
Polar topologies on sequence spaces in
non-archimedean analysis

R. AMEZIANE HASSANI
A. EL AMRANI
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Abstract
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1. Introduction

The duality hλ, λαi , where λ is a scalar sequence space, was studied by
Köthe and Toeplitz [7] and it has been reformulated by Köthe [6] using

the theory of locally convex spaces. After, the duality
D
λ, λβ

E
has been

studied by Chillingworth [2], Matthews [8], T. Komura and Y. Komura
[4]. In this work, we are interested to a duality in non-archimedean se-
quence spaces. We consider a separated duality hX,Y i of vector spaces over
a non-archimedean valued field K (n.a); in [1] Ameziane and Babahmed
gave a fundamental properties of this duality. Afterwards we take E (X)
and E (Y ) two vector-valued sequence spaces over X and Y respectively
such that E (Y ) ⊂ E (X)β that are endwed with the separated duality
hE (X) , E (Y )i by the canonic bilinear form (p.108). We introduce the no-
tion of polar topoogies over E (X) ; and by the linear maps πXj and δXj
which we define in this paper; we study the polar topologies compatible
with the duality hE (X) , E (Y )i using the basic duality hX,Y i. Finally we
characterize C− compact, AK−complete and complete subsets of E (X)
relatively at these topologies. This study was useful in the study that we
made in [3].

Throughout this paper, K is a non-archimedean (n.a) non trivially val-
ued complete field with valuation |.|, X and Y are two n.a topological vector
spaces over K (or K vector spaces) that are in separated duality hX,Y i .
The duality theory for locally K−convex spaces can be found more exten-
sively in [1], [9] , [11] and [12].

2. Preliminary

A nonempty subset A of a K−vector space X is called K−convex if λx+
µy + γz ∈ A whenever x, y, z ∈ A, λ, µ, γ ∈ K, |λ| ≤ 1, |µ| ≤ 1, |γ| ≤ 1
and λ + µ + γ = 1. A is said to be absolutely K−convex if λx + µy ∈ A
whenever x, y ∈ A, λ, µ ∈ K, |λ| ≤ 1, |µ| ≤ 1. For a nonempty set A ⊂ X its
K−convex hull c (A) and absolutely K−convex hull c0 (A) are respectively
the smallest K−convex and absolutely K−convex set that contains A. If
A is a finite set {x1, ..., xn} we sometimes write c0 (x1, ..., xn) instead of
c0 (A) .

An absolutelyK−convex subset of a locallyK−convex spaceX is called
K− closed if for every x ∈ X the set {|λ| : λ ∈ K,λx ∈ A} is closed in
|K| . If the valuation on K is discrete every absolutely K−convex set A
is K−closed. If K has a dense valuation an absolutely K convex set A is
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K−closed if and only if from x ∈ E, λx ∈ A for all λ ∈ K, |λ| ≺ 1 it follows
that x ∈ A. Intersections ofK−closed sets areK−closed. For an absolutely
K−convex set A the K−closed hull of A is the smallest subset of X that
is K−closed and contains A, it is denoted by Kc (A) . If K is discrete we
have Kc (A) = A and if K is dense, Kc (A) = ∩ {λA : λ ∈ K and |λ| Â 1}
([1] p. 220) .

A topological vector space X over K is called locally K−convex space
if X has a base of zero consisting of locally K−convex sets.

Let (X, τ) a locally K−convex space, τ is define by a family of n.a.
semi-norms τ− continuous over X, and if K is discrete, we can suppose
that Np = {p(x)/x ∈ X} ⊂ |K| for every p ∈ P ([9]) ; where (P) is a family
of n.a semi-norms which define the topology τ.

If p is a (n.a) semi-norm over X, Bp (0, 1) is the set {x ∈ X : p (x) ≤ 1} .
A sequence (ei)i is a Schauder basis for X if every x ∈ X can be written

uniquely as x =
∞X
i=1

λixi where the coefficient functionals fj : x 7−→ λj are

continuous.
Let X a K−vector space and M a subset of X, a K−convex filter over

M, is a filter F over M having a basis B consisting of K−convex subsets
of M ; this basis is called K−convex basis of K−convex filter F .

The order of all filters on M induces an order on all K−convex filters
on M. A maximal element of the ordered set of K−convex filter on M is
called maximal K−convex filter of M.

Let (xi)i∈I a net on M ; for all i ∈ I, put Fi = {xj/j ≥ i} . (Fi)i∈I
is a filter over M called filter associated to a net (xi)i∈I . Conversely, if
F=(Fi)i∈I is a filter over M, for all i ∈ I let xi ∈ Fi ; over I we define
the following order: i ≤ j ⇔ Fj ⊂ Fi . (xi)i∈I is a net in M called a net
associated to a filter F .

Proposition 1. Let X a locally K−convex space, M a subset of X and
F=(Fi)i∈I a maximal K−convex filter over M.

1. F converges or not having any clusterpoint .
2. Let (xi)i∈I a net associated to a F ; if (xi)i∈I converges to x0,F

converges to x0.

Proof. 1. Let x0 a cluster point of F and (Uj)j∈J a K−convex
neighbourhood base of x0, F

0
= {Fi ∩ Uj/i ∈ I and j ∈ J} is a K−convex

filter which converges to x0 and it is coarsest than F , then F = F
0
.

2. x0 is a clusterpoint of (xi)i∈I , then it is a clusterpoint of F , and so
F converges to x0.
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Proposition 2. Let X,Y two K−vector spaces, f : X −→ Y a linear map
and F = (Fi)i∈I a maximal K−convex filter over X that having B us a
K−convex basis; f(B) is a K−convex basis of a maximal K−convex filter
over Y.

A subset A of a locally K−convex space X is compactoid if for each
neighbourhood U of zero there exist x1, ..., xn ∈ X such that A ⊂ U +
c0 (x1, ..., xn) .An absolutelyK−convex subsetA ofX is said to be C−compact
if every convex filter on A has a clusterpoint on A.
K is C−compact if and only if K is spherically complete.

