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Abstract
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1. Introduction

The concept of statistical convergence play a vital role not only in pure
mathematics but also in other branches of science involving mathematics,
especially in information theory, computer science, biological science, dy-
namical systems, geographic information systems, population modelling,
and motion planning in robotics.

The notion of statistical convergence was introduced by Fast [7] and
Schoenberg [27] independently. A lot of developments have been made in
this areas after the works of S̆alát [26], Fridy [8] and Miller [21]. Over the
years and under different names statistical convergence has been discussed
in the theory of Fourier analysis, ergodic theory and number theory. Fridy
and Orhan [9] introduced the concept of lacunary statistical convergence.
In [23], Mursaleen and Mohiuddine introduced the concept of lacunary sta-
tistical convergence with respect to the intuitionistic fuzzy normed space.
Some work on lacunary statistical convergence can be found in [2], [10],
[19],[25]. In the recent years, generalization of statistical convergence have
appeared in the study of strong integral summability and the structure of
ideals of bounded continuous functions on Stone-C̆ech compactification of
the natural numbers. Moreover statistical convergence is closely related to
the concept of convergence in probability, (see [3]).

The probabilistic metric space was introduced by Menger [20] which is
an interesting and important generalization of the notion of a metric space.
Karakus [17] studied the concept of statistical convergence in probabilis-
tic normed spaces. The theory of probabilistic normed(or metric) spaces
was initiated and developed in [1], [28], [29], [30], [31] and further it was
extended to random/probabilistic 2-normed spaces by Goleţ [13] using the
concept of 2-norm which is defined by Gähler [11], and Gürdal and Pehlivan
[15] studied statistical convergence in 2-Banach spaces.

The notion of statistical convergence depends on the density of subsets
of N. A subset of N is said to have density δ (E) if

δ (E) = lim
n→∞

1

n
|{k ≤ n : k ∈ E}|,

where the vertical bars denote the cardinality of the enclosed set.
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A single sequence x = (xk) is said to be statistically convergent to c if
for every ε > 0

δ ({k ∈ N : |xk − c| ≥ ε}) = 0.
In this case we write S-limx = c or xk → c(S) (see [7],[8]).

A sequence x = (xk) is said to be ∆
n-satistically convergent to c if for

every ε > 0 the set {k ∈ N : |∆nxk − c| ≥ ε} has natural density zero (see
[6]). i.e.

lim
m→∞

1

m
|{k ≤ m : |∆nxk − c| ≥ ε}| = 0,

where n ∈ N and ∆0xk = (xk),∆xk = (xk − xk+1),∆
nxk = (∆nxk) =

(∆n−1xk −∆n−1xk+1), and also this generalized difference notion has the
following binomial representation:

∆nxk =
nX
i=0

(−1)i
Ã
n

i

!
xk+i for all k ∈N.

2. Preliminaries

Definition 2.1. A function f : R → R+0 is called a distribution func-
tion if it is a non-decreasing and left continuous with inft∈R f(t) = 0 and
supt∈R f(t) = 1. By D+, we denote the set of all distribution functions
such that f(0) = 0. If a ∈ R+0 , then Ha ∈ D+, where

Ha(t) =

(
1, if t > a;
0, if t ≤ a

It is obvious that H0 ≥ f for all f ∈ D+.

A t-norm is a continuous mapping ∗ : [0, 1] × [0, 1] → [0, 1] such that
([0, 1], ∗) is abelian monoid with unit one and c ∗ d ≥ a ∗ b if c ≥ a and
d ≥ b for all a, b, c ∈ [0, 1]. A triangle function τ is a binary operation on
D+, which is commutative, associative and τ(f,H0) = f for every f ∈ D+.

In [11],Gähler introduced the following concept of 2-normed spaces.

Definition 2.2. Let X be a linear space of dimension d > 1 (d may be
infinite). A real-valued function ||., .|| from X2 into R satisfying the fol-
lowing conditions:
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(1) ||x1, x2|| = 0 if and only if x1, x2 are linearly dependent,
(2) ||x1, x2|| is invariant under permutation,
(3) ||αx1, x2|| = |α|||x1, x2||, for any α ∈ R,
(4) ||x+ x, x2|| ≤ ||x, x2||+ ||x, x2||
is called an 2-norm onX and the pair (X, ||., .||) is called an 2-normed space.

