convex filter over X that having B us a
K —convex basis; f(B) is a K—convex basis of a maximal K —convex filter
over Y.

A subset A of a locally K—convex space X is compactoid if for each
neighbourhood U of zero there exist z1,...,x, € X such that A C U +
co (1, ..., Ty) . An absolutely K —convex subset A of X is said to be C'—compact
if every convex filter on A has a clusterpoint on A.
K is C—compact if and only if K is spherically complete.

Proposition 3. Let M be a subset of X. The following are equivalent:
(i). M is C—compact;
(ii). Every maximal K —convex filter over M converges;
(iii). Any family of closed and K —convex subsets of M whose inter-
section is empty contains a finite subfamily whose intersection is empty.

Let B a basis of a filter F on a subset M of X; the smallest K —convex fil-
ter containing B, is called K —convex filter generated by B and is denoted by
Fo(B). We show that F.(B) = {F C M/there exists B € B:c¢(B) C F},
and ¢(B) is K—convex basis of F.(B), that is to say F.(B) = F(c(B)).

If (x;)icr is a net in X; (x;);e; converges to xg if and only if the filter
K —convex associated with (z;);e;r converges to xg.

Proposition 4. Let X,Y two K—vector spaces, f : X — Y a linear
map, M a subset of X and B a base of filter on M. Then f(B) is a base of
filter on f(M), and we have F.(f(B)) = f(F.(B)).

(w(X),7w (X)) = the linear space of all sequences in X endowed with
the product topology 7, (X) which is generated by the family of n.a semi-
norms (Pn)pep, pe(pys Pn(T) = plan) for al T = (zn), € w(X) and
all p € (P), if X is a locally K-convex space and (P) is a family of n.a
semi-norms which define his topology; this space is noted w (K) (or w, for
short) in case when X = K. A sequence space over X is a subspace of
w(X).

We define the following sequence spaces over X

co (X) = {(ar), € w(X) : (z1), converges to zero}

c(X) ={(zr), € w(X): (zg), convergesin X},

o (X) ={(z1), € w(X): there exists ko € IN :x, =0 for all k> ko},

m(X) ={(ar), € w(X) : (zx), is bounded in X} .



Polar topologies on sequence spaces in non-archimedean analysis 107

Over m (X) we define the sequence of n.a semi-norms (p),¢(py by:
P (T) =sup p(xy) for all T = (x3), € m (X).
k

Let T (X)) be the topology on m (X) defined with the sequence of n.a
semi-norms (P),¢(p) -

3. Polar topologies

Let X and Y two K —vector spaces placed in separating duality (X,Y). If
A is a subset of X, we denote by A° ={y € Y/ [(z,y)| <1 forall z € A}
the polar of A and A°° = {z € X/ [{(z,y)| <1 for all y € A°} the bipolar
of A.

A° is absolutely K —convex and o(Y, X )—bounded.

For each absolutely K —convex subset A of Y, K, (ZJ(Y’X)) = A°° ([1],

corollary 4.3, p. 233). A subset A of Y is said to be X —closed if for every
y € Y \ A, there exits z € X such that |(z,y)| = 1 and [(z, A)| < 1.
Intersections of X —closed sets are X —closed. For a subset A of Y the
X —closed hull X.(A) of A is the smallest X —closed subset of Y that
contains A. For each subset A of Y, X, (A) = A°°([1], proposition 2.5, p.
224). Using these two results and by [1], theorem 4.2, p. 233 we have: for
all absolutely K —convex subset A of Y, A is X —closed, if and only if, A is
K —closed and o (Y, X) —closed.

Let A be a family of o (Y, X) —bounded subsets of ¥ such that

(a) A is directed by inclusion,

b)Y =] 4,

AcA
(¢) there exists A\g € K, [Ao| > 1 such that \gA € A, for all A € A.

A topology 7 on X is called polar topology of A—convergence, if 7
has a fundamental system of zero—neighbourhood (F.S.N) consisting of
{A°/A € A}.

A vector topology 7 on X is called polar topology if there exists a family
A of o (Y, X) —bounded subsets of ¥ which has the properties (a), (b) and
(c), such that 7 is a polar topology of .A—convergence. it is defined by the
family of n.a. semi-norms (Pa)aca, where Pa(z) =sup{|(z,y)|/y € A}.

If A is the family of all subsets of Y that are:

1. Absolutely K—convex, weakly bounded and weakly C'—compacts,
we have the C'—compact topology 7. (X,Y) = 7,

2. Absolutely convex and o (Y, X)—compact, we have the Mackey
topology 7, (X,Y) = 7,
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3. 0 (Y, X) —bounded and X —closed, we have the X —closed topology
Te (X7 Y) = Te-
4. o(Y, X)—bounded, we have the strong topology 7,(X,Y).

