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Abstract

We consider the weighted digraphs in which the arc weights are
positive definite matrices. We obtain some upper bounds for the spec-
tral radius of these digraphs and characterize the digraphs achieving
the upper bounds. Some known upper bounds are then special cases of
our results.
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1. Introduction

We consider digraphs which have no loops or multi-arcs. Let G = (V,E)
be a strongly connected digraph on the vertex set V = {1, 2, . . . , n} . If
(i, j) is an arc of G, then i is called the initial vertex and j is called the
terminal vertex of this arc. The outdegree d+i of a vertex i in the digraph
G is defined to be the number of arcs in G with initial vertex i. Let t+i
be the sum of the outdegrees of all vertices in N+

i = {j : (i, j) ∈ E} and
call it the 2-outdegree. Moreover, set m+

i :=
t+i
d+i
, the average 2-outdegree,

1 ≤ i ≤ n.

A weighted digraph is a digraph in which each arc is assigned a weight,
similarly to a weighted graph. It is called a network in the context of
the graph theory. In the literature, especially in control theory, quantum
mechanics etc., the entries of matrices are also matrices have been studied.
Considering these, we define the generalized weighted digraph as a digraph
in which each arc is assigned a square matrix which is called a weight
matrix. Throughout this paper, unless otherwise stated, all weight matrices
will be assumed positive definite. It is clear that the weight of the arc can
also be positive numbers. Moreover if each arc of weighted digraph bearing
weight 1, then it is simply an (unweighted) digraph.

Now we introduce some notations. Let G = (V,E) be a generalized
weighted digraph on the vertex set V = {1, 2, . . . , n} and let (Wij) be the
positive definite weight matrix of order p of the arc (i, j) ∈ E. Let W+

i =P
j∈N+

i
Wij be the outweight matrix of the vertex i and let d (i, j) be the

distance, i.e., length of a shortest directed i− j path [3] from the vertex i
to j in G.

The adjacency matrix of a weighted digraph G is defined as the block
matrix A (G) = (aij), where

aij =

(
Wij if (i, j) ∈ E
0 otherwise

Here zero denotes the p × p zero matrix. Thus A (G) is a square matrix
of order np. The eigenvalues ρ1, ρ2, . . . , ρnp of G are the eigenvalues of its
adjacency matrix A (G) . In general A (G) is not Hermitian and so its eigen-
values can be complex numbers. We usually arrange them in descending
order: |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρnp|. The spectral radius of G is defined as its
largest eigenvalue in modulus. More generally, if B is a square matrix, we
use ρ1 (B) to denote the spectral radius of the matrix B.
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Now we define outweight regular and outweight semi-regular digraphs.
For this let G = (V,E). If the vertex set V is partitioned into two nonempty

sets V1 and V2 such that every vertex i in V1 has the same ρ1
³
W+

i

´
and

every vertex j in V2 has the same ρ1
³
W+

j

´
, then G is called an outweight

semi-regular digraph. If ρ1
³
W+

i

´
= ρ1

³
W+

j

´
in outweight semi-regular

digraph, then G is called an outweight regular digraph.

The spectral radius of unweighted digraphs and its bounds have been
studied in [1, 2, 4, 5, 11, 12]. In this paper, we study the spectral radius
of the generalized weighted digraphs where the arc weights are positive
definite matrices. We obtain some upper bounds for the spectral radius of
these digraphs and characterize digraphs that achieve the upper bounds.
Some known upper bounds are then special cases of our results.

In fact, for undirected weighted graphs the following results have been
obtained in [6] and [7].

Theorem 1.1. [6] Let G = (V,E) be a simple connected weighted graph.
Then

|ρ1| ≤ max
(i,j)∈E

⎧⎨⎩
sX

k∈Ni

ρ1 ( Wik)
X
k∈Nj

ρ1 (Wjk)

⎫⎬⎭(1.1)

where Wij is the positive definite weight matrix of order p of the edge
(i, j) ∈ E. Moreover equality holds in e1 if and only if

(i) G is a weight regular graph or G is a weight semi-regular bipartite
graph;

(ii) {Wij}i,j=1,...,n have a common eigenvector corresponding to the largest
eigenvalue ρ1 (Wij) for all i, j.