Proposition 3. Let M be a subset of X. The following are equivalent:
(i). M is C−compact;
(ii). Every maximal K−convex filter over M converges;
(iii). Any family of closed and K−convex subsets of M whose inter-

section is empty contains a finite subfamily whose intersection is empty.

Let B a basis of a filter F on a subsetM ofX; the smallestK−convex fil-
ter containing B, is calledK−convex filter generated by B and is denoted by
Fc(B). We show that Fc (B) = {F ⊂M/there exists B ∈ B : c(B) ⊂ F} ,
and c(B) is K−convex basis of Fc(B), that is to say Fc(B) = F(c(B)).

If (xi)i∈I is a net in X; (xi)i∈I converges to x0 if and only if the filter
K−convex associated with (xi)i∈I converges to x0.

Proposition 4. Let X,Y two K−vector spaces, f : X −→ Y a linear
map, M a subset of X and B a base of filter on M. Then f(B) is a base of
filter on f(M), and we have Fc(f(B)) = f(Fc(B)).

(ω (X) , τω (X)) = the linear space of all sequences in X endowed with
the product topology τω (X) which is generated by the family of n.a semi-
norms (pn)n∈IN, p∈(P) , pn (x) = p (xn) for all x = (xn)n ∈ ω (X) and
all p ∈ (P) , if X is a locally K-convex space and (P) is a family of n.a
semi-norms which define his topology; this space is noted ω (K) (or ω, for
short) in case when X = K. A sequence space over X is a subspace of
ω (X) .

We define the following sequence spaces over X
c0 (X) = {(xk)k ∈ ω (X) : (xk)k converges to zero}
c (X) = {(xk)k ∈ ω (X) : (xk)k converges in X} ,
ϕ (X) = {(xk)k ∈ ω (X) : there exists k0 ∈ IN : xk = 0 for all k ≥ k0},
m (X) = {(xk)k ∈ ω (X) : (xk)k is bounded in X} .
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Over m (X) we define the sequence of n.a semi-norms (p)p∈(P) by:
p (x) = sup

k
p (xk) for all x = (xk)k ∈ m (X) .

Let τ∞ (X) be the topology on m (X) defined with the sequence of n.a
semi-norms (p)p∈(P) .

3. Polar topologies

Let X and Y two K−vector spaces placed in separating duality hX,Y i . If
A is a subset of X, we denote by A◦ = {y ∈ Y/ |hx, yi| ≤ 1 for all x ∈ A}
the polar of A and A◦◦ = {x ∈ X/ |hx, yi| ≤ 1 for all y ∈ A◦} the bipolar
of A.

A◦ is absolutely K−convex and σ(Y,X)−bounded.
For each absolutely K−convex subset A of Y , Kc

³
A
σ(Y,X)

´
= A◦◦ ([1] ,

corollary 4.3, p. 233). A subset A of Y is said to be X−closed if for every
y ∈ Y \ A, there exits x ∈ X such that |hx, yi| Â 1 and |hx,Ai| ≤ 1.
Intersections of X−closed sets are X−closed. For a subset A of Y the
X−closed hull Xc (A) of A is the smallest X−closed subset of Y that
contains A. For each subset A of Y , Xc (A) = A◦◦([1] , proposition 2.5, p.
224). Using these two results and by [1], theorem 4.2, p. 233 we have: for
all absolutely K−convex subset A of Y , A is X−closed, if and only if, A is
K−closed and σ (Y,X)−closed.

Let A be a family of σ (Y,X)−bounded subsets of Y such that
(a) A is directed by inclusion,
(b) Y =

[
A∈A

A,

(c) there exists λ0 ∈ K, |λ0| > 1 such that λ0A ∈ A, for all A ∈ A.

A topology τ on X is called polar topology of A−convergence, if τ
has a fundamental system of zero−neighbourhood (F.S.N) consisting of
{A◦/A ∈ A} .

A vector topology τ onX is called polar topology if there exists a family
A of σ (Y,X)−bounded subsets of Y which has the properties (a) , (b) and
(c) , such that τ is a polar topology of A−convergence. it is defined by the
family of n.a. semi-norms (PA)A∈A, where PA(x) = sup {|hx, yi| /y ∈ A} .

If A is the family of all subsets of Y that are:

1. Absolutely K−convex, weakly bounded and weakly C−compacts,
we have the C−compact topology τc (X,Y ) = τc,

2. Absolutely convex and σ (Y,X)−compact, we have the Mackey
topology τm (X,Y ) = τm,
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3. σ (Y,X)−bounded and X−closed, we have the X−closed topology
τe (X,Y ) = τe.

4. σ(Y,X)−bounded, we have the strong topology τb(X,Y ).

A locally K−convex topology τ on X is called compatible with the
duality hX,Y i or (X,Y )−compatible if Y is isomorphic to the topological
dual of X provided with the topology τ. The weak topology σ(X,Y ) is the
coarsest topology among all topologies (X,Y )−compatible, and the upper
bound topology of all topologies (X,Y )−compatible topology is the finest
among all the topologies (X,Y )−compatible.

We say that X is semi-reflexive if X is isomorphic to the strong topo-
logical dual of Y and if τ is a locally K−convex topology on X we say that
X is τ−reflexive if X is semi-reflexive and τ = τb(X,X

0
).

For further information about polar topology of A−convergence and
general properties of locally K−convex spaces we refer to [1], [11] and [12].

If A ⊂ ω (X) , the β−dual of A is the subspace of ω (Y ) which is define
by Aβ =

n
(yn)n ∈ ω (Y ) : lim

n
hxn, yni = 0 for all (xn)n ∈ A

o
. A is called

perfect if Aββ = A. If A is perfect then ϕ (X) ⊂ A. For all A ⊂ ω (X), Aβ

is perfect. We define Bβ if B ⊂ ω (Y ) on the same way.

