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Abstract

This paper considers a system consisting of independently ope-
rating n-machines, which follows a deterioration processes with an
associated cost function. It is assumed that the system is observed
at discrete time and the objective function is the total expected cost.
Also, it is considered that the horizon of the problem is random. For
this problem, a replacement optimal policy that minimize the operation
cost of the system is provided. Besides, a numerical example through
a program in Matlab is presented.
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1. Introduction

In industrial processes is common the deterioration of electronic compo-
nents or machines, then it is important to provide replacement strategies
for the optimization of these systems. The problem of optimal replacement
is modeled in different ways. For example, in [9] the problem is studied
considering a single machine which follows a deterioration stochastic pro-
cess with various quality levels in a continuous time. Also, the optimal
replacement has been implemented based on future technological advances,
in this case, a non-stationary process is considered and the optimal decision
is characterized using a forecast horizon approach (see [6]). On the other
hand, in [2] the problem is studied with n-machines considering two heuris-
tics rules of replacement that make possible the search of optimal policies.
These rules are as follow: the first suggests that a machine is replaced only
if all older machines are replaced and the second one indicates that in any
stage all machines of the same age are either kept or replaced.

In this work the model proposed in [1] has been considered, which in-
volves a single machine that follows a Markov process of deterioration with
D possible levels, where D is a positive integer, associated with operation
costs of the machine at each level. The machine is observed in discrete
time and, depending on the deterioration level, the following situations are
possible:

1. Leaving operate for a additional period of time.

2. Replaced it with a cost R > 0.

Fixing a finite horizon of operation for the system is determined an optimal
replacement policy, such that the expected total cost incurred is minimal.
Now, in this paper a system consisting of n-machines with independent
deterioration processes is studied, assuming that the system is operating
in a random horizon. This novel consideration in the model is because
it is possible that external factors obligate to conclude the process before
expected, for example, bankruptcy of the firm in an economic model (see
[8], p. 125). The approach to analyze this problem is through Markov
decision processes.

This paper is organized as follows. In Section 2 the basic theory of
Markov decision processes is presented. In Section 3, a general study on
Markov decision processes with random horizon is provided, which allows
to solve the problem that is proposed. Afterwards, the problem of optimal
replacement in a system with n-machines and random horizon is described
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in Section 4. Then, in the following section, the Markov control model and
the dynamic programming equations are structured. For solving numeri-
cal cases a program in Matlab is elaborated. Finally, in Section 6 some
numerical results are illustrated.

2. Basic theory of Markov decision processes

The theory presented in this section can be consulted in [3].
Consider the following non-homogeneous Markov decision or control

model:
(X,A, {A(x) | x ∈ X},Q, ct, t ∈ {0, 1, 2, . . .})

where

a) X is a Borel space, called the state space;

b) A is a Borel space, called control or action set;

c) {A(x) | x ∈ X} is a nonempty measurable subsets A(x) of A, where
A(x) denotes the set of feasible controls or actions when the system is
in state x ∈ X, and with the property that the set K := {(x, a) | x ∈
X, a ∈ A(x)} of feasible state-actions pairs is a measurable subset of
X ×A.

d) Q is a stochastic kernel on X given K called the transition law, i.e.
Q (· | ·) is a function such that Q (· | k) is a probability measure on X
for each fixed k ∈ K and Q (B | ·) is a measurable function on X for
each B ∈ B(X).

e) ct : K → R is a measurable function called the cost-per-stage or
one-stage cost function.

Remark 2.1. The Markov control model that is considered in this paper is
a non-homogeneous system in the cost. A general nonhomogeneous Markov
decision model is (Xt, At, {At(x) | x ∈ Xt}, Qt, ct, t ∈ {0, 1, 2, . . .}), this
kind of model can be consulted in [8].