A trivial example of an 2-normed space is X = R2, equipped with the
Euclidean 2-norm ||x1, x2||E = the volume of the parallellogram spanned
by the vectors x1, x2 which may be given expicitly by the formula

||x1, x2||E = |det(xij)| = abs (det(< xi, xj >))

where xi = (xi1, xi2) ∈ R2 for each i = 1, 2.

Recently, Goleţ [13] used the idea of 2-normed space to define the ran-
dom 2-normed spaces.

Definition 2.3. Let X be a linear space of dimension d > 1 (d may be
infinite), τ a triangle, and F : X × X → D+. Then F is called a proba-
bilistic 2-norm and (X,F , τ) a probabilistic 2-normed space if the following
conditions are satisfied:
(P2N1) F(x, y; t) = H0(t) if x and y are linearly dependent, where F(x, y; t)
denotes the value of F(x, y) at t ∈ R,
(P2N2) F(x, y; t) 6= H0(t) if x and y are linearly independent,
(P2N3) F(x, y; t) = F(y, x; t), for all x, y ∈ X,
(P2N4) F(αx, y; t) = F(x, y; t

|α|), for every t > 0, α 6= 0 and x, y ∈ X,

(P2N5) F(x+ y, z; t) ≥ τ (F(x, z; t),F(y, z; t)) , whenever x, y, z ∈ X.
If (P2N5) is replaced by
(P2N6) F(x+ y, z; t1+ t2) ≥ F(x, z; t1) ∗F(y, z; t2), for all x, y, z ∈ X and
t1, t2 ∈ R+0 ;
then (X,F , ∗) is called a random 2-normed space (for short, R2NS).

Remark 2.1. Every 2-normed space (X, ||., .||) can be made a random
2-normed space in a natural way, by setting
(i)F(x, y; t) = H0(t − ||x, y||), for every x, y ∈ X, t > 0 and a ∗ b =
min{a, b}, a, b ∈ [0, 1];
(ii)F(x, y; t) = t

t+||x,y|| , for every x, y ∈ X, t > 0 and a ∗ b = ab, a, b ∈ [0, 1].

Definition 2.4. A sequence x = (xk) in a random 2-normed space (X,F , ∗)
is said to be convergent (or F-convergent) to c ∈ X with respect to F if
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for each ε > 0, η ∈ (0, 1) and non zero z ∈ X there exists an positive
integer n0 = n0(ε, z) such that F(xk − c, z; ε) > 1 − η, whenever k ≥ n0.
In this case we write F−limk xk = c, and c is called the F-limit of x = (xk).

Definition 2.5. A sequence x = (xk) in a random 2-normed space (X,F , ∗)
is said to be Cauchy with respect to F if for each ε > 0, η ∈ (0, 1) and
non zero z ∈ X, there exists a positive integer n0 = n0(ε, z) such that
F(xk − xm, z; ε) > 1− η, whenever k,m ≥ n0.

In [14], Gürdal and Pehlivan studied statistical convergence in 2-normed
spaces and in 2-Banach spaces in [15]. In fact, Mursaleen [22] studied the
concept of statistical convergence of sequences in random 2-normed spaces,
in [24], Mohiuddine and Aiyub introduced the concept of lacunary sta-
tistical convergence in random 2-normed space. Recently in [4], Esi and
Özdemir introduced and studied the concept of generalized ∆m-statistical
convergence of sequences in probabilistic normed spaces and in [5] Esi and
Özdemir introduced and studied the concept of lacunary statistical conver-
gence in random n-normed space.