Theorem 1.2. [7] Let G = (V,E) be a simple connected weighted graph.
Then

|ρ1| ≤ max
i∈V

⎧⎨⎩
sX

j∈Ni

ρ1 (Wij)
X
k∈Nj

ρ1 (Wjk)

⎫⎬⎭(1.2)

where (Wij) is the positive definite weight matrix of order p of the edge
ij ∈ E. Moreover equality holds in e2 if and only if

(i) G is a weight regular graph or G is a weight semi-regular bipartite
graph;
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(ii) {Wij}i,j=1,...,n have a common eigenvector corresponding to the largest
eigenvalue ρ1 (Wij) for all i, j.

We will give generalizations of Theorem 1.2 for the spectral radius of
weighted digraphs, by following the idea in [7]. The terminology not defined
in here can be found in [1, 2, 6, 7, 8, 9].

2. Upper bounds for the spectral radius of weighted digraphs

We first recall some lemmas.

Lemma 2.1. [10] Let B be an n×n Hermitian matrix with ρ1 as eigenvalue
with largest modulus. Then for any x ∈ Cn (x 6= 0) , y ∈ Cn (y 6= 0) the
spectral radius |ρ1| satisfies

|x∗By| ≤ |ρ1|
√
x∗x

p
y∗y,(2.1)

Moreover the equality holds in e3 if and only if x is an eigenvector of B
corresponding to ρ1 and y = αx for some α ∈ R.

Lemma 2.2. [6] Let B1, B2, . . . , Bk be positive definite matrices of order n
and let B =

Pk
i=1Bi. If x ∈ Cn is an eigenvector of each Bi corresponding

to the largest eigenvalue ρ1 (Bi) for all i, then x is also an eigenvector of B
corresponding to the largest eigenvalue ρ1 (B).

From Lemma 2.2, we can give the following lemma for weighted digraphs
without proof.

Lemma 2.3. Let G = (V,E) be a weighted digraph and let (Wij) be
the positive definite weight matrix of order p of the arc (i, j) ∈ E and
W+

i =
P

j∈N+
i
Wij . Also let x be an eigenvector ofWij corresponding to the

largest eigenvalue ρ1 (Wij) for all i, j. Then x is also an eigenvector of W+
i

corresponding to the largest eigenvalue ρ1
³
W+

i

´
for all i, and ρ1

³
W+

i

´
=P

j∈N+
i
ρ1 (Wij) .

For the spectral radius of weighted digraphs, we obtain the following
upper bounds.
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Theorem 2.4. Let G = (V,E) be a strongly connected weighted digraph.
Then

|ρ1| ≤ max
i∈V

⎧⎪⎪⎨⎪⎪⎩
vuut X

j∈N+
i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk)

⎫⎪⎪⎬⎪⎪⎭(2.2)

where (Wij) is the positive definite weight matrix of order p of the arc
(i, j) ∈ E. Moreover, the equality holds in newbound if and only if

(i) G is an outweight regular digraph or G is an outweight semi-regular
digraph;

(ii) {Wij}i,j=1,...,n have a common eigenvector corresponding to the largest
eigenvalue ρ1 (Wij) for all i, j.

Proof. Let X be an eigenvector corresponding to eigenvalue ρ1 (|ρ1|
is the spectral radius) of A (G). Now we assume that xi1 is the vector
component of X such that x∗i1xi1 = maxk∈V {x∗kxk}. Since X is nonzero,
so is xi1 . We have

A (G)X = ρ1X.(2.3)

From the i1th equation of e5, we have

ρ1xi1 =
X

k∈N+
i1

Wi1kxk(2.4)

i.e., ρ1x
∗
i1
xi1 =

P
k∈N+

i1

x∗i1Wi1kxk. Taking modulus on both sides of e6 and

using Lemma 2.1, we get

|ρ1|x∗i1xi1 =

¯̄̄̄
¯̄̄ X
k∈N+

i1

x∗i1Wi1kxk

¯̄̄̄
¯̄̄ ≤ X

k∈N+
i1

¯̄
x∗i1Wi1kxk

¯̄
(2.5)

≤
X

k∈N+
i1

ρ1 (Wi1k)
q
x∗i1xi1

q
x∗kxk.(2.6)

Since x∗i1xi1 6= 0,

|ρ1|
q
x∗i1xi1 ≤

X
k∈N+

i1

ρ1 (Wi1k)
q
x∗kxk.(2.7)
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For all k such that xk 6= 0 and k ∈ N+
i1
,

|ρ1|
q
x∗kxk ≤

X
r∈N+

k

ρ1 (Wkr)
p
x∗rxr(2.8)

i.e.,

|ρ1|
q
x∗kxk ≤

q
x∗i1xi1

X
r∈N+

k

ρ1 (Wkr) .(2.9)