Let (X,A, {A(x) | x ∈ X}, Q, ct, t ∈ {0, 1, 2, . . .}) be a Markov control
model and for each t = 0, 1, . . . define the space Ht of admissible histories
up to time t as H0 := X, Ht := K

t ×X =K×Ht−1, for t = 1, 2, ....
An arbitrary element ht of Ht, which is called an admissible t —history

or simply t—history, is a vector of the form ht = (x0, a0, . . . , xt−1, at−1, xt),
with (xi, ai) ∈K for i = 0, 1, . . . , t− 1 and xt ∈ X.
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Then, a control policy is a sequence π = {πt, t = 0, 1, . . .} of stochastic
kernels πt on the control set A given Ht such that πt (A(xt)|ht) = 1, ht ∈
Ht, t = 0, 1, . . ..

Let Φ be the set of all stochastic kernels ϕ such that ϕ (A(x)|x) = 1
for all x ∈ X, and let F be the set of all measurable functions f : X → A
satisfying that f(x) ∈ A(x) for all x ∈ X. The functions in F are called
selectors of the multifunction x 7→ A(x), x ∈ X.

The set of all policies is denoted by Π. In this work, deterministic
Markov policies are characterized. A policy is called deterministic Markov
policy, if there is a sequence {ft} of functions f ∈ F such that πt(· | ht)
is concentrated at ft(xt) ∈ A(xt) for all ht ∈ Ht, t = 0, 1, 2..., i.e. πt(C |
ht) = IC [ft(xt)], for all C ∈ B(A).

Let (Ω, F ) be a measurable space consisting of the canonical sample
space Ω := H∞ and F is the corresponding product σ-algebra. The ele-
ments of Ω are sequences of the form ω = (x0, a0, x1, a1, . . .), with xt ∈ X
and at ∈ A, t = 0, 1, 2, . . .. The projections xt and at of Ω to the sets X
and A are called state and action variables, respectively. Let π = {πt} be
an arbitrary control policy and µ an arbitrary probability measure on X,
referred to as the initial distribution. Then, by the theorem of C. Ionescu-
Tulcea (see [3]), there exists a unique probability measure P π

µ on (Ω, F )
which, is concentrated on H∞, i.e., P π

µ (H∞) = 1. The stochastic process
(Ω, F, P π

µ ,{xt}) is called a discrete-time Markov control process or Markov
decision process.

The expectation operator with respect to P π
µ is denoted by Eπ

µ . If µ is
concentrated at the initial state x ∈ X, then we write P π

µ and Eπ
µ as P

π
x

and Eπ
x , respectively.

Let π ∈ Π and x ∈ X. The expected total cost with finite horizon N is
defined by

J(π, x) := Eπ
x

"
N−1X
t=0

ct(xt, at) + cN(xN)

#
,

where cN is a measurable function called the terminal cost function. Con-
sider the Markov control model (X,A, {A(x) | x ∈ X},Q, ct, t ∈ {0, 1, 2, . . .})
and suppose that wish to minimize J(π, x). Define the optimal value func-
tion as

J(x) := inf
π∈Π

J(π, x),

x ∈ X. The optimal control problem is to determine a policy π∗ ∈ Π such
that J(π∗, x) = J(x), x ∈ X.
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An approach to analyze the optimal control problem is Dynamic Pro-
gramming (DP). In the following section, a theorem to guarantee the exis-
tence of optimal policies for the optimal control problem is presented.

3. Markov decision processes with random horizon

Let (Ω0, F 0) a measurable space. Consider the Markov control model
(X,A, {A(x) | x ∈ X},Q, ct, t ∈ {0, 1, 2, . . .}) and the following perfor-
mance criterion:

Jτ (π, x) := E
τX
t=0

ct(xt, at),

π ∈ Π, x ∈ X, where τ is a random variable on (Ω0, F 0) with known
probability distribution P (τ = t) = ρt, t = 0, 1, 2, ..., T, where T is a
positive integer.

Remark 3.1. E is the expected value with respect to the joint distribution
of the process {xt, at} and τ .

Define the optimal value function as

Jτ (x) := inf
π∈Π

Jτ (π, x),

x ∈ X.

Assumption 3.2. τ is independent of {(xt, at)}.