Definition 2.6.[22] A sequence x = (xk) in a random 2-normed space
(X,F , ∗) is said to be statistical-convergent or SR2N -convergent to some
c ∈ X with respect to F if for each ε > 0, η ∈ (0, 1) and non zero z ∈ X
such that

δ ({k ∈ N : F(xk − c, z; ε) ≤ 1− η}) = 0,

In other words we can write the sequence (xk) statistical converges to c
in random 2-normed space (X,F , ∗) if

lim
m→∞

1

m
|{k ≤ m : F(xk − c, z; ε) ≤ 1− η}| = 0.

or equivalently

δ ({k ∈ N : F(xk − c, z; ε) > 1− η}) = 1,

i.e.

S − lim
k→∞

F(xk − c, z; ε) = 1.

In this case we write SR2N − limx = c and c is called the SR2N − limit of
x. Let SR2N(X) denotes the set of all statistical convergent sequences in
random 2-normed space (X,F , ∗).
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In this paper we define and study lacunary ∆n-statistical convergence
in random 2-normed space which is quite a new and interesting idea to work
with. We show that some properties of lacunary ∆n-statistical convergence
of real numbers also hold for sequences in random 2-normed spaces. We
find some relations related to lacunary ∆n-statistical convergent sequences
in random 2-normed spaces. Also we find out the relation between lacunary
∆n-statistical convergent and lacunary ∆n-statistical Cauchy sequences in
this spaces.

3. Lacunary ∆n-statistical convergence in random 2-normed
spaces

In this section we define lacunary ∆n-statistical convergent sequence in
random 2-normed (X,F , ∗). Also we obtained some basic properties of this
notion in random 2-normed spaces.

Definition 3.1. By a lacunary sequence θ = (kr), where k0 = 0 , we
shall mean an increasing sequence of non-negative integers with hr : kr −
kr−1 → ∞ as r → ∞. The intervals determined by θ will be denoted by
Ir = (kr−1, kr] and the ratio

kr
kr−1

will be defined by qr.

Let θ be a lacunary sequence and Ir = {k : kr−1 < k ≤ kr}. A set
K ⊂ N has lacunary density δθ(K) if

lim
r

1

hr
|{i ∈ Ir : i ∈ K}| = 0.

Definition 3.2. Let θ be a lacunary sequence. A sequence x = (xk) is said
to be Sθ-convergent to c provided that for each ε > 0, the set

K(ε) = {k ∈ N : |xk − c| ≥ ε}

has θ-density zero. In this case we write Sθ-limx = c or xk → c(Sθ) (for
details see [9], [10]).

To examine the above notion we will provide some examples.

Example 3.1. Let θ = (2r − 1) and K = {i2 : i ∈ N}. Then we have

δθ(K) = 0 = δ(K).

Example 3.2. Let θ = (2r − 1) and K = {i : i ∈ N}. Then we have
δθ(K) = 0. But δ(K) = 1.
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We define the ∆n-convergence in random 2-normed spaces as follows:

Definition 3.3. A sequence x = (xk) in a random 2-normed space (X,F , ∗)
is said to be ∆n-convergent to c ∈ X with respect to F if for each ε > 0,
η ∈ (0, 1) and non zero z ∈ X, there exists an positive integer n0 = n0(ε, z)
such that F(∆nxk− c, z; ε) > 1− η, whenever k ≥ n0. In this case we write
F − limk∆

nxk = c, and c is called the F∆n-limit of x = (xk).

Definition 3.4. A sequence x = (xk) in a random 2-normed space (X,F , ∗)
is said to be ∆n-Cauchy with respect to F if for each ε > 0, η ∈ (0, 1) and
non zero z ∈ X, there exists a positive integer n0 = n0(ε, z) such that
F(∆nxk −∆nxs, z; ε) > 1− η, whenever k, s ≥ n0.

In [16] Hazarika and Savas and [24] Mohiuddine and Aiyub indepen-
dently introduced lacunary satistically convergence in random 2-normed
spaces as follows.

Definition 3.5. ([16], [24]) A sequence x = (xk) in a random 2-normed
space (X,F , ∗) is said to be lacunary satistically convergent or Sθ-convergent
to c ∈ X with respect to F if for every ε > 0, η ∈ (0, 1) and non zero z ∈ X
such that

δθ({k ∈ N : F(xk − c, z; ε) ≤ 1− η}) = 0.
or equivalently

δθ ({k ∈ N : F(xk − c, z; ε) > 1− η}) = 1,

i.e.
Sθ − lim

k→∞
F(xk − c, z; ε) = 1.

