Proyecciones Journal of Mathematics
Vol. 31, N ${ }^{o} 4$, pp. 355-361, December 2012.
Universidad Católica del Norte
Antofagasta - Chile
DOI: 10.4067/S0716-09172012000400004

Prime Submodules of Graded Modules

Rashid Abu-Dawwas
Yarmouk University, Jordan
Khaldoun Al-Zoubi
Jordan University of Science and Technology, Jordan and
Malik Bataineh
Jordan University of Science and Technology, Jordan
Received: March 2012. Accepted : October 2012

Abstract

Let G be a group, R be a G-graded ring and M be a G-graded R module. Suppose P is a prime ideal of R_{e} and $g \in G$. In this article, we define $$
\begin{gathered} M_{g}(P)=\left\{m \in M_{g}: A m \subseteq P M_{g}\right. \\ \text { for some ideal } \left.A \text { of } R_{e} \text { satisfying } A \nsubseteq P\right\} \end{gathered}
$$ that is an R_{e}-submodule of M_{g}, and we investigate some results on this submodule. Also, we introduce a situation where if N is a gr-prime R-submodule of M, then $\left(N_{g}: M_{g}\right)$ is a maximal ideal of R_{e}. We close this article by introducing a situation where if N is a gr- R-submodule of M such that N_{e} is a weakly prime R_{e}-submodule of M_{e}, then N_{g} is a prime R_{e}-submodule of M_{g}.

2010 AMS Subject Classifications : 13 A 02.

Keywords and Phrases : Graded rings, graded modules, prime submodules.

Introduction

Let G be a group and R be a commutative G-graded ring which is denoted by (R, G). The elements of R_{g} are called homogeneous of degree g where R_{g} are additive subgroups of R indexed by the elements $g \in G$. Consider $\operatorname{supp}(R, G)=\left\{g \in G: R_{g} \neq 0\right\}$. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_{g}$, where x_{g} is the component of x in R_{g}. Moreover, R_{e} is a subring of R and $1 \in R_{e}$. Further, if $r \in R_{g}$ and r is a unit, then $r^{-1} \in R_{g^{-1}}$. Let, $h(R)=\bigcup_{g \in G} R_{g}$. Assume M is a left R-module. Then M, denoted by (M, G), is a G-graded R-module (for simplicity, we write M is gr-R- module) if there exist additive subgroups M_{g} of M indexed by the elements $g \in G$ such that $M=\bigoplus_{g \in G} M_{g}$ and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. Also, we consider $\operatorname{supp}(M, G)=\left\{g \in G: M_{g} \neq 0\right\}$. It is clear that M_{g} is an R_{e}-submodule of M for all $g \in G$. For more details, one can look in $[3,4,5]$. Throughout this article, R is commutative ring with unity 1 and M is a left R-module.

A G-graded ring R is said to be first strongly graded if $1 \in R_{g} R_{g^{-1}}$ for all $g \in \operatorname{supp}(R, G)$, this is equivalent to say that $\operatorname{supp}(R, G)$ is a subgroup of G and $R_{g} R_{h}=R_{g h}$ for all $g, h \in \operatorname{supp}(R, G)$. A G-graded R-module M is said to be first strongly graded if $\operatorname{supp}(R, G)$ is a subgroup of G and $R_{g} M_{h}=M_{g h}$ for all $g \in \operatorname{supp}(R, G), h \in G$. Clearly, (R, G) is first strong if and only if every graded R-module is first strongly graded. For more details, one can look in [6]. (R, G) is said to be crossed product over the support if R_{g} contains a unit for all $g \in \operatorname{supp}(R, G)$. It is not difficult to prove that if (R, G) is crossed product over the support, then (R, G) is first strong. Also, if R_{e} is a field, then (R, G) is crossed product over the support. For more details, it is nice to see [1]. An R-submodule N of a G-gr- R-module M is said to be graded if $N=\bigoplus_{g \in G}\left(N \cap M_{g}\right)$, a submodule of a graded module need not be graded. For more details, it is good to look quickly in [7].

