Proyecciones Journal of Mathematics Vol. 31, N^o 2, pp. 103-123, June 2012. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172012000200002

Polar topologies on sequence spaces in non-archimedean analysis

R. AMEZIANE HASSANI A. EL AMRANI UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH, MOROCCO and M. BABAHMED UNIVERSITÉ MOULAY ISMAIL, MOROCCO

Received : May 2011. Accepted : January 2012

Abstract

The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK-complete subsets related to these topologies.

Key words : Locally K-convex topologies, non archimedean sequence spaces, Schauder basis, separated duality.

MSC2010 : 11F85 - 46A03 - 46A20 - 46A22 - 46A35 - 46A45 - 464A50.

1. Introduction

The duality $\langle \lambda, \lambda^{\alpha} \rangle$, where λ is a scalar sequence space, was studied by Köthe and Toeplitz [7] and it has been reformulated by Köthe [6] using the theory of locally convex spaces. After, the duality $\langle \lambda, \lambda^{\beta} \rangle$ has been studied by Chillingworth [2], Matthews [8], T. Komura and Y. Komura [4]. In this work, we are interested to a duality in non-archimedean sequence spaces. We consider a separated duality $\langle X, Y \rangle$ of vector spaces over a non-archimedean valued field K(n.a); in [1] Ameziane and Babahmed gave a fundamental properties of this duality. Afterwards we take E(X)and E(Y) two vector-valued sequence spaces over X and Y respectively such that $E(Y) \subset E(X)^{\beta}$ that are endwed with the separated duality $\langle E(X), E(Y) \rangle$ by the canonic bilinear form (p.108). We introduce the notion of polar topoogies over E(X); and by the linear maps π_i^X and δ_i^X which we define in this paper; we study the polar topologies compatible with the duality $\langle E(X), E(Y) \rangle$ using the basic duality $\langle X, Y \rangle$. Finally we characterize C- compact, AK-complete and complete subsets of E(X)relatively at these topologies. This study was useful in the study that we made in [3].

Throughout this paper, K is a non-archimedean (n.a) non trivially valued complete field with valuation |.|, X and Y are two n.a topological vector spaces over K (or K vector spaces) that are in separated duality $\langle X, Y \rangle$. The duality theory for locally K-convex spaces can be found more extensively in [1], [9], [11] and [12].

2. Preliminary

A nonempty subset A of a K-vector space X is called K-convex if $\lambda x + \mu y + \gamma z \in A$ whenever $x, y, z \in A, \lambda, \mu, \gamma \in K, |\lambda| \leq 1, |\mu| \leq 1, |\gamma| \leq 1$ and $\lambda + \mu + \gamma = 1$. A is said to be absolutely K-convex if $\lambda x + \mu y \in A$ whenever $x, y \in A, \lambda, \mu \in K, |\lambda| \leq 1, |\mu| \leq 1$. For a nonempty set $A \subset X$ its K-convex hull c(A) and absolutely K-convex hull $c_0(A)$ are respectively the smallest K-convex and absolutely K-convex set that contains A. If A is a finite set $\{x_1, ..., x_n\}$ we sometimes write $c_0(x_1, ..., x_n)$ instead of $c_0(A)$.

An absolutely K-convex subset of a locally K-convex space X is called K- closed if for every $x \in X$ the set $\{|\lambda| : \lambda \in K, \lambda x \in A\}$ is closed in |K|. If the valuation on K is discrete every absolutely K-convex set A is K-closed. If K has a dense valuation an absolutely K convex set A is

K-closed if and only if from $x \in E$, $\lambda x \in A$ for all $\lambda \in K$, $|\lambda| \prec 1$ it follows that $x \in A$. Intersections of K-closed sets are K-closed. For an absolutely K-convex set A the K-closed hull of A is the smallest subset of X that is K-closed and contains A, it is denoted by $K_c(A)$. If K is discrete we have $K_c(A) = A$ and if K is dense, $K_c(A) = \cap \{\lambda A : \lambda \in K \text{ and } |\lambda| \succ 1\}$ ([1] p. 220).

A topological vector space X over K is called locally K-convex space if X has a base of zero consisting of locally K-convex sets.

Let (X, τ) a locally K-convex space, τ is define by a family of n.a. semi-norms τ - continuous over X, and if K is discrete, we can suppose that $N_p = \{p(x)/x \in X\} \subset |K|$ for every $p \in \mathcal{P}([9])$; where (\mathcal{P}) is a family of n.a semi-norms which define the topology τ .

If p is a (n.a) semi-norm over X, $B_p(0,1)$ is the set $\{x \in X : p(x) \le 1\}$.

A sequence $(e_i)_i$ is a Schauder basis for X if every $x \in X$ can be written uniquely as $x = \sum_{i=1}^{\infty} \lambda_i x_i$ where the coefficient functionals $f_j : x \mapsto \lambda_j$ are

continuous.

Let X a K-vector space and M a subset of X, a K-convex filter over M, is a filter \mathcal{F} over M having a basis \mathcal{B} consisting of K-convex subsets of M; this basis is called K-convex basis of K-convex filter \mathcal{F} .

The order of all filters on M induces an order on all K-convex filters on M. A maximal element of the ordered set of K-convex filter on M is called maximal K-convex filter of M.

Let $(x_i)_{i\in I}$ a net on M; for all $i \in I$, put $F_i = \{x_j/j \ge i\}$. $(F_i)_{i\in I}$ is a filter over M called filter associated to a net $(x_i)_{i\in I}$. Conversely, if $\mathcal{F}=(F_i)_{i\in I}$ is a filter over M, for all $i \in I$ let $x_i \in F_i$; over I we define the following order: $i \le j \Leftrightarrow F_j \subset F_i$. $(x_i)_{i\in I}$ is a net in M called a net associated to a filter \mathcal{F} .

Proposition 1. Let X a locally K-convex space, M a subset of X and $\mathcal{F}=(F_i)_{i\in I}$ a maximal K-convex filter over M.

1. \mathcal{F} converges or not having any clusterpoint .

2. Let $(x_i)_{i \in I}$ a net associated to a \mathcal{F} ; if $(x_i)_{i \in I}$ converges to x_0, \mathcal{F} converges to x_0 .

Proof. 1. Let x_0 a cluster point of \mathcal{F} and $(U_j)_{j \in J}$ a K-convex neighbourhood base of x_0 , $\mathcal{F}' = \{F_i \cap U_j / i \in I \text{ and } j \in J\}$ is a K-convex filter which converges to x_0 and it is coarsest than \mathcal{F} , then $\mathcal{F} = \mathcal{F}'$.

2. x_0 is a clusterpoint of $(x_i)_{i \in I}$, then it is a clusterpoint of \mathcal{F} , and so \mathcal{F} converges to x_0 .

Proposition 2. Let X, Y two K-vector spaces, $f : X \longrightarrow Y$ a linear map and $\mathcal{F} = (F_i)_{i \in I}$ a maximal K-convex filter over X that having \mathcal{B} us a K-convex basis; $f(\mathcal{B})$ is a K-convex basis of a maximal K-convex filter over Y.

A subset A of a locally K-convex space X is compactified if for each neighbourhood U of zero there exist $x_1, ..., x_n \in X$ such that $A \subset U + c_0(x_1, ..., x_n)$. An absolutely K-convex subset A of X is said to be C-compact if every convex filter on A has a clusterpoint on A.

K is $C{\rm -compact}$ if and only if K is spherically complete.

Proposition 3. Let M be a subset of X. The following are equivalent:

(i). M is C-compact;

(ii). Every maximal K-convex filter over M converges;

(iii). Any family of closed and K-convex subsets of M whose intersection is empty contains a finite subfamily whose intersection is empty.