A locally K—convex topology 7 on X is called compatible with the
duality (X,Y) or (X,Y) —compatible if Y is isomorphic to the topological
dual of X provided with the topology 7. The weak topology o(X,Y) is the
coarsest topology among all topologies (X, Y )—compatible, and the upper
bound topology of all topologies (X, Y)—compatible topology is the finest
among all the topologies (X, Y)—compatible.

We say that X is semi-reflexive if X is isomorphic to the strong topo-
logical dual of Y and if 7 is a locally K —convex topology on X we say that
X is 7—reflexive if X is semi-reflexive and 7 = 7,(X, X').

For further information about polar topology of A—convergence and
general properties of locally K —convex spaces we refer to [1], [11] and [12].

If ACw(X), the f—dual of A is the subspace of w (Y') which is define
by AP = {(yn)n cw(y): lim (p,yn) =0 for all (z,),, € A} . A is called
perfect if AP% = A. If A is perfect then ¢ (X) C A. Forall A C w(X), AP
is perfect. We define B? if B C w(Y') on the same way.

A subset D of w (X) is said to be solid if for every T = (z), € D and
a = (ay);, € w such that |ag| < 1 for all k, we have o = (agxy), € D.
The solid hull S (D) of D is the smallest solid set of sequence containing
D.

A topology on E (X)), with respect the duality <E (X),FE (X)ﬁ> , will
be called solid if the elements of the determining family of weakly bounded
subsets of E (X)? are solids sets.

Let E(X) and E (Y') be two sequence spaces on X and Y respectively
such that E (Y) C E(X)’, we define on the pair (E(X),E(Y)) the fol-

lowing duality ((xn),,,(¥n),) = Z (@, yn) for all (z,), € E(X) and all

n=1
(yn), € E(Y).

If o(X) C E(X) and ¢(Y) C E(Y), the duality (E(X), E(Y)) is sepa-
rate.

In the sequel (E(X), E(Y)) denotes a duality of this type.

S(E(Y)) C [S(E(X))])? and (S(E(X)), S(F(Y))) is a separating duality
extending the separating duality (E(X), F(Y)), therefore, we can assume
that E(X) and F(Y) are solid.

For all 7 > 1, we consider the following linear mappings:
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7r]X:E(X)—>X (5JX:X%E(X)
(zn) — @; a — d;(a)
where d; (a) is the sequence with a in the j-th place and 0’s elsewhere.

We define also ’/T}/ and 5}/.

Let ¢ = (1) € w(X), foralln > 1 2zl = Z(Sj(xj) is called the n'"
j=1
section of x.
We have: 73005 = idx, 7} 08} =idy, (xX)*/Y = 6) and (65)*/F(Y) =

7Y where u* is the algebraic adjoint of the linear map u.

J

Proposition 5. Let A be a subset of E(X) if A is solid, A° is solid and
we have: A° = [AN¢(X)]°.

Definition 1. Let A a subset of w(X).
a. Is said that A is 5]2(—saturated if for all (z,,) € A, 53X(xj) € A.
b. It is said that A is 6 —saturated if A is 5])-(—sa1;urated for all j > 1.
c. It is said that A is mX—saturated if: z; € wj((A) for all j > 1 =
(xn) € A.

If A is solid, A is 6% —saturated.
©(X) is 6% —saturated and not 7% —saturated.

If p is a n.a. semi-norm on X, {(wn) € w(X)/supp(z,) < 1} is
n

X —saturated.

The following results are demonstrated in a direct:

Proposition 6. Let A be a subset of E(X).

1. If A is n% —saturated, S(A) is 7% —saturated.

2. If A is 6% —saturated, S(A) and co (A) are §* —saturated, and A° is
§Y — saturated and 7Y —saturated.

3. [7X(A)] 7Y (A°) for all j > 1.

4. If Ais 5;(—satumted, [ﬂ}X(A)]O = TF}/(AO).

5. If A is 6% —saturated,
A2 =X [ ()] = { ) € F)/supl o 1 for all () € 4}

6. S(A)° C S(A°); and if A is 6% —saturated, A° = S(A)° = S(A°).
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7. If A is 6% —saturated and F(Y)—closed, 7T]X<A) is Y —closed for all
Jj= 1

8. If A is mX—saturated and 7T]X<A) is Y —closed for all j > 1, A is
F(Y)— closed.

Corollary 1. Let A be a subset of E(X) 6% —saturated and 7~ —saturated.
For A is F(Y')—closed, it is necessary and enough that 773-X (A) be Y —closed
for all j > 1.

Proposition 7. Let A be an absolutely K —convex subset of E(X).
1. If A is K—closed and (5JX—satumted, 7TJX<A) is K—closed.

2. If A is 7™~ —saturated and 7TJX(A) is K—closed for all j > 1, A is
K—closed.

Proposition 8. Let 7 be a topology on E(X) and 7; the topology im-
age reciprocal of T by the linear map 5JX on X. If 7 admits as S.F.N of

0 {A°/A € A}, then {[ﬂ;/(A)r JA € .A} is a F.S.N. of 0 for ;.
Proof.  ([1], proposition 2.9). 1

Proposition 9. Forallj > 1, 7% is (o0(E(X), F(Y)), 0(X,Y))—continuous
and (53-)( is (0(X,Y),0(E(X),F(Y))) —continuous.