For a gr- R-submodule N of a gr- R-module M, we define $(N: M)=$ $\{r \in R: r M \subseteq N\}$. Clearly, $(N: M)$ is a graded ideal of R, see [2]. A proper gr- R-submodule N of a gr- R-module M will be called a graded prime R-submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $r m \in N$, then either $m \in N$ or $r \in(N: M)$. Moreover, it is easy to prove that if N is a graded prime R-submodule of M, then $(N: M)$ is a graded prime ideal of R.

Results

We begin our article by introducing a situation where every ideal A of R_{e} has the form ($K: M_{e}$) for some R_{e}-submodule K of M_{e} :

Proposition 0.1. Let R be a first strongly G-graded ring and M be a gr- R-module. Suppose A is an ideal of R_{e}. Then there exists a proper gr-R-submodule N of M such that $A=\left(N_{e}: M_{e}\right)$ if and only if $A M_{g} \neq M_{g}$ and $A=\left(A M_{g}: M_{g}\right)$ for all $g \in \operatorname{supp}(R, G)$.

Proof. \quad Suppose $A=\left(N_{e}: M_{e}\right)$ for some proper gr- R-submodule N of M. Then $A M_{e} \subseteq N_{e}$ and then $A M_{e} \neq M_{e}$. Let $g \in \operatorname{supp}(R, G)$. If $A M_{g}=M_{g}$, then $M_{e}=R_{g^{-1}} M_{g}=R_{g^{-1}} A M_{g}=A R_{g^{-1}} M_{g}=A M_{e}$ that is a contradiction. Thus, $A M_{g} \neq M_{g}$. On the other hand, let $a \in A$. Then $a M_{g} \subseteq A M_{g}$, so $a \in\left(A M_{g}: M_{g}\right)$. Thus, $A \subseteq\left(A M_{g}: M_{g}\right)$. Let $x \in\left(A M_{g}: M_{g}\right) . x M_{g} \subseteq A M_{g}$ and then $x M_{e}=x R_{g^{-1}} M_{g}=R_{g^{-1}} x M_{g} \subseteq$ $R_{g^{-1}} A M_{g}=A R_{g^{-1}} M_{g}=A M_{e} \subseteq N_{e}$, so $x \in\left(N_{e}: M_{e}\right)=A$. Thus $\left(A M_{g}: M_{g}\right) \subseteq A$ and hence $A=\left(A M_{g}: M_{g}\right)$. The converse is obvious.

A gr- R-module M will be called gr-weakly prime Noetherian if for every $a \in h(R)$ and every $m \in h(M)$, the gr- R-submodule $R a R m$ is finitely generated. Let P be a prime ideal of R_{e}. Then we define $M_{g}(P)=\{m \in$ $M_{g}: A m \subseteq P M_{g}$ for some ideal A of R_{e} satisfying $\left.A \nsubseteq P\right\}, g \in G$. It is clear that $M_{g}(P)$ is an R_{e}-submodule of M_{g} for all $g \in G$ and $P M_{g} \subseteq$ $M_{g}(P)$. Now, we introduce the following results about $M_{g}(P)$.

Proposition 0.2. Let R be a first strongly G-graded ring and M be a gr- R-module. If P is a prime ideal of R_{e} and K is a gr-prime R-submodule of M such that $\left(K_{e}: M_{e}\right)=P$, then $M_{g}(P) \subseteq K$ for all $g \in \operatorname{supp}(R, G)$.

Proof. Let $g \in \operatorname{supp}(R, G)$. Suppose $m \in M_{g}(P)$. Then there exists an ideal of R_{e} such that $A P$ and $A m \subseteq P M_{g}$. However, $P M_{g}=P R_{g} M_{e}=$ $R_{g} P M_{e} \subseteq R_{g} K_{e} \subseteq K$ and hence $A m \subseteq K$. Since K is gr-prime, either $m \in K$ or $A m \subseteq K$. If $A m \subseteq K$, then $A M_{e} \subseteq K_{e}$, so $A \subseteq\left(K_{e}: M_{e}\right)=P$ that is a contradiction. Thus $m \in K$ and hence $M_{g}(P) \subseteq K$.