Let \mathcal{B} a basis of a filter \mathcal{F} on a subset M of X; the smallest K-convex filter containing \mathcal{B} , is called K-convex filter generated by \mathcal{B} and is denoted by $\mathcal{F}_c(\mathcal{B})$. We show that $\mathcal{F}_c(\mathcal{B}) = \{F \subset M/there \ exists \ B \in \mathcal{B} : c(B) \subset F\}$, and $c(\mathcal{B})$ is K-convex basis of $\mathcal{F}_c(\mathcal{B})$, that is to say $\mathcal{F}_c(\mathcal{B}) = \mathcal{F}(c(\mathcal{B}))$.

If $(x_i)_{i \in I}$ is a net in X; $(x_i)_{i \in I}$ converges to x_0 if and only if the filter K-convex associated with $(x_i)_{i \in I}$ converges to x_0 .

Proposition 4. Let X, Y two K-vector spaces, $f : X \longrightarrow Y$ a linear map, M a subset of X and \mathcal{B} a base of filter on M. Then $f(\mathcal{B})$ is a base of filter on f(M), and we have $\mathcal{F}_c(f(\mathcal{B})) = f(\mathcal{F}_c(\mathcal{B}))$.

 $(\omega(X), \tau_{\omega}(X)) =$ the linear space of all sequences in X endowed with the product topology $\tau_{\omega}(X)$ which is generated by the family of n.a seminorms $(p_n)_{n \in \mathbb{N}, \ p \in (\mathcal{P})}$, $p_n(\overline{x}) = p(x_n)$ for all $\overline{x} = (x_n)_n \in \omega(X)$ and all $p \in (\mathcal{P})$, if X is a locally K-convex space and (\mathcal{P}) is a family of n.asemi-norms which define his topology; this space is noted $\omega(K)$ (or ω , for short) in case when X = K. A sequence space over X is a subspace of $\omega(X)$.

We define the following sequence spaces over X $c_0(X) = \{(x_k)_k \in \omega(X) : (x_k)_k \text{ converges to zero}\}$ $c(X) = \{(x_k)_k \in \omega(X) : (x_k)_k \text{ converges in } X\},$ $\varphi(X) = \{(x_k)_k \in \omega(X) : \text{ there exists } k_0 \in \mathbb{N} : x_k = 0 \text{ for all } k \ge k_0\},$ $m(X) = \{(x_k)_k \in \omega(X) : (x_k)_k \text{ is bounded in } X\}.$ Over m(X) we define the sequence of n.a semi-norms $(\overline{p})_{p \in (\mathcal{P})}$ by: $\overline{p}(\overline{x}) = \sup p(x_k)$ for all $\overline{x} = (x_k)_k \in m(X)$.

Let $\tau_{\infty}(X)$ be the topology on m(X) defined with the sequence of n.a semi-norms $(\overline{p})_{p \in (\mathcal{P})}$.

3. Polar topologies

Let X and Y two K-vector spaces placed in separating duality $\langle X, Y \rangle$. If A is a subset of X, we denote by $A^{\circ} = \{y \in Y / |\langle x, y \rangle| \leq 1 \text{ for all } x \in A\}$ the polar of A and $A^{\circ \circ} = \{x \in X / |\langle x, y \rangle| \leq 1 \text{ for all } y \in A^{\circ}\}$ the bipolar of A.

 A° is absolutely K-convex and $\sigma(Y, X)$ -bounded.

For each absolutely K-convex subset A of Y, $K_c\left(\overline{A}^{\sigma(Y,X)}\right) = A^{\circ\circ}([1],$ corollary 4.3, p. 233). A subset A of Y is said to be X-closed if for every $y \in Y \setminus A$, there exits $x \in X$ such that $|\langle x, y \rangle| > 1$ and $|\langle x, A \rangle| \leq 1$. Intersections of X-closed sets are X-closed. For a subset A of Y the X-closed hull $X_c(A)$ of A is the smallest X-closed subset of Y that contains A. For each subset A of Y, $X_c(A) = A^{\circ\circ}([1], \text{ proposition 2.5, p.}$ 224). Using these two results and by [1], theorem 4.2, p. 233 we have: for all absolutely K-convex subset A of Y, A is X-closed, if and only if, A is K-closed and $\sigma(Y, X)$ -closed.

Let \mathcal{A} be a family of $\sigma(Y, X)$ -bounded subsets of Y such that

- (a) \mathcal{A} is directed by inclusion,
- $(b) Y = \bigcup A,$
- (c) there exists $\lambda_0 \in K$, $|\lambda_0| > 1$ such that $\lambda_0 A \in \mathcal{A}$, for all $A \in \mathcal{A}$.

A topology τ on X is called polar topology of \mathcal{A} -convergence, if τ has a fundamental system of zero-neighbourhood (F.S.N) consisting of $\{A^{\circ}/A \in \mathcal{A}\}$.

A vector topology τ on X is called polar topology if there exists a family \mathcal{A} of $\sigma(Y, X)$ -bounded subsets of Y which has the properties (a), (b) and (c), such that τ is a polar topology of \mathcal{A} -convergence. it is defined by the family of n.a. semi-norms $(P_A)_{A \in \mathcal{A}}$, where $P_A(x) = \sup\{|\langle x, y \rangle| / y \in A\}$.

If \mathcal{A} is the family of all subsets of Y that are:

1. Absolutely K-convex, weakly bounded and weakly C-compacts, we have the C-compact topology $\tau_c(X, Y) = \tau_c$,

2. Absolutely convex and $\sigma(Y, X)$ –compact, we have the Mackey topology $\tau_m(X, Y) = \tau_m$,

3. $\sigma(Y, X)$ -bounded and X-closed, we have the X-closed topology $\tau_e(X, Y) = \tau_e$.

4. $\sigma(Y, X)$ -bounded, we have the strong topology $\tau_b(X, Y)$.

A locally K-convex topology τ on X is called compatible with the duality $\langle X, Y \rangle$ or (X, Y)-compatible if Y is isomorphic to the topological dual of X provided with the topology τ . The weak topology $\sigma(X, Y)$ is the coarsest topology among all topologies (X, Y)-compatible, and the upper bound topology of all topologies (X, Y)-compatible topology is the finest among all the topologies (X, Y)-compatible.

We say that X is semi-reflexive if X is isomorphic to the strong topological dual of Y and if τ is a locally K-convex topology on X we say that X is τ -reflexive if X is semi-reflexive and $\tau = \tau_b(X, X')$.

For further information about polar topology of \mathcal{A} -convergence and general properties of locally K-convex spaces we refer to [1], [11] and [12].

If $A \subset \omega(X)$, the β -dual of A is the subspace of $\omega(Y)$ which is define by $A^{\beta} = \{(y_n)_n \in \omega(Y) : \lim_n \langle x_n, y_n \rangle = 0 \text{ for all } (x_n)_n \in A\}$. A is called perfect if $A^{\beta\beta} = A$. If A is perfect then $\varphi(X) \subset A$. For all $A \subset \omega(X)$, A^{β} is perfect. We define B^{β} if $B \subset \omega(Y)$ on the same way.

A subset D of $\omega(X)$ is said to be solid if for every $\overline{x} = (x_k)_k \in D$ and $\alpha = (\alpha_k)_k \in \omega$ such that $|\alpha_k| \leq 1$ for all k, we have $\alpha \overline{x} = (\alpha_k x_k)_k \in D$. The solid hull S(D) of D is the smallest solid set of sequence containing D.

A topology on E(X), with respect the duality $\langle E(X), E(X)^{\beta} \rangle$, will be called solid if the elements of the determining family of weakly bounded subsets of $E(X)^{\beta}$ are solids sets.

Let E(X) and E(Y) be two sequence spaces on X and Y respectively such that $E(Y) \subset E(X)^{\beta}$, we define on the pair (E(X), E(Y)) the following duality $\langle (x_n)_n, (y_n)_n \rangle = \sum_{n=1}^{\infty} \langle x_n, y_n \rangle$ for all $(x_n)_n \in E(X)$ and all $(y_n)_n \in E(Y)$.

If $\varphi(X) \subset E(X)$ and $\varphi(Y) \subset E(Y)$, the duality $\langle E(X), E(Y) \rangle$ is separate.