Proof. (Trj()*(Y) C F(Y) and (5JX)*(F(Y)) C Y, and the result

follows from ([9], p. 128). 1

Proposition 10. 1. {77 (A) A°) for all A C E(X).

2. [5X( )} = (7¥)~ 1(B°) for all BC X.

X(A)Cc B= 5Y(B°) C A° for all AC E(X) and for all B C X.

)CA:>7T (A°) C B° for all A C E(X) and for all B C X.
(TrX )HDe) = |3} (D)} foralD CY.
(65)74(Ce) =[x C)] for all C C F(Y).
(7X)*(D )CC=m; X(C°) c D° forall D CY and for allC C E(Y).
() (C)c D = 5J (D°) C C° forall D CY and for all C C E(Y).

Proof. ([1], proposition 2.8). 1



Polar topologies on sequence spaces in non-archimedean analysis 111

A polar topology of A—convergence on F(X) is said solid, if all A € A
is solid. Thus, any polar, solid topology admits a F.S.IN from 0 consisting
of solid subsets .

If 7 is the polar topology of A—convergence on E(X) such that A
is 0¥ —saturated for all A € A, 7 coincides with the polar topology of
S(A)—convergence (proposition 6), and then 7 is a polar and solid topology

Proposition 11. Let 7 be a polar topology of A—convergence over E(X)
and 1; the topology image reciprocal of T by the linear map 5;( on X.

1. 7j is the polar topology of W}/(A)—convergence.

2. 773?( is (1, 7j) —continuous if and only if&fow}/(A) € A forall Ac A.

Proof. ([1], proposition 3.8 ). 1

Proposition 12. IfT is the weak topology (resp. Mackey, resp. C'—compact,
resp.

E(X)—closed; resp. strong) of E(X) for all j > 1,7; is the weak topology
(resp. Mackey, resp. C—compact, resp. X —closed; resp. strong) on X

Proof.  ([1], proposition 3.9 ). &

Proposition 13. Let 7 a polar topology of A—convergence on E(X), for
all j > 1, we have:

1. (5;( is (15, T)—continuous;

2. If T is solid, TI'JX is (1, Tj)— continuous;

3. If 7r]X is (7, 7;)— continuous, 5])-( is (15, T)—closed.

Proof. 1. 7; is a polar topology of w}/(A)—convergence, and we
have:

53-X ([W;/(A)r) C A° for all A € A.

2. If 7 is solid, we have : 7TJX<AO) C [ﬂ}/(A)r for all A € A.

3. Let M a closed in (X, 7;), there exists A € A such that [W}/(A)r C
M?, therefore A° C 5]X(M°) = [5]X(M)} N |

Let 7 be a locally K —convex topology on E(X) such that F(X) be
T—polar; if 7 is (E(X) F(Y))—compatible, 7 is a polar topology of
A—convergence, where A is constituted of o(F(Y'), E(X))—bounded and
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E(X)—closed subsets of F(Y), ([1 ], theorem 4.3). For all j > 1, 7; is the
polar topology of W}/(A)—Convergence on X and X is 7j—polar ifall A € A
is ¥ —saturated, Trj( (A) is o(Y, X)—bounded and X —closed (Proposition
6), and then 7; is (X,Y")—compatible.

If K is spherically complete, we have the following theorem:

Theorem 1. Suppose that K be spherically complete, and let T a lo-
cally K—convex topology on E(X); if T is (E(X), F(Y))—compatible, 7;
is (X,Y)—compatible, for all j > 1.

Proof. T is a polar topology of A convergence, where A consists
of absolutely K convex , o(E(Y), E(X))—bounded and o(E(Y), E(X)) —
C'—compact subsets of F(Y) ([1], theorem 4.4). For all j > 1, W}/ is
(o(F(Y), E(X)), o(Y, X))—continuous, then 7} (A) is absolutely K —convex,
o(Y, X)— bounded and o(Y, X) — C—compact for all A € A and then 7; is
(X,Y)—compatible. I

Theorem 2. Let 7 a solid and polar topology on E(X); if E(X) is T—barreled,
X is 7j—barreled for all j > 1.

Proof. Let B a 7j—barrel in X; 6JX is (75, 7)—closed, then 63)((3) is
a 7— barrel into E(X) and then (5;()*1(55((3)) is a neighborhood of 0 in
(X, 7;) then B is a neighborhood of 0 for 7;. I

Remark 1. Instead of assuming that T is solid, we can assume only that
7T3X be (1, 7j)—continuous for all j > 1.

A subset A of E(X) said to be 6% —stable if for all z = (z;) € E(X) such
that there exists 7 > 1 satisfying 5;((%) € A, then z € A.

Let A C E(X) such that AN {5%(@)/0, €X and j> 1} = ¢, Ais 6~
stable.