By Assumption 3.2, it is follows that

Jτ (π, x) = E

"
E

Ã
τX
t=0

ct(xt, at) | τ
!#

=
TX

n=0

Ã
Eπ
x

nX
t=0

ct(xt, at)

!
ρn

=
TX
t=0

TX
n=t

Eπ
x ct(xt, at)ρn

= Eπ
x

TX
t=0

Pt ct(xt, at),

π ∈ Π and x ∈ X, where Pt =
PT

n=t ρn = P (τ ≥ t).
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Thus, the optimal control problem with a random horizon τ is equivalent
to an optimal control problem with a finite horizon T +1, a cost per stage
Ptct and a null terminal cost (see [5] and [4]).

The following result is motivated by Theorem 3.2.1 in [3], in our case
the proof to let a random horizon was adapted.

Theorem 3.3. Let J0, J1, ..., JT+1 be the functions on X defined by
JT+1(x) := 0 and for t = T, T − 1, ..., 0,

Jt(x) := min
A(x)

∙
Ptct(x, a) +

Z
X
Jt+1(y)Q(dy | x, a)

¸
.(3.1)

Suppose that Jt is a measurable function for each t = 0, 1, ..., T . Then,
there is a selector ft ∈ F such that ft(x) ∈ A(x) attains the minimum in
(3.1) for all x ∈ X and t = 0, 1, ..., T ; i.e.

Jt(x) = Ptct(x, ft) +

Z
X
Jt+1(y)Q(dy | x, ft),(3.2)

x ∈ X, t = 0, 1, ..., T . Then the deterministic Markov policy
π∗ = {f0,f1, ..., fT } is optimal and the optimal value function Jτ equals J0,
i.e.,

Jτ (x) = Jτ (π
∗, x) = J0(x),

x ∈ X.

Proof. Let π ∈ Π be an arbitrary policy and define

Ct(π, x) := Eπ

"
TX
n=t

Pncn(xn, an) | xn = x

#
,

for t = 0, 1, ..., T , and CT+1(π, x) := 0. Ct(π, x) is called the cost from time
t onwards when using the policy π and xt = x.
In particular note that

Jτ (π, x) = C0(π, x)(3.3)

By backward induction, for t = T + 1CT+1(π, x) = 0 = JT+1(x).
Now, suppose that for some t = T, T−1, ..., 0, Ct+1(π, x) ≥ Jt+1(x), x ∈ X.
Then

Ct(π, x) = Eπ

⎡⎣Ptct(xt, at) + TX
n=t+1

Pncn(xn, an) | xt = x

⎤⎦
=

Z
A

∙
Ptct(x, a) +

Z
X
Ct+1(y)Q(dy | x, a)

¸
πt(da | x),
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and by the induction hypothesis

Ct(π, x) ≥
Z
A

∙
Ptct(x, a) +

Z
X
Jt+1(y)Q(dy | x, a)

¸
πt(da | x)

≥ min
A(x)

∙
Ptct(x, a) +

Z
X
Jt+1(y)Q(dy | x, a)πt(da | x)

¸
hence Ct(π, x) ≥ Jt(x), x ∈ X and t = 0, 1, ..., T + 1.
On other hand, if Ct+1(π, x) = Jt+1(x) for all x ∈ X with π = π∗, πt(· | ht)
is the measure of Dirac concentrated at ft(xt), then the equality holds
throughout the previous calculations obtaining Ct(π, x) = Jt(x). Then, if
Ct(π, x) ≥ Jt(x), in particular for t = 0 and of (3.3), Jτ (π, x) ≥ J0(x) and
for π = π∗, Jτ (π∗, x) = J0(x).2

4. Description of the problem

Consider a system consisting of n machines, each with an independent
stochastic process of deterioration, whose possible levels of deterioration are
denoted by 1, 2, 3, . . . ,D, where D is a positive integer. Level one denotes
that the machine is in perfect condition. Suppose that deterioration level
is increasing, i.e., that a machine operating at level i is better than i + 1,
i = 1, 2, 3, . . . ,D − 1.

Let P = (pi,j)D×D be the matrix of transition probabilities for going
from level i to level j (identical for the n-machines). Since a machine
can not move to better level of deterioration, pi,j = 0 if j < i. Let g :
{1, 2, 3, . . . ,D} → R be a known function, which will measure the cost of
operation of a machine. Suppose that g is nondecreasing, i.e. g(1) ≤ g(2) ≤
. . . ≤ g(D), and in the beginning of each period of time can be taken the
following options.

a) Operate the machine k, k = 1, 2, . . . , n in a level of deterioration for
this time period, or

b) replace by a new one with a fixed cost R > 0.