In the sequel $\langle E(X), E(Y) \rangle$ denotes a duality of this type.

 $S(E(Y)) \subset [S(E(X))]^{\beta}$ and $\langle S(E(X)), S(F(Y)) \rangle$ is a separating duality extending the separating duality $\langle E(X), F(Y) \rangle$, therefore, we can assume that E(X) and F(Y) are solid.

For all $j \ge 1$, we consider the following linear mappings:

$$\begin{aligned} \pi_j^X : E(X) &\longrightarrow X \\ (x_n) &\longrightarrow x_j \end{aligned} \qquad \qquad \delta_j^X : X &\longrightarrow E(X) \\ a &\longrightarrow \delta_j(a) \end{aligned}$$

where $\delta_j(a)$ is the sequence with a in the j-th place and 0's elsewhere. We define also π_j^Y and δ_j^Y .

Let $x = (x_k) \in \omega(X)$, for all $n \ge 1$ $x^{[n]} = \sum_{j=1}^n \delta_j(x_j)$ is called the n^{ith}

section of x.

We have: $\pi_j^X o \delta_j^X = i d_X$, $\pi_j^Y o \delta_j^Y = i d_Y$, $(\pi_j^X)^* / Y = \delta_j^Y$ and $(\delta_j^X)^* / F(Y) = \pi_j^Y$ where u^* is the algebraic adjoint of the linear map u.

Proposition 5. Let A be a subset of E(X) if A is solid, A° is solid and we have: $A^{\circ} = [A \cap \varphi(X)]^{\circ}$.

Definition 1. Let A a subset of $\omega(X)$.

a. Is said that A is δ_j^X -saturated if for all $(x_n) \in A, \delta_j^X(x_j) \in A$.

b. It is said that A is δ^X -saturated if A is δ^X_j -saturated for all $j \ge 1$. c. It is said that A is π^X -saturated if: $x_j \in \pi^X_j(A)$ for all $j \ge 1 \Rightarrow (x_n) \in A$.

If A is solid, A is δ^X -saturated.

 $\varphi(X)$ is δ^X -saturated and not π^X -saturated.

If p is a n.a. semi-norm on X, $\left\{ (x_n) \in \omega(X) / \sup_n p(x_n) \le 1 \right\}$ is

 π^X -saturated.

The following results are demonstrated in a direct:

Proposition 6. Let A be a subset of E(X).

1. If A is π^X -saturated, S(A) is π^X -saturated. 2. If A is δ^X -saturated, S(A) and $c_0(A)$ are δ^X -saturated, and A° is δ^Y - saturated and π^Y -saturated. 3. $\left[\pi_j^X(A)\right]^\circ \subset \pi_j^Y(A^\circ)$ for all $j \ge 1$. 4. If A is δ_j^X -saturated, $\left[\pi_j^X(A)\right]^\circ = \pi_j^Y(A^\circ)$. 5. If A is δ^X -saturated, $A^\circ = \pi^X \left[\pi_j^Y(A^\circ)\right] = \int (a_i) \subset E(Y) / \sup |\langle m, a_i \rangle| \le 1$ for all $(m_i) \subset A$.

$$A^{\circ} = \pi_j^X \left[\pi_j^Y (A^{\circ}) \right] = \left\{ (y_k) \in F(Y) / \sup_k |\langle x_k, y_k \rangle| \le 1 \quad for \ all \ (x_k) \in A \right\}.$$

6. $S(A)^{\circ} \subset S(A^{\circ}); \ and \ if \ A \ is \ \delta^X - saturated, \ A^{\circ} = S(A)^{\circ} = S(A^{\circ}).$

7. If A is δ^X -saturated and F(Y)-closed, $\pi_j^X(A)$ is Y-closed for all $j \ge 1$. 8. If A is π^X -saturated and $\pi_j^X(A)$ is Y-closed for all $j \ge 1$, A is F(Y)-closed.

Corollary 1. Let A be a subset of E(X) δ^X -saturated and π^X -saturated.

For A is F(Y)-closed, it is necessary and enough that $\pi_j^X(A)$ be Y-closed for all $j \ge 1$.

Proposition 7. Let A be an absolutely K-convex subset of E(X).

1. If A is K-closed and δ_j^X -saturated, $\pi_j^X(A)$ is K-closed.

2. If A is π^X -saturated and $\pi_j^X(A)$ is K-closed for all $j \ge 1$, A is K-closed.

Proposition 8. Let τ be a topology on E(X) and τ_j the topology image reciprocal of τ by the linear map δ_j^X on X. If τ admits as S.F.N of $0 \{A^{\circ}/A \in \mathcal{A}\}$, then $\{\left[\pi_j^Y(A)\right]^{\circ}/A \in \mathcal{A}\}$ is a F.S.N. of 0 for τ_j .

Proof. ([1], proposition 2.9).

Proposition 9. For all $j \ge 1$, π_j^X is $(\sigma(E(X), F(Y)), \sigma(X, Y))$ -continuous and δ_j^X is $(\sigma(X, Y), \sigma(E(X), F(Y)))$ -continuous.

Proof. $(\pi_j^X)^*(Y) \subset F(Y)$ and $(\delta_j^X)^*(F(Y)) \subset Y$, and the result follows from ([9], p. 128).

 $\begin{aligned} & \textbf{Proposition 10. } 1. \ \left[\pi_j^X(A)\right]^\circ = (\delta_j^Y)^{-1}(A^\circ) \ \text{for all } A \subset E(X). \\ & 2. \ \left[\delta_j^X(B)\right]^\circ = (\pi_j^Y)^{-1}(B^\circ) \ \text{for all } B \subset X. \\ & 3. \ \pi_j^X(A) \subset B \Rightarrow \delta_j^Y(B^\circ) \subset A^\circ \ \text{for all } A \subset E(X) \ \text{and for all } B \subset X. \\ & 4. \ \delta_j^X(B) \subset A \Rightarrow \pi_j^Y(A^\circ) \subset B^\circ \ \text{for all } A \subset E(X) \ \text{and for all } B \subset X. \\ & 5. \ (\pi_j^X)^{-1}(D^\circ) = \left[\delta_j^Y(D)\right]^\circ \ \text{for all } D \subset Y. \\ & 6. \ (\delta_j^X)^{-1}(C^\circ) = \left[\pi_j^Y(C)\right]^\circ \ \text{for all } C \subset F(Y). \\ & 7. \ (\pi_j^X)^*(D) \subset C \Rightarrow \pi_j^X(C^\circ) \subset D^\circ \ \text{for all } D \subset Y \ \text{and for all } C \subset E(Y). \\ & 8. \ (\delta_j^X)^*(C) \subset D \Rightarrow \delta_j^X(D^\circ) \subset C^\circ \ \text{for all } D \subset Y \ \text{and for all } C \subset E(Y). \end{aligned}$

Proof. ([1], proposition 2.8).

A polar topology of \mathcal{A} -convergence on E(X) is said solid, if all $A \in \mathcal{A}$ is solid. Thus, any polar, solid topology admits a F.S.N from 0 consisting of solid subsets.

If τ is the polar topology of \mathcal{A} -convergence on E(X) such that Ais δ^{Y} -saturated for all $A \in \mathcal{A}, \tau$ coincides with the polar topology of $S(\mathcal{A})$ -convergence (proposition 6), and then τ is a polar and solid topology

Proposition 11. Let τ be a polar topology of \mathcal{A} -convergence over E(X)and τ_j the topology image reciprocal of τ by the linear map δ_j^X on X.

1. τ_j is the polar topology of $\pi_j^Y(\mathcal{A})$ -convergence. 2. π_j^X is (τ, τ_j) -continuous if and only if $\delta_j^Y \circ \pi_j^Y(\mathcal{A}) \in \mathcal{A}$ for all $\mathcal{A} \in \mathcal{A}$.

([1], proposition 3.8).Proof.

Proposition 12. If τ is the weak topology (resp. Mackey, resp. C-compact, resp.