A subset D of ω (X) is said to be solid if for every x = (xk)k ∈ D and
α = (αk)k ∈ ω such that |αk| ≤ 1 for all k, we have αx = (αkxk)k ∈ D.
The solid hull S (D) of D is the smallest solid set of sequence containing
D.

A topology on E (X) , with respect the duality
D
E (X) , E (X)β

E
, will

be called solid if the elements of the determining family of weakly bounded
subsets of E (X)β are solids sets.

Let E (X) and E (Y ) be two sequence spaces on X and Y respectively
such that E (Y ) ⊂ E (X)β, we define on the pair (E (X) , E (Y )) the fol-

lowing duality h(xn)n , (yn)ni =
∞X
n=1

hxn, yni for all (xn)n ∈ E (X) and all

(yn)n ∈ E (Y ) .

If ϕ(X) ⊂ E(X) and ϕ(Y ) ⊂ E(Y ), the duality hE(X), E(Y )i is sepa-
rate.

In the sequel hE(X), E(Y )i denotes a duality of this type.
S(E(Y )) ⊂ [S(E(X))]β and hS(E(X)), S(F (Y ))i is a separating duality

extending the separating duality hE(X), F (Y )i , therefore, we can assume
that E(X) and F (Y ) are solid.

For all j ≥ 1, we consider the following linear mappings:



Polar topologies on sequence spaces in non-archimedean analysis 109

πXj : E(X) −→ X

(xn) −→ xj

δXj : X −→ E(X)

a −→ δj(a)
where δj (a) is the sequence with a in the j-th place and 0’s elsewhere.

We define also πYj and δYj .

Let x = (xk) ∈ ω(X), for all n ≥ 1 x[n] =
nX

j=1

δj(xj) is called the n
ith

section of x.

We have: πXj oδ
X
j = idX , π

Y
j oδ

Y
j = idY , (π

X
j )
∗/Y = δYj and (δ

X
j )
∗/F (Y ) =

πYj where u
∗ is the algebraic adjoint of the linear map u.

Proposition 5. Let A be a subset of E(X) if A is solid, A◦ is solid and
we have: A◦ = [A ∩ ϕ(X)]◦.

Definition 1. Let A a subset of ω(X).

a. Is said that A is δXj −saturated if for all (xn) ∈ A, δXj (xj) ∈ A.

b. It is said that A is δX−saturated if A is δXj −saturated for all j ≥ 1.
c. It is said that A is πX−saturated if: xj ∈ πXj (A) for all j ≥ 1 ⇒

(xn) ∈ A.

If A is solid, A is δX−saturated.
ϕ(X) is δX−saturated and not πX−saturated.
If p is a n.a. semi-norm on X,

½
(xn) ∈ ω(X)/ sup

n
p(xn) ≤ 1

¾
is

πX−saturated.
The following results are demonstrated in a direct:

Proposition 6. Let A be a subset of E(X).

1. If A is πX−saturated, S(A) is πX−saturated.
2. If A is δX−saturated, S(A) and c0 (A) are δX−saturated, and A◦ is

δY− saturated and πY−saturated.
3.
h
πXj (A)

i◦
⊂ πYj (A

◦) for all j ≥ 1.
4. If A is δXj −saturated,

h
πXj (A)

i◦
= πYj (A

◦).

5. If A is δX−saturated,

A◦ = πXj

h
πYj (A

◦)
i
=

½
(yk) ∈ F (Y )/ sup

k
|hxk, yki| ≤ 1 for all (xk) ∈ A

¾
.

6. S(A)◦ ⊂ S(A◦); and if A is δX−saturated, A◦ = S(A)◦ = S(A◦).
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7. If A is δX−saturated and F (Y )−closed, πXj (A) is Y−closed for all
j ≥ 1.

8. If A is πX−saturated and πXj (A) is Y−closed for all j ≥ 1, A is
F (Y )− closed.

Corollary 1. LetA be a subset ofE(X) δX−saturated and πX−saturated.
ForA is F (Y )−closed, it is necessary and enough that πXj (A) be Y−closed

for all j ≥ 1.

Proposition 7. Let A be an absolutely K−convex subset of E(X).
1. If A is K−closed and δXj −saturated, πXj (A) is K−closed.
2. If A is πX−saturated and πXj (A) is K−closed for all j ≥ 1, A is

K−closed.

Proposition 8. Let τ be a topology on E(X) and τj the topology im-
age reciprocal of τ by the linear map δXj on X. If τ admits as S.F.N of

0 {A◦/A ∈ A} , then
nh
πYj (A)

i◦
/A ∈ A

o
is a F.S.N. of 0 for τj .

Proof. ([1] , proposition 2.9) .

Proposition 9. For all j ≥ 1, πXj is (σ(E(X), F (Y )), σ(X,Y ))−continuous
and δXj is (σ(X,Y ), σ(E(X), F (Y )))−continuous.

Proof. (πXj )
∗(Y ) ⊂ F (Y ) and (δXj )

∗(F (Y )) ⊂ Y, and the result
follows from ([9] , p. 128) .

Proposition 10. 1.
h
πXj (A)

i◦
= (δYj )

−1(A◦) for all A ⊂ E(X).

2.
h
δXj (B)

i◦
= (πYj )

−1(B◦) for all B ⊂ X.

3. πXj (A) ⊂ B ⇒ δYj (B
◦) ⊂ A◦ for all A ⊂ E(X) and for all B ⊂ X.

4. δXj (B) ⊂ A⇒ πYj (A
◦) ⊂ B◦ for all A ⊂ E(X) and for all B ⊂ X.

5. (πXj )
−1(D◦) =

h
δYj (D)

i◦
for all D ⊂ Y.

6. (δXj )
−1(C◦) =

h
πYj (C)

i◦
for all C ⊂ F (Y ).

7. (πXj )
∗(D) ⊂ C ⇒ πXj (C

◦) ⊂ D◦ for all D ⊂ Y and for all C ⊂ E(Y ).