Definition 2. Let 7 a vector topology on E(X); we say that E(X) is
8% 1—barreled if every T—barrel 6% —stable, is a neighborhood of 0.

If B(X) is T—barreled, it is §%7—barreled.

Theorem 3. Let T a polar and solid topology on E(X); if there exists j >
1 such that X is 7;—barreled, E(X) is 67— barreled
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Proof. Let B art—barrel 6% —stable in E(X); 6])-( is (77, 7)—continuous,
S0 (5JX)*1(B) is a 7j—barrel, and then ((5;()*1(3) is a neighborhood of 0 in
(X, 7j) and hence (7rjX)_1 {(5;()_1(3)] is a neighborhood of O in (E(X), 7). B
is % — stable, then (7T]X)_1 {(5]?()_1(3)} C B and then B is a neighborhood
of 0in (E(X),7). 11

Theorem 4. Suppose that X and Y are semi-reflexive, and let T a topol-
ogy on E(X) which is (E(X), F(Y))—compatible. If E(X) is T—reflexive,
X is 7j—reflexive for every j > 1.

Proof. 7 =m7,(E(X),E(X))=mn(E(X),F(Y));soforallj>17;=
7(X,Y") (Proposition 12). Y is semi-reflexive, then 7; is (X, Y")—compatible
([ 1], proposition 5.9) and then 7; = 7(X, (X,7;)). N

Corollary 2. If K is spherically complete and 7 is a topology on E(X)
which is (E(X), F(Y))—compatible and solid such that E(X) is T—barreled,
then X is 7 reflexive for any j > 1.

Proof.  Forall j > 1,7; is (X,Y)—compatible (theorem 1) and X is
7j—barreled for all j > 1, then X is 7j—reflexive ([1], theorem 5.2). i

4. Compactness and C'—compactness

Let 7 a polar topology on F(X) such that 7TJX be (7, 7;)—continuous for all
j > 1. If M is a compact subset of (F(X),7); 7rJX (M) is a compact subset
of (X, ;) for all j > 1.

In order to study the converse, we introduce the notion of T'K —convergent
net.

Definition 3. A net (z°);c; in E(X) is called TK —convergent if for all
j =1, (z})ier is convergent in (X, ;).

Theorem 5. Let M asubset of E(X); M is relatively compact in (E(X), T)
if and only if:

(i.) Wf(M) is relatively compact in (X, 7;) for all j > 1;

(ii.) All TK —convergent net in M, converges in (E(X), ).
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Proof. N.C] 7r]X is (7, 7;)—continuous for all j > 1, then 7rJX(M) is
relatively compact in (X, 7;). Let (2');e; a TK—convergent net in M. For
all j > 1let z; € X such that (.’L‘;)Ze[ converges to x; in (X, 7;). (v%);cs has
a cluster point z = (z,) in (E(X), 7). For all j > 1, z; is a cluster point of
(l‘;)iel in (X, 7;); then z; = x;. (z,,) is the unique cluster point of (z%)er,
therefore (x');c; converges to (x,) in (E(X), 7).

S.C.] Let (z%);es anet in M, and let A the family of o(F(Y), E(X))—bounded
subset of F'(Y) which defines the topology 7. For any j > 1, 7; is the polar
topology of 7TJY (A)—convergence on X.

Let 21 a cluster point of (z%);c; in (X, 7). For all A € A and for all
i € I, there exists i4 > i such that 4 € [ﬂ}/(A)r. Consider the sub

family (i4)aeq of I, it is ordered by: iy <ip < A C B for all A,B € A.
(14)Aca is a filter on the right family. Let Ay € A; i4 > 4, = Ao C
A= [ﬂ%/(A)} C [ﬂ}/(Ao)] =2 e [ﬂ}/(Ao)} . Therefore (z4) gca
converges to x1 in (X, 7).
Let z2 a cluster point of (z5*)aca in (X,72). for all A € A, there exists
l1(i4) > i4 such that :vél(“‘) —x9 € [71‘%/(14)}

Let Ag € A;ig >ia, = AD Ag = {WQY(A)]O C [ﬂ%/(Ag)r = xlzl(i“) —

xg € {W%/(Ao)]o. Therefore (wél(iA))AeA converges to zo in (X, 7). Let

x3 a cluster point of (wél(iA))AeA in (X,73). For all A € A, there exists

Io(l(ia)) > li(ia) such that a4 — o5 € [x] (A)r. (z2o1Ca)y s
converges to x3 in (X, 73).
Inductively, for all j > 3 and for all A € A, there exists [;0l;_10....11(14) >

lj—10.....0l1(i4) such that (:U?f'l"Oll(iA))AgA converges to ;41 in (X, 7j41).