Also consider that the system can operate for τ time periods, where
τ is a random variable independent of the process followed by the system
with probability distribution P (τ = t) = ρt, t = 0, 1, 2, . . . , T , where T is a
positive integer.

The problem consists on determining optimal replacement policies that
minimize the expected total cost of operation of the system.
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5. Modeling the problem

The problem is solved through the theory of Markov decision processes.
This requires building the corresponding Markov control model. At the be-
ginning of an arbitrary time period, the state of the system can be registered
as (d1, d2, . . . , dn) where dk, k = 1, 2, . . . , n, is the level of deterioration in
which the machine is operating, therefore the state space is defined by:

X = {(d1, d2, . . . , dn)|dk ∈ {1, 2, . . . ,D}, k = 1, 2, . . . , n},(5.1)

where card(X) = Dn states. A replacement action can be represented by
(a1, a2, . . . , an) with ak = 0 or ak = 1, where ak = 0 means let that the
machine k operate on the level dk and ak = 1 means replace it. At this way

A = A(x) = {(a1, a2, . . . , an)|ak ∈ {0, 1}, k = 1, 2, . . . , n},(5.2)

where its cardinality is 2n actions. For an arbitrary machine k, let P 0 =
(p0i,j)DXD = P be the transition matrix of the process of deterioration when
the machine is not replaced. Let P 1 = (p1i,j)D×D be the transition matrix
when the machine is replaced, where p1i,j = 1, if j = 1 and p

1
i,j = 0 in other-

wise (safely when machine k was replaced, the machine goes to level one).
Let Qa = (qai,j)Dn×Dn be the transition matrix of the state i at state j of
the system, when the action a ∈ A is taken, i, j ∈ X. For the independence
of the deterioration processes of the machines, it is obtained that

q
(a1,a2,...,an)
(i1,i2,...,in),(j1,j2,...,jn)

= pa1i1,j1 · p
a2
i2,j2

· . . . · panin,jn .(5.3)

Also at any time period t

c(xt, at) =
nX

k=1

γ(xk,t, ak,t),

where γ(xk,t, ak,t) = g(xk,t), if ak,t = 0 and γ(xk,t, ak,t) = g(1) + R, if
ak,t = 1. In this case xk,t and ak,t represent the state and the action at
time t of the machine k, respectively. Therefore the performance criterion
for this problem is

Jτ (π, x) := E
τX
t=0

c(xt, at),

π ∈ Π and x ∈ X, where τ is the planning horizon of the problem.
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Then, using Theorem 3.3, it is obtained that the dynamic programming
equation is given by JT+1(x) = 0, and

Jt(x) = min
a∈A(x)

"
Ptc(x, a) +

X
y∈X

Jt+1(y)q
a
x,y

#
,(5.4)

t = 0, 1, . . . , T .

Remark 5.1. The assumption of measurability and existence of selectors
in Theorem 3.3 holds, due to X and A are finites (see [8], p. 90).

The amount of numerical calculations involving the equation (5.4) de-
pends on the value of n, D and T . For this reason a program in Matlab
that carry out numerical calculations was implemented.

Below, the algorithm followed for the elaboration of the program is
presented.

1. Read of the following data:

• n, the number of machines.

• D, the number of deterioration levels.

• P , the transition matrix of deterioration process.

• g(i), the cost for operating a machine at level of deterioration i,
i = 1, 2, 3, . . . ,D.

• R, the cost per unit replaced.

• T , the support of the horizon.

• {ρt, t = 1, 2, 3, . . . , T} probability distribution of the horizon.

2. Construct the state space X, using (5.1).

3. Construct the action space A, using (5.2).

4. Calculate the transition matrices Qa for each a ∈ A, through (5.3).

5. Obtain the optimal policy and optimal value function, as follow

5.1. do t = T + 1 and Jt(x) = 0 for each x ∈ X.