E(X)-closed; resp. strong) of E(X) for all $j \ge 1, \tau_j$ is the weak topology (resp. Mackey, resp. C-compact, resp. X-closed; resp. strong) on X

([1], proposition 3.9).Proof.

Proposition 13. Let τ a polar topology of \mathcal{A} -convergence on E(X), for all $j \geq 1$, we have:

1. δ_j^X is (τ_j, τ) -continuous; 2. If τ is solid, π_j^X is (τ, τ_j) -continuous; 3. If π_j^X is (τ, τ_j) -continuous, δ_j^X is (τ_j, τ) -closed.

1. τ_i is a polar topology of $\pi_i^Y(\mathcal{A})$ -convergence, and we Proof. have

 $\delta_j^X\left(\left[\pi_j^Y(A)\right]^\circ\right) \subset A^\circ \text{ for all } A \in \mathcal{A}.$

2. If τ is solid, we have : $\pi_j^X(A^\circ) \subset \left[\pi_j^Y(A)\right]^\circ$ for all $A \in \mathcal{A}$.

3. Let *M* a closed in (X, τ_j) , there exists $A \in \mathcal{A}$ such that $\left[\pi_j^Y(A)\right]^{\circ} \subset$ M° , therefore $A^{\circ} \subset \delta_j^X(M^{\circ}) = \left[\delta_j^X(M)\right]^{\circ}$.

Let τ be a locally K-convex topology on E(X) such that E(X) be τ -polar; if τ is (E(X) F(Y))-compatible, τ is a polar topology of \mathcal{A} -convergence, where \mathcal{A} is constituted of $\sigma(F(Y), E(X))$ -bounded and E(X)-closed subsets of F(Y), ([1], theorem 4.3). For all $j \ge 1$, τ_j is the polar topology of $\pi_j^Y(\mathcal{A})$ -convergence on X and X is τ_j -polar if all $\mathcal{A} \in \mathcal{A}$ is δ^Y -saturated, $\pi_j^X(\mathcal{A})$ is $\sigma(Y, X)$ -bounded and X-closed (Proposition 6), and then τ_j is (X, Y)-compatible.

If K is spherically complete, we have the following theorem:

Theorem 1. Suppose that K be spherically complete, and let τ a locally K-convex topology on E(X); if τ is (E(X), F(Y))-compatible, τ_j is (X, Y)-compatible, for all $j \geq 1$.

Proof. τ is a polar topology of \mathcal{A} convergence, where \mathcal{A} consists of absolutely K convex, $\sigma(E(Y), E(X))$ -bounded and $\sigma(E(Y), E(X)) - C$ -compact subsets of F(Y) ([1], theorem 4.4). For all $j \geq 1, \pi_j^Y$ is $(\sigma(F(Y), E(X)), \sigma(Y, X))$ -continuous, then $\pi_j^Y(A)$ is absolutely K-convex, $\sigma(Y, X)$ - bounded and $\sigma(Y, X) - C$ -compact for all $A \in \mathcal{A}$ and then τ_j is (X, Y)-compatible.

Theorem 2. Let τ a solid and polar topology on E(X); if E(X) is τ -barreled, X is τ_j -barreled for all $j \ge 1$.

Proof. Let $B \ a \ \tau_j$ -barrel in X; δ_j^X is (τ_j, τ) -closed, then $\delta_j^X(B)$ is a τ - barrel into E(X) and then $(\delta_j^X)^{-1}(\delta_j^X(B))$ is a neighborhood of 0 in (X, τ_j) then B is a neighborhood of 0 for τ_j .

Remark 1. Instead of assuming that τ is solid, we can assume only that π_j^X be (τ, τ_j) -continuous for all $j \ge 1$.

A subset A of E(X) said to be δ^X -stable if for all $x = (x_k) \in E(X)$ such that there exists $j \ge 1$ satisfying $\delta_j^X(x_j) \in A$, then $x \in A$.

Let $A \subset E(X)$ such that $A \cap \left\{ \delta_j^X(a) / a \in X \text{ and } j \ge 1 \right\} = \phi$, A is δ^X stable.

Definition 2. Let τ a vector topology on E(X); we say that E(X) is $\delta^X \tau$ -barreled if every τ -barrel δ^X -stable, is a neighborhood of 0.

If E(X) is τ -barreled, it is $\delta^X \tau$ -barreled.

Theorem 3. Let τ a polar and solid topology on E(X); if there exists $j \geq 1$ such that X is τ_j -barreled, E(X) is $\delta^X \tau$ -barreled

Proof. Let $B \neq \tau$ -barrel δ^X -stable in E(X); δ^X_j is (τ_j, τ) -continuous, so $(\delta^X_j)^{-1}(B)$ is a τ_j -barrel, and then $(\delta^X_j)^{-1}(B)$ is a neighborhood of 0 in (X, τ_j) and hence $(\pi^X_j)^{-1}\left[(\delta^X_j)^{-1}(B)\right]$ is a neighborhood of 0 in $(E(X), \tau)$. B is δ^X -stable, then $(\pi^X_j)^{-1}\left[(\delta^X_j)^{-1}(B)\right] \subset B$ and then B is a neighborhood of 0 in $(E(X), \tau)$.

Theorem 4. Suppose that X and Y are semi-reflexive, and let τ a topology on E(X) which is (E(X), F(Y))-compatible. If E(X) is τ -reflexive, X is τ_j -reflexive for every $j \ge 1$.

Proof. $\tau = \tau_b(E(X), E(X)') = \tau_b(E(X), F(Y))$; so for all $j \ge 1 \tau_j = \tau_b(X, Y)$ (Proposition 12). Y is semi-reflexive, then τ_j is (X, Y)-compatible ([1], proposition 5.9) and then $\tau_j = \tau_b(X, (X, \tau_j)')$.

Corollary 2. If K is spherically complete and τ is a topology on E(X) which is (E(X), F(Y))-compatible and solid such that E(X) is τ -barreled, then X is τ_j reflexive for any $j \ge 1$.

Proof. For all $j \ge 1, \tau_j$ is (X, Y)-compatible (theorem 1) and X is τ_j -barreled for all $j \ge 1$, then X is τ_j -reflexive ([1], theorem 5.2).

4. Compactness and *C*-compactness

Let τ a polar topology on E(X) such that π_j^X be (τ, τ_j) -continuous for all $j \geq 1$. If M is a compact subset of $(E(X), \tau)$; $\pi_j^X(M)$ is a compact subset of (X, τ_j) for all $j \geq 1$.

In order to study the converse, we introduce the notion of TK-convergent net.

Definition 3. A net $(x^i)_{i \in I}$ in E(X) is called TK-convergent if for all $j \geq 1$, $(x^i_j)_{i \in I}$ is convergent in (X, τ_j) .

Theorem 5. Let M a subset of E(X); M is relatively compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_i^X(M)$ is relatively compact in (X, τ_j) for all $j \ge 1$;

(ii.) All TK-convergent net in M, converges in $(E(X), \tau)$.

Proof. N.C.] π_j^X is (τ, τ_j) -continuous for all $j \ge 1$, then $\pi_j^X(M)$ is relatively compact in (X, τ_j) . Let $(x^i)_{i \in I}$ a TK-convergent net in M. For all $j \ge 1$ let $x_j \in X$ such that $(x_j^i)_{i \in I}$ converges to x_j in (X, τ_j) . $(x^i)_{i \in I}$ has a cluster point $z = (z_n)$ in $(E(X), \tau)$. For all $j \ge 1$, z_j is a cluster point of $(x_j^i)_{i \in I}$ in (X, τ_j) ; then $z_j = x_j$. (x_n) is the unique cluster point of $(x^i)_{i \in I}$, therefore $(x^i)_{i \in I}$ converges to (x_n) in $(E(X), \tau)$.

S.C.] Let $(x^i)_{i \in I}$ a net in M, and let \mathcal{A} the family of $\sigma(F(Y), E(X))$ -bounded subset of F(Y) which defines the topology τ . For any $j \geq 1$, τ_j is the polar topology of $\pi_j^Y(\mathcal{A})$ -convergence on X.