Put y = (l.iA’:Ell(iA)’ leOll(iA), ceeny l'lko""Oll(iA)v "")AGA‘

. ; 11(7 l20l1 (2 lio....0l1 (%
For all j > 1, (x;A,le(zA),szo1(ZA),....,xj’“O OI(ZA),....)AEA converges

to x; in (X, 75); therefore y is 7K —convergent, and hence it converges to
in (F(X), 7). Hence z is a cluster point of (z');cr, and then M is relatively
compact. i

Corollary 3. Let M a subset of E(X), M is compact in (E(X), ) if and
only if:

(i.) 773X(M) is compact in (X, ;) for all j > 1,

(ii.) Any TK—convergent net in M converges to an element of M in
(B(X), 7).

To give version of theorem 5 using the filters, we need introduce the
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following definition:

Definition 4. Let M a subset of E(X) and F a filter on M; we say that F
is TK— convergent if for all j > 1 the filter generated by 7rjX (F) converges
in (X, ;).

Every convergent filter is T'K —convergent, and if F is a T'K —convergent
filter and F’ is a filter finer than F, ' is T K —convergent.

Proposition 14. Let M a subset of E(X).

1. If F = (F})ier is a TK—convergent filter on M, any net associated
to F is T K—convergent.

2. If (2V)ier is a TK—convergent net, the K—convex filter associated
to (2")ser is TK —convergent.

Theorem 6. Let M a subset of E(X); M is compact in (E(X), ) if and
only if:

(i.) mX(M) is compact in (X, ;) for all j > 1;

(ii.) Any T K —convergent filter on M converges to an element of M.

Proof. N.C.] Let F a TK—convergent filter on M. For any j > 1
let 2; € X such that 7TJX(.7-') converges to z; in (X, 7;). F has at least one
cluster point z = (z,) in M. For all j > 1, z; is a cluster point of 773)-((.7:),
therefore z; = xj; then (x,) is the unique cluster point of F in M, so F
converges to (z,) in (M, ).

S.C.] Let F a maximal filter on M; for all j > 1 7r]X (F) is a maximal
filter on 72 (M), therefore it converges to z; in (X, 7;), and then F is TK—

J
convergent, therefore it converges to an element of M. I

Definition 5. Let M a subset of E(X), we say that M is an AK—complete
subset of (E(X),) if every x = (x,,) element of E(X) such that (zI") is a
Cauchy sequence in (M,7); x € M and (z!™) converges to = in (E(X), 7).

We say that M is relatively AK—complete if its closure M in (E(X), T)
is AK— complete.

If M is complete, it is AK —complete.
Any closed subset of a set AK —complete is AK —complete.

In the following result, we characterize the subsets solid and relatively
compact of (E(X), 7).
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Theorem 7. Let M a solid subset of E(X), M is relatively compact in
(E(X),7) if and only if:

(i.) 7rJX(M) is relatively compact in (X, ;) for all j > 1,

(ii.) xll =% & uniformly on M in (E(X),T),

(iii.) M is relatively AK—complete in (E(X),T).

Proof. N.C.] If M is relatively compact, M is relatively complete,
and then it is relatively AK —complete.

Suppose we did not (ii.) there exists A € A a sequence (‘z); in M and
a strictly increasing sequence of integers (j;); such that ‘zlil —7 2 ¢ A° for
all i > 1. The sequence (“zlil = 2); is TK —convergent to 0, so it converges
to 0 in (E(X),7) which is absurd.

S.C.] Let (“)aep a net in M such that for all j > 1 (%z;)aecp converges

to x; in (X, 7;). Let A € Aforalli> 1zl -2l = Z 6 (Yay —xp) € A°

n=1
for o sufficiently large. So for all i > 1 “zfl % 2l in (E(X),7) in
particular zl! € I for all i > 1. Using this convergence and (ii), we can
choose o as gl —zll = (gl —oglil) y (2gl] —ag) (@ —aglly 4 (agll 2l €
A° for i, j sufficiently great. Therefore () is a Cauchy net in M and then
2l "2 2 in (B(X), 7). From this convergence and (ii), we can choose i
such that %z — z = (“z = zl1) 4 (*2l) — 200y + (211 — ) € A° for o Large
enough, so (*z),ecp converges to = in (E(X),7) and hence M is relatively
compact (theorem 5).

Corollary 4. Let M a solid subset of E(X); M is compact in (E(X), )
if and only if:

(i.) 7r5X(M) is compact in (X, ;) for all j > 1,

(ii.) zl =% 2 uniformly on M in (E(X),T)

(iii.) M is AK—complete in (E(X),T).

Corollary 5. The envelope solid of a relatively compact subset of (E(X), T)
is not necessarily relatively compact.

Proof. Let z = (z,) € E(X) such that (zl1); does not converge to
zin (E(X),7) so (211); does not converge to z uniformly on S(z) and then
S(z) is not relatively compact. B

Proposition 15. 1. Let (z');cr a net in E(X); if F is a K—convez filter
associated with (%);er, 7TJX (F) is a K—-convex filter associated with a net
(a)ict for all j > 1.
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2. Let F a K—convex filter on E(X); if (z')icr is a net associated to
F, (1‘3)161 is a net associated to W;((f) for all j > 1.