In this case we write SR2N
θ − limx = c or xk → c(SR2N

θ ) and

SR2N
θ (X) = {x = (xk) : ∃ c ∈ R, SR2N

θ − limx = c}.

Let SR2N
θ (X) denotes the set of all lacunary statistical convergent sequences

in random 2-normed space (X,F , ∗).
Definition 3.6. ([16], [24]) A sequence x = (xk) in a random 2-normed
space (X,F , ∗) is said to be lacunary statistical Cauchy with respect to F if
for each ε > 0, η ∈ (0, 1) and non zero z ∈ X there exists a positive integer
n = n(ε, z) such that

δθ({k ∈ N : F(xk − xn, z; ε) ≤ 1− η}) = 0.
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or equivalently

δθ({k ∈ N : F(xk − xn, z; ε) > 1− η}) = 1.

Now, we define the lacunary ∆n-statistically convergence in random
2-normed spaces.

Definition 3.7. A sequence x = (xk) in a random 2-normed space (X,F , ∗)
is said to be lacunary ∆n-satistically convergent or Sθ(∆n)-convergent to
c ∈ X with respect to F if for every ε > 0, η ∈ (0, 1) and non zero z ∈ X
such that

δθ(∆n)({k ∈ N : F(∆nxk − c, z; ε) ≤ 1− η}) = 0.

or equivalently

δθ(∆n) ({k ∈N : F(∆nxk − c, z; ε) > 1− η}) = 1,

i.e.
Sθ(∆n) − lim

k→∞
F(∆nxk − c, z; ε) = 1.

In this case we write SR2N
θ(∆n) − limx = c or xk → c(SR2N

θ(∆n)) and

SR2N
θ(∆n) = {x = (xk) : ∃ c ∈ R, SR2N

θ(∆n) − limx = c}.

Let SR2N
θ(∆n) denotes the set of all lacunary ∆

n-statistical convergent se-

quences in random 2-normed space (X,F , ∗).

Definition 3.8. A sequence x = (xk) in a random 2-normed space (X,F , ∗)
is said to be lacunary ∆n-statistical Cauchy with respect to F if for every
ε > 0, η ∈ (0, 1) and non zero z ∈ X there exists a positive integer m =
m(ε, z) such that for all k, s ≥ m

δθ(∆n)({k ∈ N : F(∆nxk −∆nxs, z; ε) ≤ 1− η}) = 0.

or equivalently

δθ(∆n)({k ∈ N : F(∆nxk −∆nxs, z; ε) > 1− η}) = 1.
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Definition 3.7, immediately implies the following Lemma.

Lemma 3.1. Let (X,F , ∗) be a random 2-normed space. If x = (xk) is
a sequence in X, then for every ε > 0, η ∈ (0, 1) and for non zero z ∈ X,
then the following statements are equivalent.

(i) SR2N
θ(∆n) − limk→∞ xk = c.

(ii) δθ(∆n)({k ∈ N : F(∆nxk − c, z; ε) ≤ 1− θ}) = 0.
(iii) δθ(∆n) ({k ∈ N : F(∆nxk − c, z; ε) > 1− θ}) = 1.
(iv) Sθ(∆n) − limk→∞F(∆nxk − c, z; ε) = 1.

Theorem 3.2. Let (X,F , ∗) be a random 2-normed space . If x = (xk) is
a sequence in X such that SR2N

θ(∆n) − limxk = c exists, then it is unique.

Proof. Suppose that there exist elements c1, c2 (c1 6= c2) in X such that

SR2N
θ(∆n) − lim

k→∞
xk = c1;S

R2N
θ(∆n) − lim

k→∞
xk = c2.

