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Abstract

The Index of Rotundity Problem asks whether a Banach space
which admits equivalent renormings with index of rotundity as small
as desired also admits an equivalent rotund renorming. In this paper
we continue the ongoing search for a negative answer to this ques-
tion by making use of a new concept: asymptotically convex Banach
spaces. Some applications to The Approximation Hyperplane Series
Property are given.
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1. Introduction

Since the concept of rotund Banach space appeared many characterizations
of it have been provided. This concept motivated, among other things, the
creation of an index to measure it, the so called index of rotundity.

Definition 1.1. Let X be a real or complex Banach space. The index of
rotundity of X is defined as

ζX := sup {diam (C) : C ⊂ SX is convex} .

The reader can quickly observe that a normed space X is rotund if and
only if ζX = 0. In [3, Theorem 7.12] it is shown an example of a Banach
space which is not rotund under any equivalent renorming. Such example
triggered the search for a Banach space not isomorphic to a rotund space
but which can be equivalently renormed to decrease its index of rotundity
as much as desired. This is the birth of the “Index of Rotundity Problem”,
a well-known problem among the Banach space geometers.

Question 1.2 (The Index of Rotundity Problem). Let X be a real
or complex Banach space. Assume that for every h > 0 there exists an
equivalent renorming k·kh on X such that ζ(X,k·kh)

≤ h. Does then there

exist an equivalent norm k·k0 on X such that ζ(X,k·k0)
= 0?

We refer the reader to [3] for a wide perspective on rotund renormings
and the index of rotundity. In the upcoming sections we continue the on-
going search for a negative answer to this question. In the last section we
provide some applications to The Approximation Hyperplane Series Prop-
erty.

2. Asymptotically convex Banach spaces

This section is devoted to describe the class of Banach spaces we will be
working with.

Definition 2.1. Let X be a real or complex Banach space. Consider a
closed subspace Y of X and two numbers ε ∈ (0, 1] and δ ∈ [0, 1). We
say that X is (ε, δ)-asymptotically convex in the direction of Y if every
non-trivial segment [x1, x2] ⊂ SX \ SY verifies that dist ([x1, x2] , Y ) ≥ ε
and dist (x1 − x2, Y ) ≤ δ kx1 − x2k.
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Examples of Banach spaces asymptotically convex follow.

Example 2.2. Take X to be R2 endowed with the norm whose unit ball
is

Bc2∞
∪Bc22

((−1, 0) , 1) ∪Bc22
((1, 0) , 1) .

In this situation, X is (1, 0)-asymptotically convex in the direction of

Y :=
n
(x, y) ∈ R2 : y = 0

o
.

Example 2.2 can be used as a base to construct infinite dimensional
asymptotically convex Banach spaces. This construction will actually show
us that every Banach space is isomorphic to an asymptotically convex Ba-
nach space.

The norm of the space X in Example 2.2 can actually be described as:

k(x, y)k =
(

x2+y2

2|x| if |y| < |x| ,
|y| if |x| ≤ |y| ,

where x, y ∈ R.

Theorem 2.3. Let Y and Z be Banach spaces such that Z is rotund. The
vector space X := Y × Z endowed with the norm

k(y, z)k :=
(

kyk2+kzk2
2kyk if kzk < kyk ,
kzk if kyk ≤ kzk ,

(2.1)

where y ∈ Y and z ∈ Z, is a Banach space (1, 0)-asymptotically convex in
the direction of Y × {0}.

Proof. Let [(y1, z1) , (y2, z2)] be a non-trivial segment contained in
SX \ SY×{0}. Observe that the three points (ky1k , kz1k), (ky2k , kz2k),
and

³°°°y1+y22

°°° , °°z1+z22

°°´ are in the unit sphere of the 2-dimensional Ba-
nach space constructed in Example 2.2. More precisely, the three previous
points must be in the positive part of that unit sphere. On the other hand,

notice also that
°°°y1+y22

°°° ≤ ky1k+ky2k
2 and

°°z1+z2
2

°° ≤ kz1k+kz2k
2 , so the point³°°°y1+y22

°°° , °°z1+z22

°°´ is below and at the left of the point ³ky1k+ky2k2 , kz1k+kz2k2

´
=

1
2 (ky1k , kz1k)+

1
2 (ky2k , kz2k). Therefore, the only possibility is that kz1k =

kz2k. If z1 6= z2, then
°°z1+z2

2

°° < kz1k+kz2k
2 due to the fact that Z is rotund.

But this contradicts the fact that
³°°°y1+y22

°°° , °°z1+z22

°°´ is in the unit sphere of
the 2-dimensional Banach space constructed in Example 2.2. Thus z1 = z2.
Finally,

dist ([(y1, z1) , (y2, z2)] , Y × {0}) = 1
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and

dist ((y1, z1)− (y2, z2) , Y × {0}) = 0.