8. (δXj )
∗(C) ⊂ D⇒ δXj (D

◦) ⊂ C◦ for all D ⊂ Y and for all C ⊂ E(Y ).

Proof. ([1] , proposition 2.8) .
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A polar topology of A−convergence on E(X) is said solid, if all A ∈ A
is solid. Thus, any polar, solid topology admits a F.S.N from 0 consisting
of solid subsets .

If τ is the polar topology of A−convergence on E(X) such that A
is δY−saturated for all A ∈ A, τ coincides with the polar topology of
S(A)−convergence (proposition 6), and then τ is a polar and solid topology
.

Proposition 11. Let τ be a polar topology of A−convergence over E(X)
and τj the topology image reciprocal of τ by the linear map δXj on X.

1. τj is the polar topology of π
Y
j (A)−convergence.

2. πXj is (τ, τj)−continuous if and only if δYj oπYj (A) ∈ A for all A ∈ A.

Proof. ([1] , proposition 3.8 ) .

Proposition 12. If τ is the weak topology (resp. Mackey, resp. C−compact,
resp.
E(X)−closed; resp. strong) of E(X) for all j ≥ 1, τj is the weak topology
(resp. Mackey, resp. C−compact, resp. X−closed; resp. strong) on X

Proof. ([1] , proposition 3.9 ) .

Proposition 13. Let τ a polar topology of A−convergence on E(X), for
all j ≥ 1, we have:

1. δXj is (τj , τ)−continuous;
2. If τ is solid, πXj is (τ, τj)−continuous;
3. If πXj is (τ, τj)−continuous, δXj is (τj , τ)−closed.

Proof. 1. τj is a polar topology of π
Y
j (A)−convergence, and we

have:
δXj

³h
πYj (A)

i◦´
⊂ A◦ for all A ∈ A.

2. If τ is solid, we have : πXj (A
◦) ⊂

h
πYj (A)

i◦
for all A ∈ A.

3. Let M a closed in (X, τj), there exists A ∈ A such that
h
πYj (A)

i◦
⊂

M◦, therefore A◦ ⊂ δXj (M
◦) =

h
δXj (M)

i◦
.

Let τ be a locally K−convex topology on E(X) such that E(X) be
τ−polar; if τ is (E(X)F (Y ))−compatible, τ is a polar topology of
A−convergence, where A is constituted of σ(F (Y ), E(X))−bounded and
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E(X)−closed subsets of F (Y ), ([1 ], theorem 4.3). For all j ≥ 1, τj is the
polar topology of πYj (A)−convergence on X and X is τj−polar if all A ∈ A
is δY−saturated, πXj (A) is σ(Y,X)−bounded and X−closed (Proposition
6), and then τj is (X,Y )−compatible.

If K is spherically complete, we have the following theorem:

Theorem 1. Suppose that K be spherically complete, and let τ a lo-
cally K−convex topology on E(X); if τ is (E(X), F (Y ))−compatible, τj
is (X,Y )−compatible, for all j ≥ 1.

Proof. τ is a polar topology of A convergence, where A consists
of absolutely K convex , σ(E(Y ), E(X))−bounded and σ(E(Y ), E(X)) −
C−compact subsets of F (Y ) ([1] , theorem 4.4) . For all j ≥ 1, πYj is

(σ(F (Y ), E(X)), σ(Y,X))−continuous, then πYj (A) is absolutelyK−convex,
σ(Y,X)− bounded and σ(Y,X)−C−compact for all A ∈ A and then τj is
(X,Y )−compatible.

Theorem 2. Let τ a solid and polar topology on E(X); ifE(X) is τ−barreled,
X is τj−barreled for all j ≥ 1.

Proof. Let B a τj−barrel in X; δXj is (τj , τ)−closed, then δXj (B) is

a τ− barrel into E(X) and then (δXj )−1(δXj (B)) is a neighborhood of 0 in
(X, τj) then B is a neighborhood of 0 for τj .

Remark 1. Instead of assuming that τ is solid, we can assume only that
πXj be (τ, τj)−continuous for all j ≥ 1.

A subset A of E(X) said to be δX−stable if for all x = (xk) ∈ E(X) such
that there exists j ≥ 1 satisfying δXj (xj) ∈ A, then x ∈ A.

Let A ⊂ E(X) such that A ∩
n
δXj (a)/a ∈ X and j ≥ 1

o
= φ, A is δX

stable.

Definition 2. Let τ a vector topology on E(X); we say that E(X) is
δXτ−barreled if every τ−barrel δX−stable, is a neighborhood of 0.

If E(X) is τ−barreled, it is δXτ−barreled.

Theorem 3. Let τ a polar and solid topology on E(X); if there exists j ≥
1 such that X is τj−barreled, E(X) is δXτ−barreled
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Proof. LetB a τ−barrel δX−stable inE(X); δXj is (τj , τ)−continuous,
so (δXj )

−1(B) is a τj−barrel, and then (δXj )−1(B) is a neighborhood of 0 in
(X, τj) and hence (π

X
j )
−1
h
(δXj )

−1(B)
i
is a neighborhood of 0 in (E(X), τ). B

is δX− stable, then (πXj )−1
h
(δXj )

−1(B)
i
⊂ B and then B is a neighborhood

of 0 in (E(X), τ).

Theorem 4. Suppose that X and Y are semi-reflexive, and let τ a topol-
ogy on E(X) which is (E(X), F (Y ))−compatible. If E(X) is τ−reflexive,
X is τj−reflexive for every j ≥ 1.

Proof. τ = τb(E(X), E(X)
0
) = τb(E(X), F (Y )); so for all j ≥ 1 τj =

τb(X,Y ) (Proposition 12). Y is semi-reflexive, then τj is (X,Y )−compatible
([ 1], proposition 5.9) and then τj = τb(X, (X, τj)

0
).

Corollary 2. If K is spherically complete and τ is a topology on E(X)
which is (E(X), F (Y ))−compatible and solid such thatE(X) is τ−barreled,
then X is τj reflexive for any j ≥ 1.