Let x_1 a cluster point of $(x_1^i)_{i \in I}$ in (X, τ_1) . For all $A \in \mathcal{A}$ and for all $i \in I$, there exists $i_A > i$ such that $x_1^{i_A} \in \left[\pi_1^Y(A)\right]^\circ$. Consider the subfamily $(i_A)_{A \in \mathcal{A}}$ of I, it is ordered by: $i_A \leq i_B \Leftrightarrow A \subset B$ for all $A, B \in \mathcal{A}$. $(i_A)_{A \in \mathcal{A}}$ is a filter on the right family. Let $A_0 \in \mathcal{A}$; $i_A \geq i_{A_0} \Rightarrow A_0 \subset A \Rightarrow \left[\pi_1^Y(A)\right]^\circ \subset \left[\pi_1^Y(A_0)\right]^\circ \Rightarrow x_1^{i_A} - x_1 \in \left[\pi_1^Y(A_0)\right]^\circ$. Therefore $(x_1^{i_A})_{A \in \mathcal{A}}$ converges to x_1 in (X, τ_1) .

Let x_2 a cluster point of $(x_2^{i_A})_{A \in \mathcal{A}}$ in (X, τ_2) . for all $A \in \mathcal{A}$, there exists $l_1(i_A) > i_A$ such that $x_2^{l_1(i_A)} - x_2 \in \left[\pi_2^Y(A)\right]^\circ$.

Let $A_0 \in \mathcal{A}$; $i_A \geq i_{A_0} \Rightarrow A \supset A_0 \Rightarrow \left[\pi_2^Y(A)\right]^\circ \subset \left[\pi_2^Y(A_0)\right]^\circ \Rightarrow x_2^{l_1(i_A)} - x_2 \in \left[\pi_2^Y(A_0)\right]^\circ$. Therefore $(x_2^{l_1(i_A)})_{A \in \mathcal{A}}$ converges to x_2 in (X, τ_2) . Let x_3 a cluster point of $(x_3^{l_1(i_A)})_{A \in \mathcal{A}}$ in (X, τ_3) . For all $A \in \mathcal{A}$, there exists $l_2(l_1(i_A)) > l_1(i_A)$ such that $x_3^{l_2ol_1(i_A)} - x_3 \in \left[\pi_3^Y(A)\right]^\circ$. $(x_3^{l_2ol_1(i_A)})_{A \in \mathcal{A}}$ converges to x_3 in (X, τ_3) .

Inductively, for all $j \geq 3$ and for all $A \in \mathcal{A}$, there exists $l_j ol_{j-1} o....l_1(i_A) > l_{j-1} o....ol_1(i_A)$ such that $(x_{j+1}^{l_j o...ol_1(i_A)})_{A \in \mathcal{A}}$ converges to x_{j+1} in (X, τ_{j+1}) . Put $y = (x^{i_A}, x^{l_1(i_A)}, x^{l_2 ol_1(i_A)},, x^{l_k o....ol_1(i_A)},)_{A \in \mathcal{A}}$. For all $j \geq 1$, $(x_j^{i_A}, x_j^{l_1(i_A)}, x_j^{l_2 ol_1(i_A)},, x_j^{l_k o....ol_1(i_A)},)_{A \in \mathcal{A}}$ converges

For all $j \geq 1$, $(x_j^{i_A}, x_j^{l_1(i_A)}, x_j^{l_2ol_1(i_A)}, \dots, x_j^{l_ko...ol_1(i_A)}, \dots)_{A \in \mathcal{A}}$ converges to x_j in (X, τ_j) ; therefore y is TK-convergent, and hence it converges to x in $(E(X), \tau)$. Hence x is a cluster point of $(x^i)_{i \in I}$, and then M is relatively compact.

Corollary 3. Let M a subset of E(X), M is compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_j^X(M)$ is compact in (X, τ_j) for all $j \ge 1$,

(ii.) Any TK-convergent net in M converges to an element of M in $(E(X), \tau)$.

To give version of theorem 5 using the filters, we need introduce the

following definition:

Definition 4. Let M a subset of E(X) and \mathcal{F} a filter on M; we say that \mathcal{F} is TK- convergent if for all $j \geq 1$ the filter generated by $\pi_j^X(\mathcal{F})$ converges in (X, τ_j) .

Every convergent filter is TK-convergent, and if \mathcal{F} is a TK-convergent filter and \mathcal{F}' is a filter finer than \mathcal{F} , \mathcal{F}' is TK-convergent.

Proposition 14. Let M a subset of E(X).

1. If $\mathcal{F} = (F_i)_{i \in I}$ is a TK-convergent filter on M, any net associated to \mathcal{F} is TK-convergent.

2. If $(x^i)_{i \in I}$ is a TK-convergent net, the K-convex filter associated to $(x^i)_{i \in I}$ is TK-convergent.

Theorem 6. Let M a subset of E(X); M is compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_j^X(M)$ is compact in (X, τ_j) for all $j \ge 1$;

(ii.) Any TK-convergent filter on M converges to an element of M.

Proof. N.C.] Let \mathcal{F} a TK-convergent filter on M. For any $j \geq 1$ let $x_j \in X$ such that $\pi_j^X(\mathcal{F})$ converges to x_j in (X, τ_j) . \mathcal{F} has at least one cluster point $z = (z_n)$ in M. For all $j \geq 1$, z_j is a cluster point of $\pi_j^X(\mathcal{F})$, therefore $z_j = x_j$; then (x_n) is the unique cluster point of \mathcal{F} in M, so \mathcal{F} converges to (x_n) in (M, τ) .

S.C.] Let \mathcal{F} a maximal filter on M; for all $j \geq 1$ $\pi_j^X(\mathcal{F})$ is a maximal filter on $\pi_j^X(M)$, therefore it converges to x_j in (X, τ_j) , and then \mathcal{F} is TK-convergent, therefore it converges to an element of M.

Definition 5. Let M a subset of E(X), we say that M is an AK-complete subset of $(E(X), \tau)$ if every $x = (x_n)$ element of E(X) such that $(x^{[n]})$ is a Cauchy sequence in (M, τ) ; $x \in M$ and $(x^{[n]})$ converges to x in $(E(X), \tau)$.

We say that M is relatively AK-complete if its closure \overline{M} in $(E(X), \tau)$ is AK- complete.

If M is complete, it is AK-complete.

Any closed subset of a set AK-complete is AK-complete.

In the following result, we characterize the subsets solid and relatively compact of $(E(X), \tau)$.

Theorem 7. Let M a solid subset of E(X), M is relatively compact in $(E(X), \tau)$ if and only if:

- (i.) $\pi_j^X(M)$ is relatively compact in (X, τ_j) for all $j \ge 1$,
- (ii.) $x^{[i]} \xrightarrow{i \to \infty} x$ uniformly on M in $(E(X), \tau)$,
- (iii.) M is relatively AK-complete in $(E(X), \tau)$.

Proof. N.C.] If M is relatively compact, M is relatively complete, and then it is relatively AK-complete.

Suppose we did not (*ii*.) there exists $A \in \mathcal{A}$ a sequence $({}^{i}x)_{i}$ in M and a strictly increasing sequence of integers $(j_{i})_{i}$ such that ${}^{i}x^{[j_{i}]} - {}^{i}x \notin A^{\circ}$ for all $i \geq 1$. The sequence $({}^{i}x^{[j_{i}]} - {}^{i}x)_{i}$ is TK-convergent to 0, so it converges to 0 in $(E(X), \tau)$ which is absurd.