Theorem 8. Let M a K—convex subset of E(X); M is C—compact in
(E(X),7) if and only if:

(i.) 7TJX(M) is C—compact in (X, ;) for all j > 1,

(ii.) Any K—convex and T K —convergent filter on M admits a cluster
point in M.

Proof. N.C.] Obvious.

S.C.] Let F a maximum K —convex filter of M. For any j > 1, 7r]X(.7-") is

a maximum K —convex filter of 773-)( (M) (proposition 2), so 7TJX (F) converges
to x; in (X, 7;). F is then T K —convergent, so it admits a cluster point in

M, and hence F converges in (F(X), 7) (Proposition 1).

Proposition 16. Let M a K—convex subset of E(X); if M is C—compact,
any K—convex and T'K —convergent filter on M has a unique cluster point
in M.

Proof. Let F a K—convex and T K —convergent filter on M. For all

j > 1let x; € X such that TI'JX(f) converges to z; in (X, 7). F admits

at least one cluster point (z,) in M. For all j > 1, z; is a cluster point of
X

73 (F) in (X, 7;), and then x; = z;. So (z;) is the only cluster point of F

in M. 1

5. AK—completion and completion

Let M a subset of E(X) and 7 a topology on E(X), we put:
Sy = {x e M/z""=% ¢ in (E(X),T)}.
If M is a subspace of F(X), we say that M is an AK —space if Sy = M.

Proposition 17. Let T a polar topology of A convergence on E(X); (E(X), )
is AK—complete.

Proof. Let z = (z,) € E(X) such that (z[") is a Cauchy sequence
in (E(X), 7). For all A € A there exists ng > 1 such that z[" — 2zl € A°

for all n > m > ng, and then 2 — 2 € A° for all n > ng, then 2 "X g

in (E(X),7). 1
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Corollary 6. Let M a subset of E(X). M is AK—complete if and only if
M contains every element z of E(X) such that (x!") is the Cauchy sequence
in M.

Corollary 7. Let 7" a locally K—convex topology on FE(X) coarser than
7; any AK —complete subset of (E(X), 7 ) is complete in (E(X),).

Proof. Let M an AK—complete subset of (E(X),7’), and either
z € E(X) such that (z[") is a Cauchy sequence in (M,7), (z[") is a
Cauchy sequence in (M, 7'), so x € M and hence M is AK—complete in
(E(X), 1), (Corollary 6). I

For all z = (z,) € E(X), we put Vo E(Y) — co(K)

1, is a linear map. 1

Lemma 1. For any © € E(X), ¢, is (c(E(Y), E(X)),0(co(K), m(K)))—

continuous.

Proof. cy(K)? = m(K) and (co(K),m(K)) is a separating dual-
ity. Let (o) € m(K); E(X) is solid, then (an,x,) € E(X), and we have
Yo ({(an 22)}°) C {(an)}”. 1

Proposition 18. (E(X),0(E(X),E(Y))) is an AK —space.

Proof. Let x = (z,) € E(X). For all y = (y,) € E(Y), ((xn,yn)) €
co(K); there exists ig > 1 such that sup (x5, yn)| < 1, then 2l — 2 € {y}°

n>io

for all i > ig, and then 2zl =% z in (E(X),s(E(X), E(Y))). 1

Proposition 19. Suppose that K be local, and let 7 a (E(X),F(Y))—
compatible topology on E(X); if T is solid, (E(X), ) is an AK —space.

Proof. Let A a family of o(F(Y), E(X))—compacts and absolutely
K —convex subsets of F'(Y) such that 7 be a polar topology of .A—convergence
([1] , theorem 4.5.) Let & = (x,) € E(X); for all A € A, 1,(A) is solid
and o(co(K), m(K))—compact in co(K). Then 2l =% 2 uniformly on
z € Pz(A) in (co(K), o(co(K),m(K))) (theorem 7); there exists ig > 1
such that ‘<z[i] —z,e>‘ < 1 for all i > ig and for all z € ¥,(A), then

2l — 2 € A° for all i > i, and so 2!l =X z in (E(X),7). 1

We have the following result which is a kind of reciprocal of theorem 1:
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Theorem 9. Suppose that K be local, and let T a polar and solid topology
on E(X) for separating duality <E(X), E(X)B> frjis (X,Y)—compatible
for all § > 1, 7 is (E(X), E(X)%)—compatible.