Let ε > 0 be given. Choose a > 0 such that

(1− a) ∗ (1− a) > 1− ε.(3.1)

Then, for any t > 0 and for non zero z ∈ X we define

K1(a, t) =

½
k ∈ N : F

µ
∆nxk − c1, z;

t

2

¶
≤ 1− a

¾
;

K2(a, t) =

½
k ∈ N : F

µ
∆nxk − c2, z;

t

2

¶
≤ 1− a

¾
.

Since

SR2N
θ(∆n) − limk→∞ xk = c1 and SR2N

θ(∆n) − limk→∞ xk = c2, we have

δθ(∆n)(K1(a, t)) = 0 and δθ(∆n)(K2(a, t)) = 0 for all t > 0.

Now let K(a, t) = K1(a, t) ∪K2(a, t), then it is easy to observe that
δθ(∆n)(K(a, t)) = 0. But we have δθ(∆n)(K

c(a, t)) = 1.

Now if k ∈ Kc(a, t) then we have

F(c1−c2, z; t) ≥ F
µ
∆nxk − c1, z;

t

2

¶
∗F

µ
∆nxk − c2, z;

t

2

¶
> (1−a)∗(1−a).



382 Bipan Hazarika

It follows by (3.1) that

F(c1 − c2, z; t) > (1− ε).

Since ε > 0 was arbitrary, we get F(c1 − c2, z; t) = 0 for all t > 0 and
non zero z ∈ X. Hence c1 = c2.

Next theorem gives the algebraic characterization of lacunary∆n-statistical
convergence on random 2-normed spaces.

Theorem 3.3. Let (X,F , ∗) be a random 2-normed space, and x = (xk)
and y = (yk) be two sequences in X.
(a) If SR2N

θ(∆n) − limxk = c and c(6= 0) ∈ R, then SR2N
θ(∆n) − lim cxk = cc.

(b) If SR2N
θ(∆n) − limxk = c1 and SR2N

θ(∆n) − lim yk = c2, then SR2N
λ(∆n) −

lim(xk + yk) = c1 + c2.

Proof of the theorem is straightforward, thus omitted.

Theorem 3.4. Let (X,F , ∗) be a random 2-normed space. If x = (xk) be
a sequence in X such that F∆n − limxk = c then SR2N

θ(∆n) − limxk = c.

Proof. Let F∆n − limxk = c. Then for every ε > 0, t > 0 and non zero
z ∈ X, there is a positive integer n0 = n0(ε, z) such that

F(∆nxk − c, z; t) > 1− ε

for all k ≥ n0. We put

K(ε, t) = {k ∈ N : F(∆nxk − c, z; t) ≤ 1− ε}.

Also, since every finite subset of N has δθ(∆n)-density zero, and conse-

quently we have δθ(∆n)(K(ε, t)) = 0. This shows that S
R2N
θ(∆n) − limxk = c.

Remark 3.5. The converse of the above theorem is not true in general. It
follows from the following example.

Example 3.6. Let X = R2, with the 2-norm ||x, z|| = |x1z2 − x2z1|,
x = (x1, x2), z = (z1, z2) and a ∗ b = ab for all a, b ∈ [0, 1]. Let F(x, y; t) =

t
t+||x,y|| , for all x, z ∈ X, z2 6= 0, and t > 0. Now we define a sequence
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x = (xk) by

∆nxk =

(
(k, 0), if kr − [

√
hr] + 1 ≤ k ≤ kr, r ∈ N;

(0, 0), otherwise.

Nor for every 0 < ε < 1 and t > 0, write

K(ε, t) = {k ∈ N : F(∆nxk − c, z; t) ≤ 1− ε}, c = (0, 0)

= {k ∈ N :
t

t+ ||xk, z||
≤ 1− ε} = {k ∈ N : ||xk, z|| ≥

tε

1− ε
> 0}

= {k ∈ N : kr − [
p
hr] + 1 ≤ k ≤ kr, r ∈ N},

We see that

1

hr
|K(ε, t)| ≤ 1

hr
|{k ∈N : kr − [

p
hr] + 1 ≤ k ≤ kr, r ∈ N}| ≤ [

√
hr]

hr
.