S.C.] Let $({}^{\alpha}x)_{\alpha\in D}$ a net in M such that for all $j \geq 1$ $({}^{\alpha}x_j)_{\alpha\in D}$ converges to x_j in (X, τ_j) . Let $A \in \mathcal{A}$ for all $i \geq 1$ ${}^{\alpha}x^{[i]} - x^{[i]} = \sum_{n=1}^{i} \delta_n^X({}^{\alpha}x_n - x_n) \in A^{\circ}$ for α sufficiently large. So for all $i \geq 1$ ${}^{\alpha}x^{[i]} \xrightarrow{\alpha} x^{[i]}$ in $(E(X), \tau)$ in particular $x^{[i]} \in \overline{M}$ for all $i \geq 1$. Using this convergence and (ii), we can choose α as $x^{[i]} - x^{[j]} = (x^{[i]} - {}^{\alpha}x^{[i]}) + ({}^{\alpha}x^{[i]} - {}^{\alpha}x) + ({}^{\alpha}x - {}^{\alpha}x^{[j]}) + ({}^{\alpha}x^{[j]} - x^{[j]}) \in$ A° for i, j sufficiently great. Therefore $(x^{[i]})$ is a Cauchy net in \overline{M} and then $x^{[i]} \xrightarrow{i \to +\infty} x$ in $(E(X), \tau)$. From this convergence and (ii), we can choose isuch that ${}^{\alpha}x - x = ({}^{\alpha}x - {}^{\alpha}x^{[i]}) + ({}^{\alpha}x^{[i]} - x^{[i]}) + (x^{[i]} - x) \in A^{\circ}$ for α Large enough, so $({}^{\alpha}x)_{\alpha\in D}$ converges to x in $(E(X), \tau)$ and hence M is relatively compact (theorem 5).

Corollary 4. Let M a solid subset of E(X); M is compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_j^X(M)$ is compact in (X, τ_j) for all $j \ge 1$, (ii.) $x^{[i]} \xrightarrow{i \to \infty} x$ uniformly on M in $(E(X), \tau)$ (iii.) M is AK-complete in $(E(X), \tau)$.

Corollary 5. The envelope solid of a relatively compact subset of $(E(X), \tau)$ is not necessarily relatively compact.

Proof. Let $x = (x_n) \in E(X)$ such that $(x^{[i]})_i$ does not converge to x in $(E(X), \tau)$ so $(z^{[i]})_i$ does not converge to z uniformly on S(x) and then S(x) is not relatively compact.

Proposition 15. 1. Let $(x^i)_{i \in I}$ a net in E(X); if \mathcal{F} is a K-convex filter associated with $(x^i)_{i \in I}, \pi_j^X(\mathcal{F})$ is a K-convex filter associated with a net $(x_i^i)_{i \in I}$ for all $j \geq 1$.

2. Let \mathcal{F} a K-convex filter on E(X); if $(x^i)_{i \in I}$ is a net associated to \mathcal{F} , $(x^i_j)_{i \in I}$ is a net associated to $\pi^X_j(\mathcal{F})$ for all $j \geq 1$.

Theorem 8. Let M a K-convex subset of E(X); M is C-compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_i^X(M)$ is C-compact in (X, τ_j) for all $j \ge 1$,

(ii.) Any K-convex and TK-convergent filter on M admits a cluster point in M.

Proof. N.C.] Obvious.

S.C.] Let \mathcal{F} a maximum K-convex filter of M. For any $j \geq 1$, $\pi_j^X(\mathcal{F})$ is a maximum K-convex filter of $\pi_j^X(M)$ (proposition 2), so $\pi_j^X(\mathcal{F})$ converges to x_j in (X, τ_j) . \mathcal{F} is then TK-convergent, so it admits a cluster point in M, and hence \mathcal{F} converges in $(E(X), \tau)$ (Proposition 1).

Proposition 16. Let M a K-convex subset of E(X); if M is C-compact, any K-convex and TK-convergent filter on M has a unique cluster point in M.

Proof. Let \mathcal{F} a K-convex and TK-convergent filter on M. For all $j \geq 1$ let $x_j \in X$ such that $\pi_j^X(\mathcal{F})$ converges to x_j in (X, τ_j) . \mathcal{F} admits at least one cluster point (z_n) in M. For all $j \geq 1$, z_j is a cluster point of $\pi_j^X(\mathcal{F})$ in (X, τ_j) , and then $x_j = z_j$. So (x_j) is the only cluster point of \mathcal{F} in M.

5. AK-completion and completion

Let M a subset of E(X) and τ a topology on E(X), we put:

$$S_M = \left\{ x \in M/x^{[n]} \xrightarrow{n \to \infty} x \quad in \ (E(X), \tau) \right\}.$$

If M is a subspace of E(X), we say that M is an AK-space if $S_M = M$.

Proposition 17. Let τ a polar topology of \mathcal{A} convergence on E(X); $(E(X), \tau)$ is AK-complete.

Proof. Let $x = (x_n) \in E(X)$ such that $(x^{[n]})$ is a Cauchy sequence in $(E(X), \tau)$. For all $A \in \mathcal{A}$ there exists $n_0 \ge 1$ such that $x^{[n]} - x^{[m]} \in A^{\circ}$ for all $n \ge m \ge n_0$, and then $x^{[n]} - x \in A^{\circ}$ for all $n \ge n_0$, then $x^{[n]} \xrightarrow{n \to \infty} x$ in $(E(X), \tau)$. **Corollary 6.** Let M a subset of E(X). M is AK-complete if and only if M contains every element x of E(X) such that $(x^{[n]})$ is the Cauchy sequence in M.

Corollary 7. Let τ' a locally K-convex topology on E(X) coarser than τ ; any AK-complete subset of $(E(X), \tau')$ is complete in $(E(X), \tau)$.

Proof. Let M an AK-complete subset of $(E(X), \tau')$, and either $x \in E(X)$ such that $(x^{[n]})$ is a Cauchy sequence in (M, τ) , $(x^{[n]})$ is a Cauchy sequence in (M, τ') , so $x \in M$ and hence M is AK-complete in $(E(X), \tau)$, (Corollary 6).

For all $x = (x_n) \in E(X)$, we put $\begin{array}{c} \psi_x : & E(Y) \longrightarrow c_0(K) \\ & (y_n) \longrightarrow (\langle x_n, y_n \rangle)_n \end{array}$ ψ_x is a linear map.

Lemma 1. For any $x \in E(X)$, ψ_x is $(\sigma(E(Y), E(X)), \sigma(c_0(K), m(K)))$ continuous.

Proof. $c_0(K)^{\beta} = m(K)$ and $\langle c_0(K), m(K) \rangle$ is a separating duality. Let $(\alpha_n) \in m(K)$; E(X) is solid, then $(\alpha_n x_n) \in E(X)$, and we have $\psi_x(\{(\alpha_n x_n)\}^\circ) \subset \{(\alpha_n)\}^\circ$.

Proposition 18. $(E(X), \sigma(E(X), E(Y)))$ is an AK-space.

Proof. Let $x = (x_n) \in E(X)$. For all $y = (y_n) \in E(Y)$, $(\langle x_n, y_n \rangle) \in c_0(K)$; there exists $i_0 \ge 1$ such that $\sup_{n \ge i_0} |\langle x_n, y_n \rangle| \le 1$, then $x^{[i]} - x \in \{y\}^\circ$ for all $i \ge i_0$, and then $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \sigma(E(X), E(Y)))$.

Proposition 19. Suppose that K be local, and let τ a (E(X), F(Y))-compatible topology on E(X); if τ is solid, $(E(X), \tau)$ is an AK-space.

Proof. Let \mathcal{A} a family of $\sigma(F(Y), E(X))$ -compacts and absolutely K-convex subsets of F(Y) such that τ be a polar topology of \mathcal{A} -convergence ([1], theorem 4.5.) Let $x = (x_n) \in E(X)$; for all $A \in \mathcal{A}$, $\psi_x(A)$ is solid and $\sigma(c_0(K), m(K))$ -compact in $c_0(K)$. Then $z^{[i]} \xrightarrow{i \to \infty} z$ uniformly on $z \in \psi_x(A)$ in $(c_0(K), \sigma(c_0(K), m(K)))$ (theorem 7); there exists $i_0 \geq 1$ such that $\left|\left\langle z^{[i]} - z, e \right\rangle\right| \leq 1$ for all $i \geq i_0$ and for all $z \in \psi_x(A)$, then $x^{[i]} - x \in A^\circ$ for all $i \geq i_0$, and so $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \tau)$.