Proof. For all j ≥ 1, τj is (X,Y )−compatible (theorem 1) and X is
τj−barreled for all j ≥ 1, then X is τj−reflexive ([1] , theorem 5.2) .

4. Compactness and C−compactness

Let τ a polar topology on E(X) such that πXj be (τ, τj)−continuous for all
j ≥ 1. If M is a compact subset of (E(X), τ); πXj (M) is a compact subset
of (X, τj) for all j ≥ 1.

In order to study the converse, we introduce the notion of TK−convergent
net.

Definition 3. A net (xi)i∈I in E(X) is called TK−convergent if for all
j ≥ 1, (xij)i∈I is convergent in (X, τj).

Theorem 5. LetM a subset ofE(X);M is relatively compact in (E(X), τ)
if and only if:

(i.) πXj (M) is relatively compact in (X, τj) for all j ≥ 1;
(ii.) All TK−convergent net in M, converges in (E(X), τ).
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Proof. N.C.] πXj is (τ, τj)−continuous for all j ≥ 1, then πXj (M) is

relatively compact in (X, τj). Let (x
i)i∈I a TK−convergent net in M. For

all j ≥ 1 let xj ∈ X such that (xij)i∈I converges to xj in (X, τj). (x
i)i∈I has

a cluster point z = (zn) in (E(X), τ). For all j ≥ 1, zj is a cluster point of
(xij)i∈I in (X, τj); then zj = xj . (xn) is the unique cluster point of (x

i)i∈I ,

therefore (xi)i∈I converges to (xn) in (E(X), τ).
S.C.] Let (xi)i∈I a net inM, and letA the family of σ(F (Y ), E(X))−bounded

subset of F (Y ) which defines the topology τ. For any j ≥ 1, τj is the polar
topology of πYj (A)−convergence on X.

Let x1 a cluster point of (x
i
1)i∈I in (X, τ1). For all A ∈ A and for all

i ∈ I, there exists iA > i such that xiA1 ∈
h
πY1 (A)

i◦
. Consider the sub

family (iA)A∈A of I, it is ordered by: iA ≤ iB ⇔ A ⊂ B for all A,B ∈ A.
(iA)A∈A is a filter on the right family. Let A0 ∈ A; iA ≥ iA0 ⇒ A0 ⊂
A⇒

h
πY1 (A)

i◦
⊂
h
πY1 (A0)

i◦
⇒ xiA1 − x1 ∈

h
πY1 (A0)

i◦
. Therefore (xiA1 )A∈A

converges to x1 in (X, τ1).
Let x2 a cluster point of (x

iA
2 )A∈A in (X, τ2). for all A ∈ A, there exists

l1(iA) > iA such that x
l1(iA)
2 − x2 ∈

h
πY2 (A)

i◦
.

Let A0 ∈ A; iA ≥ iA0 ⇒ A ⊃ A0 ⇒
h
πY2 (A)

i◦
⊂
h
πY2 (A0)

i◦
⇒ x

l1(iA)
2 −

x2 ∈
h
πY2 (A0)

i◦
. Therefore (x

l1(iA)
2 )A∈A converges to x2 in (X, τ2). Let

x3 a cluster point of (x
l1(iA)
3 )A∈A in (X, τ3). For all A ∈ A, there exists

l2(l1(iA)) > l1(iA) such that x
l2ol1(iA)
3 − x3 ∈

h
πY3 (A)

i◦
. (x

l2ol1(iA)
3 )A∈A

converges to x3 in (X, τ3).
Inductively, for all j ≥ 3 and for allA ∈ A, there exists ljolj−1o....l1(iA) >

lj−1o.....ol1(iA) such that (x
ljo...ol1(iA)
j+1 )A∈A converges to xj+1 in (X, τj+1).

Put y = (xiA , xl1(iA), xl2ol1(iA), ...., xlko....ol1(iA), ....)A∈A.

For all j ≥ 1, (xiAj , x
l1(iA)
j , x

l2ol1(iA)
j , ...., x

lko....ol1(iA)
j , ....)A∈A converges

to xj in (X, τj); therefore y is TK−convergent, and hence it converges to x
in (E(X), τ). Hence x is a cluster point of (xi)i∈I , and then M is relatively
compact.

Corollary 3. Let M a subset of E(X), M is compact in (E(X), τ) if and
only if:

(i.) πXj (M) is compact in (X, τj) for all j ≥ 1,
(ii.) Any TK−convergent net in M converges to an element of M in

(E(X), τ).

To give version of theorem 5 using the filters, we need introduce the
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following definition:

Definition 4. Let M a subset of E(X) and F a filter onM ; we say that F
is TK− convergent if for all j ≥ 1 the filter generated by πXj (F) converges
in (X, τj).

Every convergent filter is TK−convergent, and if F is a TK−convergent
filter and F 0 is a filter finer than F , F 0 is TK−convergent.

Proposition 14. Let M a subset of E(X).
1. If F = (Fi)i∈I is a TK−convergent filter on M, any net associated

to F is TK−convergent.
2. If (xi)i∈I is a TK−convergent net, the K−convex filter associated

to (xi)i∈I is TK−convergent.

Theorem 6. Let M a subset of E(X); M is compact in (E(X), τ) if and
only if:

(i.) πXj (M) is compact in (X, τj) for all j ≥ 1;
(ii.) Any TK−convergent filter on M converges to an element of M.

Proof. N.C.] Let F a TK−convergent filter on M. For any j ≥ 1
let xj ∈ X such that πXj (F) converges to xj in (X, τj). F has at least one

cluster point z = (zn) in M. For all j ≥ 1, zj is a cluster point of πXj (F),
therefore zj = xj ; then (xn) is the unique cluster point of F in M, so F
converges to (xn) in (M, τ).

S.C.] Let F a maximal filter on M ; for all j ≥ 1 πXj (F) is a maximal
filter on πXj (M), therefore it converges to xj in (X, τj), and then F is TK−
convergent, therefore it converges to an element of M.