Proposition 0.3. Let R be a G-graded ring and M be a gr- R-module. Suppose P is a prime ideal of R_{e} and $g \in G$ such that $M_{g} / P M_{g}$ is weakly Noetherian R_{e} / P-module. If $N=M_{g}(P)$, then $N=M_{g}$ or N is a prime R_{e}-submodule of M_{g} such that $P=\left(N: M_{g}\right)$.

Proof. \quad Suppose $N \neq M_{g}$. Let $r \in R_{e}$ and $m \in M_{g}$ such that $r m \in N$. If $r \in P$, then $r M_{g} \subseteq P M_{g} \subseteq N$. Suppose $r \notin P$. Let $A=R_{e} r R_{e}$. Then A is an ideal of R_{e} such that $A P$. Since $M_{g} / P M_{g}$ is weakly Noetherian, $A m+P M_{g}=A m_{1}+\ldots \ldots+A m_{k}+P M_{g}$ for some positive integer k and $m_{i} \in A m_{i}, 1 \leq i \leq k$. For each $1 \leq i \leq k, m_{i} \in A m \subseteq N$ and hence there exists ideal B_{i} of R_{e} such that $B_{i} P$ and $B_{i} m_{i} \subseteq P M_{g}$. Let $B=$ $B_{1} \cap \ldots \ldots \cap B_{k}$. Then B is an ideal of R_{e} such that $B P$ because P is prime. Moreover, $B A m \subseteq B m_{1}+\ldots \ldots+B m_{k}+P M_{g} \subseteq P M_{g}$. However, P is prime implies $B A P$. Thus $m \in N$. It follows that N is a prime R_{e}-submodule of M_{g}. Now, let $x \in P$. Then $x M_{g} \subseteq P M_{g} \subseteq N$, so $x \in\left(N: M_{g}\right)$. Thus $P \subseteq\left(N: M_{g}\right)$. Suppose $P \neq\left(N: M_{g}\right)$. Then there exists $\alpha \in\left(N: M_{g}\right)$ such that $\alpha \notin P$. Let $t \in M_{g}$. Then $R_{e} \alpha R_{e} t \subseteq N$. By above technique, $t \in N$. Thus $N=M_{g}$ that is a contradiction. Hence $P=\left(N: M_{g}\right)$.

By Proposition $0.2, M_{g}(P) \neq M_{g}$ if M contains a gr-prime R-submodule K such that $\left(K_{e}: M_{e}\right)=P$ provided that (R, G) is first strong and $g \in$ $\operatorname{supp}(R, G)$. Now, we introduce another situation where $M_{g}(P) \neq M_{g}$.

Proposition 0.4. Let R be a G-graded ring and M be a gr- R-module. Suppose P is a prime ideal of R_{e} and $g \in G$ such that $M_{g} / P M_{g}$ is finitely generated and weakly Noetherian R_{e} / P-module. If $P=\left(P M_{g}: M_{g}\right)$, then $M_{g}(P) \neq M_{g}$.

Proof. Suppose $M_{g}(P)=M_{g}$. Then there exists a positive integer k and elements $m_{i} \in M_{g}, 1 \leq i \leq k$ such that $M_{g}=R_{e} m_{1}+\ldots . .+R_{e} m_{k}+P M_{g}$. For each $1 \leq i \leq k$, there exists an ideal A_{i} of R_{e} such that $A_{i} P$ and $A_{i} m_{i} \subseteq P M_{g}$. Let $A=A_{1} \cap \ldots \ldots \cap A_{k}$. Then A is an ideal of R_{e} such that $A P$ and $A M_{g} \subseteq P M_{g}$, so $A \subseteq\left(P M_{g}: M_{g}\right)=P$ that is a contradiction. Hence $M_{g}(P) \neq M_{g}$.