We have the following result which is a kind of reciprocal of theorem 1:

Theorem 9. Suppose that K be local, and let τ a polar and solid topology on E(X) for separating duality $\langle E(X), E(X)^{\beta} \rangle$. If τ_j is (X, Y)-compatible for all $j \ge 1$, τ is $(E(X), E(X)^{\beta})$ -compatible.

Proof. $E(X)^{\beta} = (E(X), \sigma(E(X), E(X)^{\beta}))' \subset (E(X), \tau)'$. Let $f \in (E(X), \tau)'$ and $x = (x_n) \in E(X)$. $(E(X), \tau)$ is an AK-space (proposition 19), therefore $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \tau)$, and then $f(x) = \lim_{i \to \infty} f(x^{[i]}) =$ $\sum_{i} fo\delta_{j}^{X}(x_{j})$. For all $j \geq 1$, $fo\delta_{j}^{X} \in (X, \tau_{j})' = Y$; therefore f(x) = $\sum_{j}^{J} \langle x_j, y_j \rangle$, with $y_j = fo\delta_j^X$ for all $j \ge 1$. Hence $(y_j) \in E(X)^{\beta}$, and so $(E(X),\tau)' \subset E(X)^{\beta}$.

Let \mathcal{C} a family of subsets of F(Y) such that:

- 1. C is the right filtering for inclusion;
- 2. There exist $\lambda_0 \in K$, $|\lambda_0| > 1$ such that $\lambda_0 A \in \mathcal{C}$ for all $A \in \mathcal{C}$;
- 3. $\pi_i^Y(A)$ is $\sigma(Y, X)$ -bounded for all $j \ge 1$ and for all $A \in \mathcal{C}$
- 4. The subspace of E(Y) generated by $\cup \{A/A \in \mathcal{C}\}$ contains $\varphi(Y)$.

We put:
$$\begin{cases} \mathcal{C}(X) = \left\{ (x_n) \in \omega(X) / \sup_{(y_n) \in A} \left| \sum_n \langle x_n, y_n \rangle \right| < \infty \text{ for all } A \in \mathcal{C} \right\} \\ \mathcal{C}(Y) = subspace \text{ generated by } \cup \{A/A \in \mathcal{C}\}. \end{cases}$$

If \mathcal{C} is the family of all finite subsets of F(Y), $\mathcal{C}(X) = F(Y)^{\beta}$.

 $\varphi(X) \subset \mathcal{C}(X)$ and $\langle \mathcal{C}(X), \mathcal{C}(Y) \rangle$ is a separating duality defined by the bilinear form:

$$\langle (x_n), (y_n) \rangle = \sum_n \langle x_n, y_n \rangle$$
 for all $(x_n) \in \mathcal{C}(X)$ and for all $(y_n) \in \mathcal{C}(Y)$.

If τ is the polar topology of \mathcal{A} -convergence of E(X), $(\mathcal{A}(X), \tau_{\mathcal{A}})$ is defined, where $\tau_{\mathcal{A}}$ is the polar topology defined on $\mathcal{A}(X)$ by the family \mathcal{A} , and we have:

1. $E(X) \subset \mathcal{A}(X) \subset F(Y)^{\beta};$ 2. $\tau_{\mathcal{A}/E(X)} = \tau$.

Proposition 20. Let τ a polar topology of \mathcal{A} -convergence on E(X).

1. $S_{(\mathcal{A}(X),\tau_{\mathcal{A}})} \subset E(X),$ 2. $(\mathcal{A}(X),\tau_{\mathcal{A}})$ is AK-complete.

1. Let $x = (x_n) \in S_{(\mathcal{A}(X), \tau_{\mathcal{A}})}; x^{[i]} \xrightarrow{i \to \infty} x(\tau_{\mathcal{A}})$, therefore $(x^{[i]})$ Proof. is Cauchy sequence in $(E(X), \tau)$ $(\tau = \tau_{\mathcal{A}/E(X)})$, and then $x \in E(X)$ (proposition 17).

2. Let $(x^{[i]})$ a Cauchy sequence in $(\mathcal{A}(X), \tau_{\mathcal{A}})$; for all $A \in \mathcal{A}$, there exists $i_0 \geq 1$ such that for all $i, j \geq i_0 \sup \left\{ \left| \sum_{n=i+1}^{j} \langle x_n, y_n \rangle \right| / (y_n) \in A \right\} \leq 1$. We have on the one hand, $\sup \left\{ \left| \sum_{n>i_0} \langle x_n, y_n \rangle \right| / (y_n) \in A \right\} \leq 1$, therefore $\sup \left\{ \left| \sum_n \langle x_n, y_n \rangle \right| / (y_n) \in A \right\} < \infty \ (\varphi(X) \subset \mathcal{A} \ (X))$, and then $x \in \mathcal{A} \ (X)$; on the other hand, for all $i \geq i_0 \sup \left\{ \left| \sum_{n=i+1}^{\infty} \langle x_n, y_n \rangle \right| / (y_n) \in A \right\} \leq 1$, therefore $\sup \left\{ \left| \left\langle x^{[i]} - x, (y_n) \right\rangle \right| / (y_n) \in A \right\} \leq 1$, and then $x^{[i]} \xrightarrow{i \to \infty} x \ (\tau_{\mathcal{A}})$.

Theorem 10. Let τ a solid and polar topology of \mathcal{A} -convergence on E(X). For E(X) is a closed subspace of $(\mathcal{A}(X), \tau_{\mathcal{A}})$ it is necessary and sufficient that any Cauchy net TK-convergent of E(X) converges in $(E(X), \tau)$.

 $\begin{array}{l} \textbf{Proof.} \quad \text{N.C.}] \ A \ \text{is solid for all } A \in \mathcal{A}, \ \text{therefore } A^\circ = [A \cap \varphi(X)]^\circ . \\ \text{Let } (x^i)_{i \in I} \ \text{a Cauchy and } TK - \text{convergent net in } (E(X), \tau). \ \text{For all } j \geq 1, \ \text{let } x_j \in X \ \text{such that } (x_j^i)_{i \in I} \ \text{converges in } (X, \tau_j) \ \text{to } x_j. \tau_j \ \text{is the } polar \ \text{topology of } \pi_j^Y(\mathcal{A}) - \text{convergence on } X. \ \text{Let } A \in \mathcal{A}, \ \text{there exists } k_0 \in I \\ \text{such that for all } r, s \geq k_0 \ \left| \sum_{j=1}^N \left\langle x_j^r - x_j^s, y_j \right\rangle \right| \leq 1 \ \text{for all } N \geq 1 \ \text{and for all } \\ y \in A. \ \text{There exists } k_j \in I \ \text{such that for all } r \geq k_j, \ \left| \left\langle x_j^r - x_j, y_j \right\rangle \right| \leq 1 \\ \text{for all } (y_n) \in A. \ \text{Let } r_0 = \max\{k_0, k_1, ..., k_N\} \ \text{for all } r \geq r_0 \ \text{we have:} \\ \left| \sum_{j=1}^N \left\langle x_j^s - x_j, y_j \right\rangle \right| \leq \max_{1 \leq j \leq N} \left| \left\langle x_j^r - x_j, y_j \right\rangle \right| \leq 1 \ \text{for all } (y_n) \in A. \\ \left| \sum_{j=1}^N \left\langle x_j^s - x_j, y_j \right\rangle \right| \leq 1 \ \text{for all } (y_n) \in A \ \text{and for all } s \geq r_0; \ \text{therefore } \\ x^s - x \in [A \cap \varphi(X)]^\circ \ \text{for all } s \geq r_0. \ \text{Furthermore, } x = x^s - (x^s - x) \in \mathcal{A}(X). \\ \text{Therefore } (x^i)_{i \in I} \ \text{converges to } x \ \text{in } (\mathcal{A}(X), \tau_\mathcal{A}), \ \text{and then } x \in E(X) \ \text{and} \\ (x^i)_{i \in I} \ \text{converges to } x \ \text{in } (E(X), \tau). \end{aligned}$

S.C.] Let $(x^i)_{i \in I}$ a net in E(X) which converges to x in $(\mathcal{A}(X), \tau_{\mathcal{A}})$. $(x^i)_{i \in I}$ is a Cauchy and TK-convergent net in $(E(X), \tau)$ $(\tau = \tau_{\mathcal{A}/E(X)})$, therefore $(x^i)_{i \in I}$ converges to x in $(E(X), \tau)$.