Definition 5. LetM a subset of E(X), we say thatM is an AK—complete
subset of (E(X), τ) if every x = (xn) element of E(X) such that (x

[n]) is a
Cauchy sequence in (M, τ); x ∈M and (x[n]) converges to x in (E(X), τ).

We say thatM is relatively AK−complete if its closureM in (E(X), τ)
is AK− complete.

If M is complete, it is AK−complete.
Any closed subset of a set AK−complete is AK−complete.

In the following result, we characterize the subsets solid and relatively
compact of (E(X), τ).
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Theorem 7. Let M a solid subset of E(X), M is relatively compact in
(E(X), τ) if and only if:

(i.) πXj (M) is relatively compact in (X, τj) for all j ≥ 1,
(ii.) x[i]

i→∞−→ x uniformly on M in (E(X), τ),
(iii.) M is relatively AK−complete in (E(X), τ).

Proof. N.C.] If M is relatively compact, M is relatively complete,
and then it is relatively AK−complete.

Suppose we did not (ii.) there exists A ∈ A a sequence (ix)i in M and
a strictly increasing sequence of integers (ji)i such that

ix[ji] −i x /∈ A◦ for
all i ≥ 1. The sequence (ix[ji]−i x)i is TK−convergent to 0, so it converges
to 0 in (E(X), τ) which is absurd.

S.C.] Let (αx)α∈D a net inM such that for all j ≥ 1 (αxj)α∈D converges

to xj in (X, τj). Let A ∈ A for all i ≥ 1 αx[i]−x[i] =
iX

n=1

δXn (
αxn−xn) ∈ A◦

for α sufficiently large. So for all i ≥ 1 αx[i]
α−→ x[i] in (E(X), τ) in

particular x[i] ∈ M for all i ≥ 1. Using this convergence and (ii), we can
choose α as x[i]−x[j] = (x[i]−αx[i])+(αx[i]−αx)+(αx−αx[j])+(αx[j]−x[j]) ∈
A◦ for i, j sufficiently great. Therefore (x[i]) is a Cauchy net inM and then

x[i]
i→+∞−→ x in (E(X), τ). From this convergence and (ii), we can choose i

such that αx− x = (αx−α x[i]) + (αx[i] − x[i]) + (x[i] − x) ∈ A◦ for α Large
enough, so (αx)α∈D converges to x in (E(X), τ) and hence M is relatively
compact (theorem 5).

Corollary 4. Let M a solid subset of E(X); M is compact in (E(X), τ)
if and only if:

(i.) πXj (M) is compact in (X, τj) for all j ≥ 1,
(ii.) x[i]

i→∞−→ x uniformly on M in (E(X), τ)
(iii.) M is AK−complete in (E(X), τ).

Corollary 5. The envelope solid of a relatively compact subset of (E(X), τ)
is not necessarily relatively compact.

Proof. Let x = (xn) ∈ E(X) such that (x[i])i does not converge to
x in (E(X), τ) so (z[i])i does not converge to z uniformly on S(x) and then
S(x) is not relatively compact.

Proposition 15. 1. Let (xi)i∈I a net in E(X); if F is a K−convex filter
associated with (xi)i∈I , πXj (F) is a K−convex filter associated with a net
(xij)i∈I for all j ≥ 1.
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2. Let F a K−convex filter on E(X); if (xi)i∈I is a net associated to
F , (xij)i∈I is a net associated to πXj (F) for all j ≥ 1.

Theorem 8. Let M a K−convex subset of E(X); M is C−compact in
(E(X), τ) if and only if:

(i.) πXj (M) is C−compact in (X, τj) for all j ≥ 1,
(ii.) Any K−convex and TK−convergent filter on M admits a cluster

point in M.

Proof. N.C.] Obvious.
S.C.] Let F a maximum K−convex filter ofM. For any j ≥ 1, πXj (F) is

a maximumK−convex filter of πXj (M) (proposition 2), so πXj (F) converges
to xj in (X, τj). F is then TK−convergent, so it admits a cluster point in
M, and hence F converges in (E(X), τ) (Proposition 1).

Proposition 16. LetM aK−convex subset of E(X); ifM is C−compact,
any K−convex and TK−convergent filter on M has a unique cluster point
in M.

Proof. Let F a K−convex and TK−convergent filter on M. For all
j ≥ 1 let xj ∈ X such that πXj (F) converges to xj in (X, τj). F admits
at least one cluster point (zn) in M. For all j ≥ 1, zj is a cluster point of
πXj (F) in (X, τj), and then xj = zj . So (xj) is the only cluster point of F
in M.

5. AK−completion and completion

Let M a subset of E(X) and τ a topology on E(X), we put:

SM =
n
x ∈M/x[n]

n→∞−→ x in (E(X), τ)
o
.

IfM is a subspace of E(X), we say thatM is an AK−space if SM =M.

Proposition 17. Let τ a polar topology ofA convergence onE(X); (E(X), τ)
is AK−complete.

Proof. Let x = (xn) ∈ E(X) such that (x[n]) is a Cauchy sequence
in (E(X), τ). For all A ∈ A there exists n0 ≥ 1 such that x[n] − x[m] ∈ A◦

for all n ≥ m ≥ n0, and then x[n] − x ∈ A◦ for all n ≥ n0, then x[n]
n→∞−→ x

in (E(X), τ).
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Corollary 6. Let M a subset of E(X).M is AK−complete if and only if
M contains every element x of E(X) such that (x[n]) is the Cauchy sequence
in M.

Corollary 7. Let τ 0 a locally K−convex topology on E(X) coarser than
τ ; any AK−complete subset of (E(X), τ 0) is complete in (E(X), τ).

Proof. Let M an AK−complete subset of (E(X), τ 0), and either
x ∈ E(X) such that (x[n]) is a Cauchy sequence in (M, τ), (x[n]) is a
Cauchy sequence in (M, τ 0), so x ∈ M and hence M is AK−complete in
(E(X), τ), (Corollary 6).