Therefore we get

δθ(∆n)(K(ε, t)) = lim
r→∞

[
√
hr]

hr
= 0.

This shows that SR2N
θ(∆n) − limxk = 0.

On the other hand the sequence is not F-convergent to zero as

F(xk−c, z; t) =
t

t+ ||xk, z||
=

(
t

t+||xk,z|| , if kr − [
√
hr] + 1 ≤ k ≤ kr, r ∈ N;

1, otherwise.

≤ 1.

Theorem 3.7. Let (X,F , ∗) be a random 2-normed space. If x = (xk) be
a sequence in X, then SR2N

θ(∆n)− limxk = c if and only if there exists a subset

K ⊆ N such that δθ(∆n)(K) = 1 and F∆n − limxk = c.

Proof. Suppose first that SR2N
θ(∆n) − limxk = c. Then for any t > 0, a =

1, 2, 3, ... and non zero z ∈ X, let

A(a, t) =

½
k ∈ N : F(∆nxk − c, z; t) > 1− 1

a

¾
and

K(a, t) =

½
k ∈ N : F(∆nxk − c, z; t) ≤ 1− 1

a

¾
.
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Since SR2N
θ(∆n) − limxk = c it follows that

δθ(∆n)(K(a, t)) = 0.

Now for t > 0 and a = 1, 2, 3, ..., we observe that

A(a, t) ⊃ A(a+ 1, t)

and

δθ(∆n)(A(a, t)) = 1.(3.2)

Now we have to show that, for k ∈ A(a, t),F∆n − limxk = c. Suppose
that for k ∈ A(a, t), (xk) not convergent to c with respect to F . Then there
exists some s > 0 such that

{k ∈ N : F(∆nxk − c, z; t) ≤ 1− s}

for infinitely many terms xk. Let

A(s, t) = {k ∈ N : F(∆nxk − c, z; t) > 1− s}

and

s >
1

a
, a = 1, 2, 3, ....

Then we have

δθ(∆n)(A(s, t)) = 0.

Furthermore, A(a, t) ⊂ A(s, t) implies that δθ(∆n)(A(a, t)) = 0, which
contradicts (3.2) as δθ(∆n)(A(a, t)) = 1. Hence F∆n − limxk = c.

Conversely, suppose that there exists a subsetK ⊆ N such that δθ(∆n)(K) =
1 and F∆n − limxk = c.

Then for every ε > 0, t > 0 and non zero z ∈ X, we can find out a
positive integer m = m(ε, z) such that

F(∆nxk − c, z; t) > 1− ε

for all k ≥ m. If we take

K(ε, t) = {k ∈N : F(∆nxk − c, z; t) ≤ 1− ε}
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then it is easy to see that

K(ε, t) ⊂N− {km+1, km+2, ...}

and consequently

δθ(∆n)(K(ε, t)) ≤ 1− 1.

Hence SR2N
θ(∆n) − limxk = c.

Finally, we establish the Cauchy convergence criteria in random 2-
normed spaces.

Theorem 3.8. Let (X,F , ∗) be a random 2-normed space. Then a se-
quence (xk) in X is lacunary ∆

n-statistically convergent if and only if it is
lacunary ∆n-statistically Cauchy.

Proof. Let (xk) be a lacunary ∆
n-statistically convergent sequence in X.

We assume that SR2N
θ(∆n) − limxk = c. Let ε > 0 be given. Choose a > 0

such that (3.1) is satisfied. For t > 0 and for non zero z ∈ X define

A(a, t) =

½
k ∈ N : F(∆nxk − c, z;

t

2
) ≤ 1− a

¾
and

Ac(a, t) =

½
k ∈N : F(∆nxk − c, z;

t

2
) > 1− a

¾
.