5.2. if t = 0, stop, then Jt(x) is the optimal value function and
{f0, f1, . . . , fT+1} is the optimal policy. Else, go to 5.3.
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5.3. replace t by t − 1 and calculate Jt(x) for x ∈ X by means of

the equation Jt(x) = mina∈A(x)

"
Ptc(x, a) +

P
y∈X Jt+1(y)q

a
x,y

#
,

doing ft(x) = a, for some

a ∈ argmina∈A(x)

"
Ptc(x, a)+

P
y∈X Jt+1(y)q

a
x,y

#
. Return to 5.2.

6. Example

Consider the optimal replacement problem with a random horizon and the
following numerical values: n = 3, D = 3,

P =

⎛⎜⎝ 0.4 0.3 0.3
0 0.3 0.7
0 0 1

⎞⎟⎠ ,

g = (5, 7, 29), R = 4, T = 6 and ρ = (0.1, 0.1, 0.3, 0.2, 0.15, 0.15).

In the table 6.1, the optimal expected total cost is presented for each
initial state.

In the table 6.2, the optimal action depending on the stage and state
of the system is reported.

For a given number of machines n, consider the state of perfect condi-
tions of the system as the initial state, i.e. x0 = (1, 1, . . . , 1)n×1. Let Jnτ (x0)
be the optimal expected value. In table 6.3, the optimal value is illustrated
for different values of n, whose graph is shown in figure 6.1.

The numerical calculations show that there is a linear relation between
the number of machines and the optimal expected value, with initial state
x0. Moreover, it can be seen that in this particular case, it is possible
to write the following relation: Jnτ (x0) = nJ1τ (x0). In a general case, with
initial state, x0 = (d1, d2, . . . dn), computationally it has been observed that
Jnτ (x0) = J1τ (d1) + J1τ (d2) + . . .+ J1τ (dn), which would divide the problem
with n machines in n problems with a single machine, this would give many
computational benefits.
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initial state optimal value initial state optimal value
x Jτ (x) x Jτ (x)

1 1 1 67.8226 1 1 2 70.4790
1 1 3 70.4790 1 2 1 70.4790
1 2 2 73.1353 1 2 3 73.1353
1 3 1 70.4790 1 3 2 73.1353
1 3 3 73.1353 2 1 1 70.4790
2 1 2 73.1353 2 1 3 73.1353
2 2 1 73.1353 2 2 2 75.7917
2 2 3 75.7917 2 3 1 73.1353
2 3 2 75.7917 2 3 3 75.7917
3 1 1 70.4790 3 1 2 73.1353
3 1 3 73.1353 3 2 1 73.1353
3 2 2 75.7917 3 2 3 75.7917
3 3 1 73.1353 3 3 2 75.7917
3 3 3 75.7917

Table 6.1: Optimal value for each initial state

Figure 6.1 : Optimal value with initial state x0 = (1, 1, 1) in function
of n.

Marisol M
fig-1
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7. Conclusion

In this paper a problem of optimal replacement in a system of n-machines
considering random horizon has been analyzed. The problem is modeled as
a Markov decision process, using this approach it is possible to characterize
the optimal replacement policy through of dynamic programming equation.
Moreover, a program in Matlab that helps to solve numerical cases was
developed. Results obtained for special cases suggest that we can divide
the problem with n-machines in n problems with a single machine, which
reduce the course of dimensionality (see [7]).
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Benemérita Universidad Autónoma de Puebla
México
e-mail: rroldan@alumnos.fcfm.buap.mx

and

Hugo Cruz Suárez
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stage 1 2 3 4 5 6
state

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1 1 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
1 2 3 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1
1 3 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 3 2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1
1 3 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
2 1 3 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
2 2 3 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1
2 3 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0
2 3 2 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1
2 3 3 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1
3 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
3 1 2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1
3 1 3 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
3 2 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0
3 2 2 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1
3 2 3 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1
3 3 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
3 3 2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1
3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.2: Optimal policies
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n Jnτ (x0)

1 22.6075
2 45.2151
3 67.8226
4 90.4301
5 113.0377

Table 6.3: Optimal value with initial state x0 = (1, 1, 1) for different values
of n