Multiplying both sides of e9 by |ρ1| and using e11 we obtain

|ρ1| ≤
vuut X

k∈N+
i1

ρ1 (Wi1k)
X
r∈N+

k

ρ1 (Wkr).(2.10)

Hence the upper bound newbound follows. Now we suppose that the equal-
ity holds in newbound. Then all inequalities in the above argument must
be equalities. If there exists k, k ∈ N+

i1
such that xk = 0, therefore from e9

and e12 we have |ρ1| <
qP

k∈N+
i1

ρ1 (Wi1k)
P

r∈N+
k
ρ1 (Wkr)

which contradicts e12. Thus xk 6= 0, k ∈ N+
i1
. From e8 and using Lemma

2.1, we conclude that both xi1 and xk are the eigenvectors of Wi1k corre-
sponding to the largest eigenvalue ρ1 (Wi1k) for all k, k ∈ N+

i1
. Hence for

any k, k ∈ N+
i1
, xk = ci1,kxi1 for some ci1,k. Since Wi1k is a positive defi-

nite matrix and xi1 is an eigenvector of Wi1k corresponding to the largest
eigenvalue ρ1 (Wi1k) , we have

x∗i1Wi1kxi1 > 0.(2.11)

From (7), as xk = ci1,kxi1

¯̄̄̄
¯̄̄ X
k∈N+

i1

ci1,kx
∗
i1Wi1kxi1

¯̄̄̄
¯̄̄ =

X
k∈N+

i1

¯̄̄
ci1,k

¯̄̄ ¯̄
x∗i1Wi1kxi1

¯̄
(2.12)

=
X

k∈N+
i1

¯̄̄
ci1,k

¯̄̄
x∗i1Wi1kxi1 ,(2.13)

i.e., ci1,k > 0 for all k ∈ N+
i1
, and the last equality follows from e13. Similar

to above discussions, from equality in e10, we conclude that both xk and xr
are the eigenvectors ofWkr corresponding to the largest eigenvalue ρ1 (Wkr)
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for all r, r ∈ N+
k , k ∈ N+

i1
. Therefore for any r, r ∈ N+

k , k ∈ N+
i1
, xr = ck,rxk

for some ck,r > 0. From e11 we get

x∗rxr = x∗i1xi1 for r ∈ N+
k , k ∈ N+

i1

i.e., c2k,rc
2
i1,k

= 1 as xk = ci1,kxi1 and xr = ck,rxk and xi1 6= 0. In other
words ck,rci1,k = 1 by ci1,k > 0 and ck,r > 0. Thus xr = ck,rci1,kxi1 = xi1
for all r, r ∈ N+

k , k ∈ N+
i1
, i.e., xr = xi1 , for all r, r ∈ NN+

i1

where

NN+
i1

=
n
r : r ∈ N+

k , k ∈ N+
i1
, r 6= i1

o
. Similarly, we can show that xs = xi1

for all s, s ∈ NN+
r
, r ∈ NN+

i1

. Continuing the procedure, since G is strongly

connected, it is easy to see that xi = xi1 for d (i1, i) even. We denote by
V1 = {i : xi = xi1} and V2 = V \V1. We first assume that there is an
arc (i, j) ∈ E (V1), where E (V1) denotes the set of arcs in V1. We have
xi = xj = xi1 . Therefore

xr = xi1 for all r, r ∈ N+
j , j ∈ N+

i

and

xr = xi1 for all r, r ∈ N+
i , i ∈ N+

j .

Using the same technique as above, since G is strongly connected, we con-
clude that xi = xi1 for all i ∈ V . Furthermore, xi1 is an eigenvector of
Wij corresponding to the largest eigenvalue of ρ1 (Wij) for all i, j. From
Lemma 2.3, xi1 is also an eigenvector of W

+
i corresponding to the largest

eigenvalue of ρ1
³
W+

i

´
for all i. For i ∈ V

ρ1xi1 =
X

k∈N+
i

Wi,kxi1 =W+
i xi1 = ρ1

³
W+

i

´
xi1 .