2

Corollary 2.4. Let X be a real or complex Banach space. Then X can
be equivalently renormed to become (1, 0)-asymptotically convex in the
direction of a closed subspace.

Proof. Consider Z to be any complemented subspace of X which ad-
mits an equivalent rotund renorming (for instance, any finite dimensional
subspace). Assume that Z is already endowed with that equivalent ro-
tund renorming. Let Y be the topological complement of Z in X. Finally
consider the norm given by Equation (2.1) on Y × Z. 2

3. Decreasing the index of rotundity

The next two results are aimed at showing that a certain type of asymptot-
ically convex Banach space can be renormed in order to decrease the index
of rotundity as much as desired.

Theorem 3.1. LetX be a real or complex Banach space (ε, δ)-asymptotically
convex in the direction of a closed subspace Y . Consider the equivalent
norm |·| on X given by

|x| :=
q
kxk2 + dist2 (x, Y ),

for all x ∈ X. Then:

1. ζ(X,|·|) ≤ max
n
ζY ,

q
1+δ2

1+ε2
ζX
o
.

2. If
√
2δ < 1, then (X, |·|) is

³
ε,
√
2δ
´
-asymptotically convex in the

direction of (Y, |·|).

Proof. Let x1, x2 ∈ X such that

|x1| = |x2| =
¯̄̄̄
x1 + x2
2

¯̄̄̄
= 1.
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Notice that

4 = |x1 + x2|2

= kx1 + x2k2 + dist2 (x1 + x2, Y )

≤ kx1k2 + kx2k2 + 2 kx1k kx2k
+ dist2 (x1, Y ) + dist2 (x2, Y ) + 2dist (x1, Y ) dist (x2, Y )

≤ 2 + 2
q
kx1k2 + dist2 (x1, Y )

q
kx2k2 + dist2 (x2, Y )

= 4.

Therefore, the previous two inequalities must indeed be equalities. In
other words:

• It must happen that

kx1 + x2k = kx1k+ kx2k ,

which means that ∙
x1
kx1k

,
x2
kx2k

¸
⊂ SX .

• It must also be verified that

kx1k kx2k+ dist (x1, Y ) dist (x2, Y )

=
q
kx1k2 + dist2 (x1, Y )

q
kx2k2 + dist2 (x2, Y ),

which means that there exists α > 0 such that kx1k = α kx2k and
dist (x1, Y ) = αdist (x2, Y ). Observe that

1 = kx1k2 + dist2 (x1, Y )

= α
³
kx2k2 + dist2 (x2, Y )

´
= α2.

We have now all the necessary tools to prove the assertions (1) and (2)
of the theorem:

1. Let [x1, x2] be a non-trivial segment in S(X,|·|):

1. Assume that [x1, x2] ∩ Y 6=. Without any loss we may consider
that x1 ∈ Y .

Then dist (x2, Y ) = dist (x1, Y ) = 0, so x2 ∈ Y . Then [x1, x2] ⊂
SY and |x1 − x2| = kx1 − x2k ≤ ζY .
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2. Suppose now that [x1, x2] ∩ Y =. Then kx1k = kx2k and there-
fore

h
x1
kx1k ,

x2
kx2k

i
⊂ SX \ SY . In the first place

kx1k =
q
1− dist2 (x1, Y ) =

s
1− kx1k2 dist2

µ
x1
kx1k

, Y

¶
,

that is,

kx1k2 =
1

1 + dist2
³

x1
kx1k , Y

´ ,
which implies that

1√
2
≤ kx1k ≤

1√
1 + ε2

.

In the second place

|x1 − x2| =
q
kx1 − x2k2 + dist2 (x1 − x2, Y )

= kx1k
s°°°° x1

kx1k
− x2
kx2k

°°°°2 + dist2
µ

x1
kx1k

− x2
kx2k

, Y

¶

≤ kx1k
s°°°° x1

kx1k
− x2
kx2k

°°°°2 + δ2
°°°° x1
kx1k

− x2
kx2k

°°°°2
≤

s
1 + δ2

1 + ε2
ζX .

Therefore

ζ(X,|·|) ≤ max

⎧⎨⎩ζY ,
s
1 + δ2

1 + ε2
ζX

⎫⎬⎭ .