It is easy to prove that if N is a gr-prime R-submodule of a gr- R module M, then $(N: M)$ is a gr-prime ideal of R, see [2, Proposition 2.4]. Similarly, one can prove that if N is a gr-prime R-submodule of a gr- R module M, then $\left(N_{g}: M_{g}\right)$ is a prime ideal of R_{e} for all $g \in G$. In this article, we introduce a situation where if N is a gr-prime R-submodule of a gr- R-module M, then $\left(N_{g}: M_{g}\right)$ is a maximal ideal of R_{e}, see Corollary 0.7.

Proposition 0.5. Let R be a first strongly G-graded ring and M be a gr- R-module. If M_{e} is Artinian and prime, then $R_{e} / \operatorname{Ann}\left(M_{g}\right)$ is a field for all $g \in \operatorname{supp}(R, G)$.

Proof. Let $T=\left\{N: N\right.$ is a nontrivial R_{e}-submodule of $\left.M_{e}\right\}$. Suppose that N_{0} is a minimal element of T. Obviously N_{0} is a non-zero simple module. Hence there exists a nonzero $a \in M_{e}$ such that $N_{0}=R_{e} a \approx$ $R_{e} / \operatorname{Ann}(a)$ and $\operatorname{Ann}(a)$ is a maximal ideal of R_{e}. Since M_{e} is prime, $\operatorname{Ann}(a)=\operatorname{Ann}\left(M_{e}\right)$. Let $r \in \operatorname{Ann}\left(M_{e}\right)$ and $g \in \operatorname{supp}(R, G)$. Then $r M_{g}=$ $r R_{g} M_{e}=R_{g} r M_{e}=R_{g} .\{0\}=\{0\}$, so $r \in \operatorname{Ann}\left(M_{g}\right)$. Let $s \in \operatorname{Ann}\left(M_{g}\right)$. Then $s M_{e}=s R_{g^{-1}} M_{g}=R_{g^{-1}} s M_{g}=R_{g^{-1}} .\{0\}=\{0\}$, so $s \in \operatorname{Ann}\left(M_{e}\right)$. Hence $\operatorname{Ann}\left(M_{e}\right)=\operatorname{Ann}\left(M_{g}\right)$. Consequently, $\operatorname{Ann}\left(M_{g}\right)$ is a maximal ideal of R_{e} and then $R_{e} / \operatorname{Ann}\left(M_{g}\right)$ is a field.

Corollary 0.6. Let R be a first strongly G-graded ring and M be a gr- R module. If M_{e} is Artinian, faithful and prime, then R_{e} is a field.

Corollary 0.7. Let R be a first strongly G-graded ring, M be a gr- R module and N be a gr-prime R-submodule of M. If M_{e} is Artinian, then $\left(N_{g}: M_{g}\right)$ is a maximal ideal of R_{e} for all $g \in \operatorname{supp}(R, G)$.

Proof. Since N is a gr-prime R-submodule of M, by [2, Proposition. 2.5], N_{e} is a prime R_{e}-submodule of M_{e}. Then M_{e} / N_{e} is an Artinian prime R_{e}-module, consequently, by Proposition $0.5, R_{e} / \operatorname{Ann}\left(M_{g} / N_{g}\right)$ is a field for all $g \in \operatorname{supp}(R, G)$, and then $\left(N_{g}: M_{g}\right)=\operatorname{Ann}\left(M_{g} / N_{g}\right)$ is a maximal ideal of R_{e} for all $g \in \operatorname{supp}(R, G)$.

A proper R-submodule N of an R-module M is said to be weakly prime if whenever $a, b \in R$ and $x \in M$ such that $a b x \in N$, then either $a x \in N$ or $b x \in N$. Obviously, any prime submodule is a weakly prime submodule, but the converse is not always correct. We close our article by introducing a situation where if N is a gr- R-submodule of M such that N_{e} is a weakly prime R_{e}-submodule of M_{e}, then N_{g} is a prime R_{e}-submodule of M_{g}.