Proof. E(X)? = (BE(X),0(E(X),E(X)?)) c (E(X),7)". Let f €
(BE(X),7) and z = (z) € E(X). (E(X),7) is an AK—space (proposi-
tion 19), therefore 2! =% 2 in (E(X),7), and then f(z) = lim f(z[) =

Zfoé}x(xj). For all j > 1, fo6¥ € (X,7;)" = Y; therefore f(x) =
J

i, Y;), with y; = foo:* for all 7 > 1. Hence (y;) € , and so
J>Yj)» with y; = fods for all j > 1. H ;) € E(X)?, and
J

(BE(X),7) Cc E(X)5. 1

Let C a family of subsets of F'(Y') such that:

1. C is the right filtering for inclusion;

2. There exist \g € K, |Ag| > 1 such that \gA € C for all A € C;

3. 7} (A) is o(Y, X)—bounded for all j > 1 and for all A € C

4. The subspace of E(Y) generated by U{A/A € C} contains ¢(Y).

C(X)= {(a:n) € w(X)/ sup Z@m%ﬁ‘ < oo forall Ae C}
(yn)€A | n
C(Y') = subspace generated by U{A/A e C}.
If C is the family of all finite subsets of F(Y), C(X) = F(Y)".
e(X) C C(X) and (C(X),C(Y)) is a separating duality defined by the
bilinear form:

((zn), (yn)) = Z (Tn,yn) for all (z,) € C(X) and for all (y,) € C(Y).

If 7 is the polgr topology of A—convergence of E(X), (A(X),74) is
defined, where 74 is the polar topology defined on A(X) by the family A,
and we have:

1. B(X) C A(X) C F(Y)?;

2. TA/E(X) =T.

We put:

Proposition 20. Let T a polar topology of A—convergence on E(X).
1. Siax)ra) © E(X),
2. (A(X),74) is AK—complete.
Proof. 1. Let z = (2) € S(a(x),r4); ol % (74), therefore (zl)

is Cauchy sequence in (E(X), ) (T = T4/5(x)), and then x € E(X) (proposition

17).
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2. Let (1) a Cauchy sequence in (A(X),74); for all A € A, there exists

Z <$nayn> /(yn) GA} < 1.

iop > 1 such that for all i, > ig sup
n=i+1

Z (T, Yn)

n>ig

We have on the one hand, sup{

sup{ > (T, yn)

(X); on the other hand, for all i > iy sup {

/(yn) € A} < 1, therefore

/(Yn) EA} < 0 (¢(X) € A (X)), and then z € A

e}

Z (Tn, Yn)

n=i+1

/(yn) € A} <1,

therefore }
sup {|(al — 2, (4a))] /() € A} < 1, and then 2l =% & (4). 0

Theorem 10. Let 7 a solid and polar topology of A—convergence on
E(X). For E(X) is a closed subspace of (A(X), T.4) it is necessary and suffi-
cient that any Cauchy net T'K —convergent of E(X) converges in (E(X), ).

Proof. N.C.] A is solid for all A € A, therefore A° =[AN p(X)]°.
Let (2);er a Cauchy and TK—convergent net in (E(X),7). For all
j = 1, let z; € X such that (z});cr converges in (X,7;) to z;.7; is the
polar topology of 77;-/ (A)—convergence on X. Let A € A, there exists kg € I
N
>~ (b, u5)
j=1
y € A. There exists k; € I such that for all r > k;, <w§ —:vj,yj>‘ <1
for all (y,) € A. Let 19 = max{ko,ki,....,kn} for all » > ro we have:

N
> (% = i)
j=1

N

Z <a:j - a:j,yj> < 1 for all (y,) € A and for all s > rp; therefore

such that for all r,s > kg <1 for all N > 1 and for all

< 11525\[‘<x§ — :Bj,yj>‘ < 1 for all (y,) € A.

j=1
2 —x € [ANp(X)]° for all s > rg. Furthermore, z = 2° — (z° —x) € A(X).
Therefore (2%);c; converges to x in (A(X),74), and then z € E(X) and
(2%);er converges to x in (E(X),T).

S.C.] Let (2%);er anet in E(X) which converges to x in (A(X),74). (z%)icr
is a Cauchy and TK —convergent net in (E(X),T) (T = T4/g(x)), therefore
(2")ier converges to = in (E(X), 7). I
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Lemma 2. Let L and M two K — vector spaces, T a topology on L, L —
M % L two linear maps such as mod = idys, and 15 the inverse image
topology of T by d on M.

The application ¢ : (M,7s) — (6(M),7), x — d(x), is an homeomor-
phism.

Proof. If U isa F.S.N of 0 for 7; a F.S.N of 0 for 75 is 6 }(U) =
{6~Y(U)/U e U}, and we have: "1 (UNS(M))=6"1(U) forall U € U. &

Theorem 11. Let 7 a polar and solid topology of A—convergence on
E(X); (E(X), ) is complete if and only if:

(i.) (X,7;) is complete for all j > 1;

(ii.) E(X) is a closed subspace of (A(X),TA).

Proof. N.C] 6 is (7,7;j)—closed for all j > 1 (proposition 13),
therefore 5]?((X) is a closed subspace of (E(X),7), hence (5;(()(),7') is
complete. Now (5;(()(),7) ~ (X, 7j) (lemma 2), therefore (X, 7;) is com-
plete. Furthermore E(X) is a closed subspace of (A(X),74) (theorem 10).