2. Let [x1, x2] be a non-trivial segment in S(X,|·|) \ S(Y,|·|):

1. Fix t ∈ [0, 1] and y ∈ Y . Note that kx1k = kx2k = ktx1 + (1− t)x2k
and

h
x1
kx1k ,

x2
kx2k

i
⊂ SX \ SY . Thus

|tx1 + (1− t)x2 − y|

=
q
ktx1 + (1− t)x2 − yk2 + dist2 (tx1 + (1− t)x2 − y, Y )

= kx1k
s°°°°t x1

kx1k
+ (1− t)

x2
kx2k

− y

kx1k

°°°°2 + dist2
µ
t
x1
kx1k

+ (1− t)
x2
kx2k

, Y

¶
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≥ kx1k
√
2dist

µ∙
x1
kx1k

,
x2
kx2k

¸
, Y

¶
≥ ε.

Therefore dist|·| ([x1, x2] , Y ) ≥ ε.

2. Fix a sequence (yn) ⊂ Y such that
³°°° x1

kx1k −
x2
kx2k − yn

°°°´
n∈N

converges to dist
³

x1
kx1k −

x2
kx2k , Y

´
. For all n ∈ N:

|x1 − x2 − yn| =
q
kx1 − x2 − ynk2 + dist2 (x1 − x2 − yn, Y )

= kx1k
s°°°° x1

kx1k
− x2
kx2k

− yn

°°°°2 + dist2
µ

x1
kx1k

− x2
kx2k

, Y

¶
.

As a consequence (and taking into consideration that kx1k =
kx2k),

dist|·| (x1 − x2, Y ) ≤ kx1k
s
δ2
°°°° x1
kx1k

− x2
kx2k

°°°°2 + δ2
°°°° x1
kx1k

− x2
kx2k

°°°°2
=
√
2δ kx1 − x2k

≤
√
2δ |x1 − x2| .

2

Corollary 3.2. Let X be a real or complex Banach space. Assume that
there exist 0 < ε ≤ 1 and a rotund closed subspace Y of X such that X
is (ε, 0)-asymptotically convex in the direction of Y . For every h ∈ (0, 2]
there exists an equivalent norm |·|h on X such that

ζ(X,|·|h)
≤ h.

Proof. Denote by |·|0 to the original norm on X. For every n ∈ N we
define the equivalent norm |·|n on X given by

|x|n :=
r
|x|2n−1 + dist2|·|n−1 (x, Y ),

for all x ∈ X.
By applying Theorem 3.1 inductively, we deduce that

ζ(X,|·|n)
≤
³
1 + ε2

´−n
2 ζX
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for all n ∈ N. Since µ³
1 + ε2

´−n
2

¶
n∈N

converges to 0, we can find m ∈N large enough so that

ζ(X,|·|m)
≤ h.

Finally take |·|h := |·|m. 2
We will conclude this section by showing the existence of Banach spaces

with index of rotundity 2 under any equivalent renorming.
Let ω1 denote the first uncountable ordinal. The space of all bounded

real-valued functions on [0, ω1] will be denoted by c∞ (0, ω1), which becomes
a Banach space endowed with the sup norm. The subspace of c∞ (0, ω1)
composed of those functions with countable support is denoted by m0. In
accordance to [3, Theorem 7.12], m0 endowed with any (non-necessarily
equivalent) norm has a subspace which is linearly isometric to m0 endowed
with the sup norm. The reader may notice that the index of rotundity of
m0 endowed with the sup norm is 2; therefore the index of rotundity of m0

endowed with any norm is also 2. As a consequence, if Γ is any uncountable
set, then c∞ (Γ) has index of rotundity 2 under any equivalent renorming.

4. Applications to The Approximate Hyperplane Series Prop-
erty

In [1] the authors find that the Property β of Lindenstrauss (see [4]) is a
sufficient condition for a certain pair of Banach spaces to enjoy the Bishop-
Phelps-Bollobás Property.

Theorem 4.1 (Acosta, Aron, Garćia, and Maestre, 2008). Let Y be
a real or complex Banach space. If Y satisfies Property β, then the pair
(X,Y ) has the Bishop-Phelps-Bollobás Property for every Banach space
X.

In an attempt to provide a characterization of the Bishop-Phelps-Bollobás
Property, the authors of [1] came up with a new property calledThe Approx-
imation Hyperplane Series Property, which we will introduce afterwards.
The characterization they gave was the following:

Theorem 4.2 (Acosta, Aron, Garćia, and Maestre, 2008). Let Y be
a real or complex Banach space. The following conditions are equivalent:
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1. The pair (c1, Y ) has the Bishop-Phelps-Bollobás Property.

2. Y satisfies the Approximation Hyperplane Series Property.

We will proceed now to define the Approximation Hyperplane Series
Property. Within the next lines we will letM denote the set of all functions

γ : [0, 2]→
h
0, 12

i
such that:

• limε→0+ γ (ε) = γ (0) = 0.