Since SR2N
θ(∆n) − limxk = c it follows that δθ(∆n)(A(a, t)) = 0 and conse-

quently δθ(∆n)(A
c(a, t)) = 1. Let p ∈ Ac(a, t). Then

F(∆nxp − c, z;
t

2
) > 1− a.(3.3)

If we take

B(ε, t) = {k ∈ N : F(∆nxk −∆nxp, z; t) ≤ 1− ε}

then to prove the result it is sufficient to prove that B(ε, t) ⊆ A(a, t). Let
k ∈ B(ε, t) ∩Ac(a, t), then for non zero z ∈ X

F(∆nxk −∆nxp, z; t) ≤ 1− ε and F(∆nxk − c, z;
t

2
) > 1− a.(3.4)
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Then by (3.1), (3.3) and (3.4) we get

1− ε ≥ F(∆nxn −∆nxp, z; t) ≥ F(∆nxn − c, z;
t

2
) ∗ F(∆nxp − c, z;

t

2
)

> (1− a) ∗ (1− a) > (1− ε)

which is not possible. Thus B(ε, t) ⊂ A(a, t). Since δθ(∆n)(A(a, t)) = 0,
it follows that δθ(∆n)(B(ε, t)) = 0. This shows that (xk) is lacunary ∆

n-
statistically Cauchy.

Conversely, suppose (xk) is lacunary ∆
n-statistically Cauchy but not

lacunary ∆n-statistically convergent. Then there exists positive integer p
and for non zero z ∈ X such that

A(ε, t) = {k ∈ N : F(∆nxk −∆nxp, z; t) ≤ 1− ε}.

then

δθ(∆n)(A(ε, t)) = 0

and consequently

δθ(∆n)(A
c(ε, t)) = 1.(3.5)

For a > 0 such that (3.1) is satisfied and we take

B(a, t) = {k ∈N : F(∆nxk − c, z;
t

2
) > 1− a}.

If p ∈ B(a, t) then

F(∆nxp − c, z;
t

2
) > 1− a.

Since

F(∆nxk −∆nxp, z; t) ≥ F(∆nxk − c, z;
t

2
) ∗ F(∆nxp − c, z;

t

2
)

> (1− a) ∗ (1− a) > 1− ε,

then we have

δθ(∆n)({k ∈ N : F(∆nxn −∆nxp, z; t) > 1− ε}) = 0
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i.e. δθ(∆n)(A
c(ε, t)) = 0, which contradicts (3.5) as δθ(∆n)(A

c(ε, t)) = 1.
Hence (xk) is lacunary ∆

n-statistically convergent.

Combining Theorem 3.7 and Theorem 3.8 we get the following corollary.

Corollary 3.9. Let (X,F , ∗) be a random 2-normed space and and x =
(xk) be a sequence in X. Then the following statements are equivalent:
(a) x is lacunary ∆n-statistically convergent.
(b) x is lacunary ∆n-statistically Cauchy.
(c) there exists a subset K ⊆ N such that δθ(∆n)(K) = 1 and F∆n−limxk =
c.

Now, we introduce the completeness of random 2-normed spaces.

Definiton 3.9. A random 2-normed space (X,F , ∗) is said to be complete
if every Cauchy sequence is convergent in (X,F , ∗).

As a consequence of the Theorem 3.8, for n = 0, we define the following
definition in random 2-normed spaces.

Definition 3.10. A random 2-normed space (X,F , ∗) is said to be Sθ-
complete if every Sθ-Cauchy sequence is Sθ-convergent in (X,F , ∗).

Theorem 3.10. Let θ be a lacunary sequence. Then every random 2-
normed space (X,F , ∗) is Sθ-complete but not complete in general.
Proof. First part of the proof of the theorem follows from the Theorem
3.8, for n = 0.

To see that random 2-normed space (X,F , ∗) is not complete in general,
we consider the following example:

Example 3.11. Let X = (0, 1] × (0, 1] with the 2-norm ||x, z|| = |x1z2 −
x2z1|, x = (x1, x2), z = (z1, z2) and a ∗ b = ab for all a, b ∈ [0, 1]. Let
F(x, y; t) = t

t+||x,y|| , for all x, z ∈ X, z2 6= 0, and t > 0. Then (X,F , ∗) is
a random 2-normed space but not complete, since the sequence

³
1
k ,

1
m

´
is

Cauchy with respect to F but not convergent with respect to the present
F . This completes the proof of the theorem.
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