S.C.] Let (z*);er a Cauchy net in (E(X), 7). For j > 1, (l’;)ze] is Cauchy
in (X, 7;) so it converges, and then (z');cr is T K —convergent in (E(X), )
so it converges in (E(X),7), (theorem 10). I

Remark 2. We can replace (ii) of theorem 11 by:
(ii) Any Cauchy T K —convergent net in (E(X), T) converges in (E(X), ).

Corollary 8. Let T a polar and solid topology of A—convergence on E(X).
If E(X) is a closed subspace of (A(X),74); (E(X),7) is sequentially com-
plete if and only if (X, 7;) is sequentially complete for all j > 1.

Lemma 3. Let 7 a vector topology on E(X); if 7 is solid, Sg(x) is the
closure of p(X) in (E(X), 7).

Proof.  Spx) C ¢(X). Let x = () € p(X) and U a solid neighbor-
hood of 0, it is z = (2,) € @(X) as & — z € U. Since U is solid 2! — z € U
for i large enough, then zl) =% z in (E(X), 7) and hence = € Sex)- 1

Proposition 21. Let 7 a solid and polar topology of A—convergence on
E(X); if (X, 7;) is complete for all j > 1, (Sg(x),T) is complete.
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Proof.  Sgx) = ¢(X) (lemma 3), therefore (Sg(x),7) is a closed
subspace of (A(X),74), and then (Sg(x),7) is complete.

Application: Let (X, ||.||) a n.a Banach space, we consider m(X) en-
dowed with the n.a. norm ||.|| . We have co(X) = S;,(x), and |||, defines
a polar and solid topology on m(X), therefore (co(X), |.||o) is complete.

Theorem 12. Let 7 a solid and polar topology of A—convergence on
E(X); if E(X) is an AK —space, (E(X), T) is complete if and only if (X, 7;)
is complete for all j > 1.

Proof. N.C.] Obvious.

S.C.] E(X) is an AK —space, therefore E(X) = S(g(x)7)- Now S 4(x),7,4) C
E(X) (proposition 20) and S(E(X),q—) C S(A(X),T_A) , therefore F(X) =
S(B(x),r) = S(Ax),r4)> and then E(X) is a closed subspace of (A(X), 7).
Hence (E(X),7) is complete (theorem 11). I

References

[1] R. Ameziane Hassani, M. Babahmed, Topologies polaires compatibles
avec une dualité séparante sur un corps valué non-Archimédien,
Proyecciones Vol. 20, Num. 2, pp. 217-240, (2001).

[2] H.R. Chillingworth, Generalised ”"dual” sequence spaces, Ned. Akad.
Proc. Ser. A. 61, pp. 307-515, (1958).

[3] A.El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on
sequence spaces in non-archimedean analysis, J. of Mathemat-
ical Sciences: Advances and Applications Vol. 6, Num. 2, pp.
193-214, (2010).

[4] T. Komura; Y. Komura, sur les espaces parfaits de suites et leurs
généralisations, J. Math. Soc. Japon. 15, pp. 319-338, (1963).

[5] G. Kéthe, Topological vector spaces, Springer-Verlag Berlin Heidlberg
New york, (1969).

6] -———- , Neubegriindung der theorie der vollkommen Raume, Math.
Nach. 4, pp. 70-80, (1951).



Polar topologies on sequence spaces in non-archimedean analysis 123

K ; O. Toeplitz, Lineare Raiime mit unendlich vielen Koordi-
naten und Ringe unendlicher Matrizen, J. reine angew. Math.
171, pp. 193-226, (1934).

[8] G. Matthews, Generalised Rings of infinite matrices, Ned. Akad. Wet.
Proc. 61, pp. 298-306 (1958).

[9] A.F.Monna, Analyse non-archimédienne, Springer-Verlag Berlin New
York Heidelberg (1970).

[10] H.H. Schaefer, Topological vector spaces, Springer-Verlag Berlin New
york Heidlberg, (1971).

[11] W. H. Schikhof, Locally convex spaces over nonspherically complete
valued field I, II. Bull. Soc. Math. Belg. Sér. B. 38, pp. 187-224,
(1986).

[12] J. Van Tiel, Espaces localement K-convexes I-III, Indag. Math. 27,
pp. 249-289 (1965).

R. Ameziane Hassani

Département de Mathématiques
Faculté des Sciences Dhar El Mehraz
Université Sidi Mohamed Ben Abdellah
B. P. 1796 FES - MAROC

e-mail : ramezianehassani@hotmail.com

A. El Amrani

Département de Mathématiques
Faculté des Sciences Dhar El Mehraz
Université Sidi Mohamed Ben Abdellah
B. P. 1796, FES - MAROC

e-mail : ramezianehassani@hotmail.com
and

M. Babahmed

Département de Mathématiques
Faculté des Sciences de Meknes
Université Moulay Ismail

B. P. 11201 Zitoune

MEKNES - MAROC

e-mail : babahmed@fs-umi.ac.ma