Proposition 0.8. Let R be a G-graded ring and M be a gr- R-module such that (R, G) is crossed product over the support and M_{e} satisfies the DCC on cyclic R_{e}-submodules. Assume that M_{e} is R_{e}-torsion free. Suppose N is a gr-R-submodule of M such that N_{e} is weakly prime R_{e}-submodule of M_{e}. Then N_{g} is prime R_{e}-submodule of M_{g} for all $g \in \operatorname{supp}(R, G), g \neq e$.

Proof. Let $g \in \operatorname{supp}(R, G), g \neq e$. Suppose $r \in R_{e}, a \in M_{g}$ such that $r a \in N_{g}$. Assume $r \notin\left(N_{g}: M_{g}\right)$. Then there exists $b \in M_{g}$ such that $r b \notin N_{g}$. Since (R, G) is crossed product over the support, $R_{g^{-1}}$ contains a unit, say x. Consider the following chain of R_{e}-submodules of $M_{e}: \ldots \ldots \subseteq R_{e} x r^{3}(a+b) \subseteq R_{e} x r^{2}(a+b) \subseteq R_{e} x r(a+b)$. For some positive
integer n, we have $R_{e} x r^{n+1}(a+b)=R_{e} x r^{n}(a+b)$, that is $x r^{n}(r t-1)(a+b)=$ $0 \in N_{e}$ for some $t \in R_{e}$. If $r^{n}(a+b) \in N_{e}$, then $r(a+b) \in N_{e}$ and then $0 \neq r(a+b) \in N_{e} \bigcap M_{g} \subseteq M_{e} \bigcap M_{g}$ that is a contradiction since $g \neq e$. So, $x(r t-1)(a+b) \in N_{e}$. Now, $x r t a-x a+x(r t-1) b=x(r t-1)(a+b) \in N_{e}$, on the other hand $x r t a=x t(r a) \in R_{g^{-1}} R_{e} N_{g} \subseteq N_{e}$, so

$$
\begin{equation*}
-x a+x(r t-1) b \in N_{e} \tag{*}
\end{equation*}
$$

before and then $-a+(r t-1) b \in N_{g}$. We get that $-r a+r(r t-1) b \in N_{g}$, on the other hand, $-r a \in N_{g}$, so $r(r t-1) b \in N_{g}$ and then $x r(r t-1) b \in N_{e}$. If $r b \in N_{e}$, then $0 \neq r b \in N_{e} \bigcap M_{g} \subseteq M_{e} \bigcap M_{g}$ that is a contradiction, so $x(r t-1) b \in N_{e}$ and then by $\left(^{*}\right), x a \in N_{e}$ and then $a \in N_{g}$. Hence N_{g} is a prime R_{e}-submodule of M_{g}.

References

[1] R. Abu-Dawwas, More on crossed product over the support of graded rings, International Mathematical Forum, 5 (63) (2010), 3121 - 3126.
[2] R. Abu-Dawwas and M. Refai, Further results on graded prime submodules, International Journal of Algebra, 4 (28) (2010), 1413 - 1419.
[3] E. C. Dade, Group graded rings and modules, Math. Z., 174 (1980), $241-262$.
[4] C. Nastasescu, Strongly graded rings of finite groups, Comm. Algebra, 11 (10) (1981), 1033 - 1071.
[5] C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holland, Amesterdam, 1982.
[6] M. Refai, Various types of strongly graded rings, Abhath Al-Yarmouk Journal (Pure Sciences and Engineering Series), 4 (2) (1995), $9-19$.
[7] M. Refai and K. Al-Zoubi, On graded primary ideals, Turkish J. Mathematics, 28 (2004), 217 - 229.

Rashid Abu-Dawwas
Department of Mathematics
Yarmouk University
Irbid, Jordan
e-mail: rrashid@yu.edu.jo
Khaldoun Al-Zoubi
Department of Mathematics and Statistics
Jordan University of Science and Technology
Irbid,
Jordan
e-mail: kfzoubi@just.edu.jo
and
Malik Bataineh
Department of Mathematics and Statistics
Jordan University of Science and Technology
Irbid,
Jordan
e-mail: msbataineh@just.edu.jo