For i, k ∈ V

ρ1xi1 = ρ1
³
W+

i

´
xi1 = ρ1

³
W+

k

´
xi1 ,

i.e.,
³
ρ1
³
W+

i

´
− ρ1

³
W+

k

´´
xi1 = 0. Since xi1 6= 0, ρ1

³
W+

i

´
is constant

for all i ∈ V . Hence G is an outweight regular digraph. Next we assume
that there is no arc in the set E (V1). So there is an arc from the each
vertex in V1 to the vertices in the set V2. From above for any i ∈ V1

xr = xi1 for all r, r ∈ N+
j , j ∈ N+

i .
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Thus we can conclude that there is an arc from the each vertex in V2
to the vertices in the set V1 since G is strongly connected. Hence G is
bipartite. Now we assume that all the eigen-components corresponding to
the vertices in V2 are not equal. Let x

∗
j1xj1 = maxr∈V2 {x

∗
rxr}. Then there

exists a vertex k ∈ V2 such that x
∗
kxk < x∗j1xj1 , j1, k ∈ V2; k, j1 ∈ N+

i ,
i ∈ V1.

From e11 and e9 we obtain

|ρ1|
q
x∗j1xj1 =

q
x∗i1xi1

X
r∈N+

j1

ρ1 (Wj1r)

and

|ρ1|
q
x∗i1xi1 =

X
s∈N+

r

ρ1 (Wrs)
p
x∗sxs, r ∈ N+

j1
.

Therefore

|ρ1|2
q
x∗j1xj1 =

X
r∈N+

j1

ρ1 (Wj1,r)
X
s∈N+

r

ρ1 (Wrs)
p
x∗sxs,

i.e.,

|ρ1| <
vuut X

r∈N+
j1

ρ1 (Wj1,r)
X
s∈N+

r

ρ1 (Wrs)

which is a contradiction. So xj = xj1 for all j ∈ V2.Hence V1 = {i : xi = xi1}
and V2 = {i : xi = cxi1 , c > 0} . Moreover, xi1 is an eigenvector of Wij cor-
responding to the largest eigenvalue ρ1 (Wij) for all i, j. By Lemma 2.3,
xi1 is also an eigenvector of W

+
i corresponding to the largest eigenvalue

ρ1
³
W+

i

´
for all i. For i ∈ V1,

ρ1xi1 =
X

k∈N+
i

Wikxk = cW+
i xi1 = cρ1

³
W+

i

´
xi1 .

For i, k ∈ V1,

ρ1xi1 = cρ1
³
W+

i

´
xi1 = cρ1

³
W+

k

´
xi1 ,

i.e., ρ1
³
W+

i

´
= ρ1

³
W+

k

´
since xi1 is nonzero and c 6= 0. Hence ρ1

³
W+

i

´
is constant for all i ∈ V1. Similarly we can show that ρ1

³
W+

j

´
is constant

for all j ∈ V2. Hence G is an outweight semi-regular digraph.
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Conversely, we suppose that the conditions (i)-(ii) shown in the second
part of the theorem hold for the digraph G. Then we must prove that

|ρ1| = max
i∈V

vuut X
j∈N+

i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk).

Let x be a common eigenvector of (Wij) corresponding to the largest eigen-
value ρ1 (Wij) for all i, j. Using Lemma 2.3, each W+

i also has eigenvector

x corresponding to the largest eigenvalue of ρ1
³
W+

i

´
. First we suppose

that G is an outweight semi-regular digraph. Let V1, V2 be the partite sets

of G. Also let ρ1
³
W+

i

´
= a for i ∈ V1 and ρ1

³
W+

i

´
= b for i ∈ V2. Then

the following equation can be easily seen:

√
ab

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
x
...
xq
b
axq
b
ax
...q
b
ax

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 W1,k+1 . . . W1,n

0 . . . 0 W2,k+1 . . . W2,n
...

...
...

...
0 . . . 0 Wk,k+1 . . . Wk,n

Wk+1,1 . . . Wk+1,k 0 . . . 0
Wk+2,1 . . . Wk+2,k 0 . . . 0
...

...
...

...
Wn,1 . . . Wn,k 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
x
...
xq
b
axq
b
ax
...q
b
ax

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore
√
ab is an eigenvalue of A (G). So

√
ab ≤ |ρ1|. By Lemma 2.3,

we have

X
j∈N+

i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk) = ρ1
³
W+

i

´
ρ1
³
W+

j

´
= ab for i ∈ V.(2.14)

By e15

|ρ1| ≤ max
i∈V

vuut X
j∈N+

i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk) =
√
ab.

Thus we obtain

|ρ1| =
√
ab = max

i∈V

vuut X
j∈N+

i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk).