Lemma 2. Let L and M two K- vector spaces, τ a topology on L, $L \xrightarrow{\pi} M \xrightarrow{\delta} L$ two linear maps such as $\pi o \delta = i d_M$, and τ_{δ} the inverse image topology of τ by δ on M.

The application $\psi: (M, \tau_{\delta}) \longrightarrow (\delta(M), \tau), x \longrightarrow \delta(x)$, is an homeomorphism.

Proof. If \mathcal{U} is a F.S.N of 0 for τ ; a F.S.N of 0 for τ_{δ} is $\delta^{-1}(\mathcal{U}) = \{\delta^{-1}(U)/U \in \mathcal{U}\}$, and we have: $\psi^{-1}(U \cap \delta(M)) = \delta^{-1}(U)$ for all $U \in \mathcal{U}$.

Theorem 11. Let τ a polar and solid topology of \mathcal{A} -convergence on E(X); $(E(X), \tau)$ is complete if and only if:

(i.) (X, τ_i) is complete for all $j \ge 1$;

(ii.) E(X) is a closed subspace of $(\mathcal{A}(X), \tau_{\mathcal{A}})$.

Proof. N.C.] δ_j^X is (τ, τ_j) -closed for all $j \ge 1$ (proposition 13), therefore $\delta_j^X(X)$ is a closed subspace of $(E(X), \tau)$, hence $\left(\delta_j^X(X), \tau\right)$ is complete. Now $\left(\delta_j^X(X), \tau\right) \simeq (X, \tau_j)$ (lemma 2), therefore (X, τ_j) is complete. Furthermore E(X) is a closed subspace of $(\mathcal{A}(X), \tau_{\mathcal{A}})$ (theorem 10).

S.C.] Let $(x^i)_{i \in I}$ a Cauchy net in $(E(X), \tau)$. For $j \ge 1$, $(x^i_j)_{i \in I}$ is Cauchy in (X, τ_j) so it converges, and then $(x^i)_{i \in I}$ is TK-convergent in $(E(X), \tau)$ so it converges in $(E(X), \tau)$, (theorem 10).

Remark 2. We can replace (ii) of theorem 11 by:

(ii) Any Cauchy TK-convergent net in $(E(X), \tau)$ converges in $(E(X), \tau)$.

Corollary 8. Let τ a polar and solid topology of \mathcal{A} -convergence on E(X). If E(X) is a closed subspace of $(\mathcal{A}(X), \tau_{\mathcal{A}})$; $(E(X), \tau)$ is sequentially complete if and only if (X, τ_j) is sequentially complete for all $j \geq 1$.

Lemma 3. Let τ a vector topology on E(X); if τ is solid, $S_{E(X)}$ is the closure of $\varphi(X)$ in $(E(X), \tau)$.

Proof. $S_{E(X)} \subset \overline{\varphi(X)}$. Let $x = (x_n) \in \overline{\varphi(X)}$ and U a solid neighborhood of 0, it is $z = (z_n) \in \varphi(X)$ as $x - z \in U$. Since U is solid $x^{[i]} - x \in U$ for i large enough, then $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \tau)$ and hence $x \in S_{E(X)}$.

Proposition 21. Let τ a solid and polar topology of \mathcal{A} -convergence on E(X); if (X, τ_j) is complete for all $j \geq 1$, $(S_{E(X)}, \tau)$ is complete.

Proof. $S_{E(X)} = \overline{\varphi(X)}$ (lemma 3), therefore $(S_{E(X)}, \tau)$ is a closed subspace of $(\mathcal{A}(X), \tau_{\mathcal{A}})$, and then $(S_{E(X)}, \tau)$ is complete.

Application: Let $(X, \|.\|)$ a *n.a* Banach space, we consider m(X) endowed with the n.a. norm $\|.\|_{\infty}$. We have $c_0(X) = S_{m(X)}$, and $\|.\|_{\infty}$ defines a polar and solid topology on m(X), therefore $(c_0(X), \|.\|_{\infty})$ is complete.

Theorem 12. Let τ a solid and polar topology of \mathcal{A} -convergence on E(X); if E(X) is an AK-space, $(E(X), \tau)$ is complete if and only if (X, τ_j) is complete for all $j \geq 1$.

Proof. N.C.] Obvious.

S.C.] E(X) is an AK-space, therefore $E(X) = S_{(E(X),\tau)}$. Now $S_{(\mathcal{A}(X),\tau_{\mathcal{A}})} \subset E(X)$ (proposition 20) and $S_{(E(X),\tau)} \subset S_{(\mathcal{A}(X),\tau_{\mathcal{A}})}$, therefore $E(X) = S_{(E(X),\tau)} = S_{(\mathcal{A}(X),\tau_{\mathcal{A}})}$, and then E(X) is a closed subspace of $(\mathcal{A}(X),\tau_{\mathcal{A}})$. Hence $(E(X),\tau)$ is complete (theorem 11).

References

- R. Ameziane Hassani, M. Babahmed, Topologies polaires compatibles avec une dualité séparante sur un corps valué non-Archimédien, Proyecciones Vol. 20, Núm. 2, pp. 217-240, (2001).
- [2] H.R. Chillingworth, Generalised "dual" sequence spaces, Ned. Akad. Proc. Ser. A. 61, pp. 307-515, (1958).
- [3] A. El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on sequence spaces in non-archimedean analysis, J. of Mathematical Sciences: Advances and Applications Vol. 6, Núm. 2, pp. 193-214, (2010).
- [4] T. Komura; Y. Komura, sur les espaces parfaits de suites et leurs généralisations, J. Math. Soc. Japon. 15, pp. 319-338, (1963).
- [5] G. Köthe, Topological vector spaces, Springer-Verlag Berlin Heidlberg New york, (1969).
- [6] -----, Neubegründung der theorie der vollkommen Räume, Math. Nach. 4, pp. 70-80, (1951).

- [7] -----; O. Toeplitz, Lineare Raüme mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. reine angew. Math. 171, pp. 193-226, (1934).
- [8] G. Matthews, Generalised Rings of infinite matrices, Ned. Akad. Wet. Proc. 61, pp. 298-306 (1958).
- [9] A.F.Monna, Analyse non-archimédienne, Springer-Verlag Berlin New York Heidelberg (1970).
- [10] H.H. Schaefer, Topological vector spaces, Springer-Verlag Berlin New york Heidlberg, (1971).
- [11] W. H. Schikhof, Locally convex spaces over nonspherically complete valued field I, II. Bull. Soc. Math. Belg. Sér. B. 38, pp. 187-224, (1986).
- [12] J. Van Tiel, Espaces localement K-convexes I-III, Indag. Math. 27, pp. 249-289 (1965).

R. Ameziane Hassani
Département de Mathématiques
Faculté des Sciences Dhar El Mehraz
Université Sidi Mohamed Ben Abdellah
B. P. 1796 FES - MAROC
e-mail : ramezianehassani@hotmail.com

A. El Amrani
Département de Mathématiques
Faculté des Sciences Dhar El Mehraz
Université Sidi Mohamed Ben Abdellah
B. P. 1796, FES - MAROC
e-mail : ramezianehassani@hotmail.com

and

M. Babahmed Département de Mathématiques Faculté des Sciences de Meknès Université Moulay Ismail B. P. 11201 Zitoune MEKNES - MAROC e-mail : babahmed@fs-umi.ac.ma