For all x = (xn) ∈ E(X), we put
ψx : E(Y ) −→ c0(K)

(yn) −→ (hxn, yni)n
ψx is a linear map.

Lemma 1. For any x ∈ E(X), ψx is (σ(E(Y ), E(X)), σ(c0(K),m(K)))−
continuous.

Proof. c0(K)
β = m(K) and hc0(K),m(K)i is a separating dual-

ity. Let (αn) ∈ m(K); E(X) is solid, then (αnxn) ∈ E(X), and we have
ψx({(αn xn)}◦) ⊂ {(αn)}◦ .

Proposition 18. (E(X), σ(E(X), E(Y ))) is an AK−space.

Proof. Let x = (xn) ∈ E(X). For all y = (yn) ∈ E(Y ), (hxn, yni) ∈
c0(K); there exists i0 ≥ 1 such that sup

n≥i0
|hxn, yni| ≤ 1, then x[i]−x ∈ {y}◦

for all i ≥ i0, and then x[i]
i→∞−→ x in (E(X), σ(E(X), E(Y ))).

Proposition 19. Suppose that K be local, and let τ a (E(X), F (Y ))−
compatible topology on E(X); if τ is solid, (E(X), τ) is an AK−space.

Proof. Let A a family of σ(F (Y ), E(X))−compacts and absolutely
K−convex subsets of F (Y ) such that τ be a polar topology ofA−convergence
([1] , theorem 4.5.) Let x = (xn) ∈ E(X); for all A ∈ A, ψx(A) is solid
and σ(c0(K), m(K))−compact in c0(K). Then z[i]

i→∞−→ z uniformly on
z ∈ ψx(A) in (c0(K), σ(c0(K),m(K))) (theorem 7); there exists i0 ≥ 1

such that
¯̄̄D
z[i] − z, e

E¯̄̄
≤ 1 for all i ≥ i0 and for all z ∈ ψx(A), then

x[i] − x ∈ A◦ for all i ≥ i0, and so x
[i] i→∞−→ x in (E(X), τ).

We have the following result which is a kind of reciprocal of theorem 1:
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Theorem 9. Suppose that K be local, and let τ a polar and solid topology

on E(X) for separating duality
D
E(X), E(X)β

E
. If τj is (X,Y )−compatible

for all j ≥ 1, τ is (E(X), E(X)β)−compatible.

Proof. E(X)β = (E(X), σ(E(X), E(X)β))
0 ⊂ (E(X), τ)0 . Let f ∈

(E(X), τ)0 and x = (xn) ∈ E(X). (E(X), τ) is an AK−space (proposi-
tion 19), therefore x[i]

i→∞−→ x in (E(X), τ), and then f(x) = lim
i
f(x[i]) =X

j

foδXj (xj). For all j ≥ 1, foδXj ∈ (X, τj)
0
= Y ; therefore f(x) =X

j

hxj , yji , with yj = foδXj for all j ≥ 1. Hence (yj) ∈ E(X)β, and so

(E(X), τ)0 ⊂ E(X)β.

Let C a family of subsets of F (Y ) such that:
1. C is the right filtering for inclusion;
2. There exist λ0 ∈ K, |λ0| > 1 such that λ0A ∈ C for all A ∈ C;
3. πYj (A) is σ(Y,X)−bounded for all j ≥ 1 and for all A ∈ C
4. The subspace of E(Y ) generated by ∪ {A/A ∈ C} contains ϕ(Y ).

We put:

⎧⎪⎨⎪⎩ C(X) =
(
(xn) ∈ ω(X)/ sup

(yn)∈A

¯̄̄̄
¯X
n

hxn, yni
¯̄̄̄
¯ <∞ for all A ∈ C

)
C(Y ) = subspace generated by ∪ {A/A ∈ C} .

If C is the family of all finite subsets of F (Y ), C(X) = F (Y )β.
ϕ(X) ⊂ C(X) and hC(X), C(Y )i is a separating duality defined by the

bilinear form:
h(xn), (yn)i =

X
n

hxn, yni for all (xn) ∈ C(X) and for all (yn) ∈ C(Y ).

If τ is the polar topology of A−convergence of E(X), (A(X), τA) is
defined, where τA is the polar topology defined on A(X) by the family A,
and we have:

1. E(X) ⊂ A(X) ⊂ F (Y )β;
2. τA/E(X) = τ.

Proposition 20. Let τ a polar topology of A−convergence on E(X).
1. S(A(X),τA) ⊂ E(X),
2. (A(X), τA) is AK−complete.

Proof. 1. Let x = (xn) ∈ S(A(X),τA); x
[i] i→∞−→ x (τA), therefore (x[i])

is Cauchy sequence in (E(X), τ) (τ = τA/E(X)), and then x ∈ E(X) (proposition
17).
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2. Let (x[i]) a Cauchy sequence in (A(X), τA); for all A ∈ A, there exists

i0 ≥ 1 such that for all i, j ≥ i0 sup

⎧⎨⎩
¯̄̄̄
¯̄ jX
n=i+1

hxn, yni

¯̄̄̄
¯̄ /(yn) ∈ A

⎫⎬⎭ ≤ 1.

We have on the one hand, sup

⎧⎨⎩
¯̄̄̄
¯̄X
n>i0

hxn, yni

¯̄̄̄
¯̄ /(yn) ∈ A

⎫⎬⎭ ≤ 1, therefore
sup

(¯̄̄̄
¯X
n

hxn, yni
¯̄̄̄
¯ /(yn) ∈ A

)
< ∞ (ϕ(X) ⊂ A (X)), and then x ∈ A

(X); on the other hand, for all i ≥ i0 sup

⎧⎨⎩
¯̄̄̄
¯̄ ∞X
n=i+1

hxn, yni

¯̄̄̄
¯̄ /(yn) ∈ A

⎫⎬⎭ ≤ 1,
therefore
sup

n¯̄̄D
x[i] − x, (yn)

E¯̄̄
/(yn) ∈ A

o
≤ 1, and then x[i]

i→∞−→ x (τA).