Similarly one can easily see that |ρ1| = ρ1
³
W+

i

´
for all i for outweight

regular digraph. Hence this completes the proof. 2
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Corollary 2.5. Let G be a strongly connected weighted digraph. Then

|ρ1| ≤ max
(i,j)∈E

⎧⎪⎪⎨⎪⎪⎩
vuut X

k∈N+
i

ρ1 (Wik)
X

k∈N+
j

ρ1 (Wjk)

⎫⎪⎪⎬⎪⎪⎭(2.15)

where (Wij) is the positive definite weight matrix of order p of the arc
(i, j) ∈ E. Moreover, the equality holds in e16 if and only if

(i) G is an outweight regular digraph or G is an outweight semi-regular
digraph;

(ii) {Wij}i,j=1,...,n have a common eigenvector corresponding to the largest
eigenvalue ρ1 (Wij) for all i, j.

Proof. For any vertex i let s be such that

X
k∈N+

s

ρ1 (Wsk) := max
j∈N+

i

X
k∈N+

j

ρ1 (Wjk) .

Then we have

X
k∈N+

j

ρ1 (Wjk) ≤
X

k∈N+
s

ρ1 (Wsk) ,

for any vertex i, j ∈ N+
i . Thus, for any vertex iX

j∈N+
i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk) ≤
X
j∈N+

i

ρ1 (Wij)
X

k∈N+
s

ρ1 (Wsk)

≤ max
j∈N+

i

⎧⎪⎨⎪⎩
X

k∈N+
i

ρ1 (Wik)
X

k∈N+
j

ρ1 (Wjk)

⎫⎪⎬⎪⎭ .

Therefore we get

|ρ1| ≤ max
i∈V

⎧⎪⎪⎨⎪⎪⎩
vuut X

j∈N+
i

ρ1 (Wij)
X

k∈N+
j

ρ1 (Wjk)

⎫⎪⎪⎬⎪⎪⎭
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≤ max
(i,j)∈E

⎧⎪⎪⎨⎪⎪⎩
vuut X

k∈N+
i

ρ1 (Wik)
X

k∈N+
j

ρ1 (Wjk)

⎫⎪⎪⎬⎪⎪⎭ .

From Theorem 2.4, the equality holds in e16 if and only if the conditions
(i)-(ii) of the corollary hold for the digraph G. 2

Corollary 2.6. Let G be a strongly connected weighted digraph where
each arc weight wij is a positive number. Then

ρ1 ≤ max
i∈V

½q
w+i w

+
i

¾
(2.16)

where w+i =
P

j∈N+
i

wijwj
+

w+i
. Moreover the equality holds in e17 if and

only if G is an outdegree regular digraph or G is an outdegree semi-regular
digraph.

Proof. For weighted digraph where the arc weight wij is a positive

number, we have ρ1
³
w+i

´
= w+i and ρ1 (wij) = wij for all i, j. Using

Theorem 2.4, the result follows. 2

Corollary 2.7. [12]Let G be a strongly connected unweighted digraph.
Then

ρ1 ≤ max
i∈V

½q
d+i m

+
i

¾
(2.17)

where d+i and m+
i is the outdegree and average 2-outdegree of the vertex i.

Moreover the equality holds in e18 if and only if G is an outdegree regular
digraph or G is an outdegree semi-regular digraph.

Proof. For unweighted digraph wij = 1 and w+i = d+i . Using Corollary
2.6, we get the result. 2

From Corollary 2.5 we have the following corollary.

Corollary 2.8. Let G be a strongly connected weighted digraph where each
arc weight wij is a positive number. Then

ρ1 ≤ max
(i,j)∈E

½q
w+i w

+
j

¾
(2.18)

where w+i is the sum of the weights of the arcs whose initial vertex is i.
Moreover the equality holds in e19 if and only if G is an outdegree regular
digraph or G is an outdegree semi-regular digraph.
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From Corollary 2.8 we have the following corollary.

Corollary 2.9. [12] Let G be a strongly connected unweighted digraph.
Then

ρ1 ≤ max
(i,j)∈E

½q
d+i d

+
j

¾
(2.19)

where d+i is the outdegree of the vertex i. Moreover the equality holds in
e20 if and only if G is an outdegree regular digraph or G is an outdegree
semi-regular digraph.

Remark 2.10. Obviously, for a weighted digraph G, we can define its
inweight matrices, inweight regular digraph and inweight semi-regular di-
graph, etc. So we can easily obtain some similar results as in Theorem 2.4
and Corollary 2.5 for the spectral radius of G.
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