• γ (ε) > 0 for all 0 < ε ≤ 2.

Given a real or complex Banach space X, γ ∈ M, and ε ∈ [0, 2], we
define the set HS (X, γ, ε) in the following way:

• If ε ∈ (0, 2], thenHS (X, γ, ε) is composed of all pairs
¡
(xk)k∈N , (αk)k∈N

¢
such that (xk)k∈N ⊂ SX ,

P∞
k=1 αk is a convex series, and for all A ⊆

N with
P

k∈A αk > 1−γ (ε) and for all (zk)k∈A with co {zk : k ∈ A} ⊂
SX , there exists k0 ∈ A verifying that kzk0 − xk0k ≥ ε.

• If ε = 0, thenHS (X, γ, ε) is composed of all pairs
¡
(xk)k∈N , (αk)k∈N

¢
such that (xk)k∈N ⊂ SX and

P∞
k=1 αk is a convex series.

Definition 4.3 (Acosta, Aron, Garćia, Maestre, 2008). Let X be a
real or complex Banach space:

1. The Modulus of Hyperplane Series Approximation of X with respect
to γ ∈M is the function

ηX (·, γ) : [0, 2]→ [0, 1]

ε 7→ ηX (ε, γ) := inf

(
1−

°°°°°
∞X
k=1

αkxk

°°°°° : ¡(xk)k∈N , (αk)k∈N
¢
∈ HS (X, γ, ε)

)

2. X has the Approximation Hyperplane Series Property if there exists γX ∈
M such that ηX (ε, γX) > 0 for all 0 < ε ≤ 2.

The geometrical interpretation of the Approximation Hyperplane Series
Property is that somehow a convex series of a sequence in the unit sphere
can be approximated by a unit ball supporting hyperplane. The reader
may notice that the previous definition is not exactly the way the authors
of [1] defined the Approximation Hyperplane Series Property. Actually,
the modulus of hyperplane series approximation was later introduced in a
different manuscript (see [2]). In [2] the authors prove the following result.
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Theorem 4.4 (Acosta, Aron, Garćia-Pacheco, 2010). LetX be a real
or complex Banach space. If ζX ≤ 2

3 , then ηX
¡ ε
3 , γ

¢
≤ δX (ε) for all

ε ∈ [3ζX , 2] and all γ ∈M.

We remind the reader that δX denotes the modulus of convexity (or
modulus of Clarkson) of the Banach space X. Therefore, Theorem 4.4
shows that the modulus of convexity and the modulus of hyperplane series
approximation are somehow related. Another result proved in [2] follows.

Theorem 4.5 (Acosta, Aron, Garćia-Pacheco, 2010). LetX be a real
or complex Banach space. If X admits an equivalent rotund renorming,
then X admits an equivalent rotund renorming failing the Approximation
Hyperplane Series Property.

We will finish this section and the paper by providing a version of the
previous result for asymptotically convex Banach spaces, making use of
Theorem 4.4.

Theorem 4.6. Let X be a real or complex Banach space. Assume that
there exist 0 < ε ≤ 1 and a closed subspace Y of X such that X is (ε, 0)-
asymptotically convex in the direction of Y . If there exists ε0 ∈ [3ζY , 2]
such that δY (ε0) = 0, then there exists an equivalent norm on X so that
X is (ε, 0)-asymptotically convex in the direction of Y but lacks the Ap-
proximation Hyperplane Series Property.

Proof. In the first place, following a similar argument as in the proof
of Corollary 3.2, there exists an equivalent norm |·| on X which coincides
with the original norm on Y and such that

ζ(X,|·|) ≤ max
½
ζY ,

ε0
3

¾
.

This norm also verifies that ε0 ∈
h
3ζ(X,|·|), 2

i
; therefore by Theorem 4.4

η(X,|·|)

µ
ε0
3
, γ

¶
≤ δ(X,|·|) (ε0)(4.1)

holds for all γ ∈M. Since δY (ε0) = 0, there are two sequences
(xn)n∈N , (yn)n∈N ⊂ SY such that kxn − ynk ≥ ε0 for all n ∈ N and°°°xn+yn2

°°° → 1 as n → ∞. On the other hand, since the norm |·| co-
incides with the original norm on Y , we have that the two sequences
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(xn)n∈N , (yn)n∈N ⊂ SY = S(Y,|·|) are so that |xn − yn| = kxn − ynk ≥ ε0

for all n ∈ N and
¯̄̄
xn+yn
2

¯̄̄
=

°°°xn+yn2

°°° → 1 as n → ∞. Therefore,

δ(X,|·|) (ε0) = 0 which means that η(X,|·|)
¡ε0
3 , γ

¢
= 0 by virtue of Equation

(4.1). 2
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