Theorem 10. Let τ a solid and polar topology of A−convergence on
E(X). For E(X) is a closed subspace of (A(X), τA) it is necessary and suffi-
cient that any Cauchy net TK−convergent of E(X) converges in (E(X), τ).

Proof. N.C.] A is solid for all A ∈ A, therefore A◦ = [A ∩ ϕ(X)]◦ .
Let (xi)i∈I a Cauchy and TK−convergent net in (E(X), τ). For all

j ≥ 1, let xj ∈ X such that (xij)i∈I converges in (X, τj) to xj . τj is the

polar topology of πYj (A)−convergence on X. Let A ∈ A, there exists k0 ∈ I

such that for all r, s ≥ k0

¯̄̄̄
¯̄ NX
j=1

D
xrj − xsj , yj

E¯̄̄̄¯̄ ≤ 1 for all N ≥ 1 and for all
y ∈ A. There exists kj ∈ I such that for all r ≥ kj ,

¯̄̄D
xrj − xj , yj

E¯̄̄
≤ 1

for all (yn) ∈ A. Let r0 = max {k0, k1, ..., kN} for all r ≥ r0 we have:¯̄̄̄
¯̄ NX
j=1

D
xrj − xj , yj

E¯̄̄̄¯̄ ≤ max
1≤j≤N

¯̄̄D
xrj − xj , yj

E¯̄̄
≤ 1 for all (yn) ∈ A.¯̄̄̄

¯̄ NX
j=1

D
xsj − xj , yj

E¯̄̄̄¯̄ ≤ 1 for all (yn) ∈ A and for all s ≥ r0; therefore

xs−x ∈ [A ∩ ϕ(X)]◦ for all s ≥ r0. Furthermore, x = xs−(xs−x) ∈ A(X).
Therefore (xi)i∈I converges to x in (A(X), τA), and then x ∈ E(X) and
(xi)i∈I converges to x in (E(X), τ).

S.C.] Let (xi)i∈I a net inE(X) which converges to x in (A(X), τA). (xi)i∈I
is a Cauchy and TK−convergent net in (E(X), τ) (τ = τA/E(X)), therefore
(xi)i∈I converges to x in (E(X), τ).
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Lemma 2. Let L andM two K− vector spaces, τ a topology on L, L π−→
M

δ−→ L two linear maps such as πoδ = idM , and τδ the inverse image
topology of τ by δ on M.
The application ψ : (M, τδ) −→ (δ(M), τ), x −→ δ(x), is an homeomor-
phism.

Proof. If U is a F.S.N of 0 for τ ; a F.S.N of 0 for τδ is δ
−1(U) =©

δ−1(U)/U ∈ U
ª
, and we have: ψ−1(U ∩ δ(M)) = δ−1(U) for all U ∈ U .

Theorem 11. Let τ a polar and solid topology of A−convergence on
E(X); (E(X), τ) is complete if and only if:

(i.) (X, τj) is complete for all j ≥ 1;
(ii.) E(X) is a closed subspace of (A(X), τA).

Proof. N.C.] δXj is (τ, τj)−closed for all j ≥ 1 (proposition 13),

therefore δXj (X) is a closed subspace of (E(X), τ), hence
³
δXj (X), τ

´
is

complete. Now (δXj (X), τ) ' (X, τj) (lemma 2), therefore (X, τj) is com-
plete. Furthermore E(X) is a closed subspace of (A(X), τA) (theorem 10).

S.C.] Let (xi)i∈I a Cauchy net in (E(X), τ). For j ≥ 1, (xij)i∈I is Cauchy
in (X, τj) so it converges, and then (x

i)i∈I is TK−convergent in (E(X), τ)
so it converges in (E(X), τ), (theorem 10).

Remark 2. We can replace (ii) of theorem 11 by:

(ii) Any Cauchy TK−convergent net in (E(X), τ) converges in (E(X), τ).

Corollary 8. Let τ a polar and solid topology ofA−convergence on E(X).
If E(X) is a closed subspace of (A(X), τA); (E(X), τ) is sequentially com-
plete if and only if (X, τj) is sequentially complete for all j ≥ 1.

Lemma 3. Let τ a vector topology on E(X); if τ is solid, SE(X) is the
closure of ϕ(X) in (E(X), τ).

Proof. SE(X) ⊂ ϕ(X). Let x = (xn) ∈ ϕ(X) and U a solid neighbor-

hood of 0, it is z = (zn) ∈ ϕ(X) as x− z ∈ U. Since U is solid x[i] − x ∈ U

for i large enough, then x[i]
i→∞−→ x in (E(X), τ) and hence x ∈ SE(X).

Proposition 21. Let τ a solid and polar topology of A−convergence on
E(X); if (X, τj) is complete for all j ≥ 1, (SE(X), τ) is complete.
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Proof. SE(X) = ϕ(X) (lemma 3), therefore (SE(X), τ) is a closed
subspace of (A(X), τA), and then (SE(X), τ) is complete.

Application: Let (X, k.k) a n.a Banach space, we consider m(X) en-
dowed with the n.a. norm k.k∞ .We have c0(X) = Sm(X), and k.k∞ defines
a polar and solid topology on m(X), therefore (c0(X), k.k∞) is complete.

Theorem 12. Let τ a solid and polar topology of A−convergence on
E(X); if E(X) is an AK−space, (E(X), τ) is complete if and only if (X, τj)
is complete for all j ≥ 1.

Proof. N.C.] Obvious.
S.C.]E(X) is anAK−space, thereforeE(X) = S(E(X),τ).Now S(A(X),τA) ⊂

E(X) (proposition 20) and S(E(X),τ) ⊂ S(A(X),τA) , therefore E(X) =
S(E(X),τ) = S(A(X),τA), and then E(X) is a closed subspace of (A(X), τA).
Hence (E(X), τ) is complete (theorem 11).
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Faculté des Sciences Dhar El Mehraz
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